1
|
Hill AT, Ford TC, Bailey NW, Lum JAG, Bigelow FJ, Oberman LM, Enticott PG. EEG during dynamic facial emotion processing reveals neural activity patterns associated with autistic traits in children. Cereb Cortex 2025; 35:bhaf020. [PMID: 39927786 PMCID: PMC11808805 DOI: 10.1093/cercor/bhaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/09/2024] [Accepted: 01/21/2025] [Indexed: 02/11/2025] Open
Abstract
Altered brain connectivity and atypical neural oscillations have been observed in autism, yet their relationship with autistic traits in nonclinical populations remains underexplored. Here, we employ electroencephalography to examine functional connectivity, oscillatory power, and broadband aperiodic activity during a dynamic facial emotion processing task in 101 typically developing children aged 4 to 12 years. We investigate associations between these electrophysiological measures of brain dynamics and autistic traits as assessed by the Social Responsiveness Scale, 2nd Edition (SRS-2). Our results revealed that increased facial emotion processing-related connectivity across theta (4 to 7 Hz) and beta (13 to 30 Hz) frequencies correlated positively with higher SRS-2 scores, predominantly in right-lateralized (theta) and bilateral (beta) cortical networks. Additionally, a steeper 1/f-like aperiodic slope (spectral exponent) across fronto-central electrodes was associated with higher SRS-2 scores. Greater aperiodic-adjusted theta and alpha oscillatory power further correlated with both higher SRS-2 scores and steeper aperiodic slopes. These findings underscore important links between facial emotion processing-related brain dynamics and autistic traits in typically developing children. Future work could extend these findings to assess these electroencephalography-derived markers as potential mechanisms underlying behavioral difficulties in autism.
Collapse
Affiliation(s)
- Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC 3125, Australia
| | - Talitha C Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC 3125, Australia
- Centre for Mental Health and Brain Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Neil W Bailey
- School of Medicine and Psychology, The Australian National University, Canberra, ACT 2601, Australia
- Monarch Research Institute, Monarch Mental Health Group, Sydney, New South Wales 2000, Australia
| | - Jarrad A G Lum
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC 3125, Australia
| | - Felicity J Bigelow
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC 3125, Australia
| | - Lindsay M Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC 3125, Australia
| |
Collapse
|
2
|
Hill AT, Ford TC, Bailey NW, Lum JAG, Bigelow FJ, Oberman LM, Enticott PG. EEG During Dynamic Facial Emotion Processing Reveals Neural Activity Patterns Associated with Autistic Traits in Children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609816. [PMID: 39372765 PMCID: PMC11451616 DOI: 10.1101/2024.08.27.609816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Altered brain connectivity and atypical neural oscillations have been observed in autism, yet their relationship with autistic traits in non-clinical populations remains underexplored. Here, we employ electroencephalography (EEG) to examine functional connectivity, oscillatory power, and broadband aperiodic activity during a dynamic facial emotion processing (FEP) task in 101 typically developing children aged 4-12 years. We investigate associations between these electrophysiological measures of brain dynamics and autistic traits as assessed by the Social Responsiveness Scale, 2nd Edition (SRS-2). Our results revealed that increased FEP-related connectivity across theta (4-7 Hz) and beta (13-30 Hz) frequencies correlated positively with higher SRS-2 scores, predominantly in right-lateralized (theta) and bilateral (beta) cortical networks. Additionally, a steeper 1/f-like aperiodic slope (spectral exponent) across fronto-central electrodes was associated with higher SRS-2 scores. Greater aperiodic-adjusted theta and alpha oscillatory power further correlated with both higher SRS-2 scores and steeper aperiodic slopes. These findings underscore important links between FEP-related brain dynamics and autistic traits in typically developing children. Future work could extend these findings to assess these EEG-derived markers as potential mechanisms underlying behavioural difficulties in autism.
Collapse
Affiliation(s)
- Aron T. Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| | - Talitha C. Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
- Centre for Human Psychopharmacology & Swinburne Neuroimaging, School of Health Sciences, Swinburne University of Technology, Melbourne, Australia
| | - Neil W. Bailey
- School of Medicine and Psychology, The Australian National University, Canberra, ACT, Australia
- Monarch Research Institute Monarch Mental Health Group, Sydney, New South Wales, Australia
| | - Jarrad A. G. Lum
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| | - Felicity J. Bigelow
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| | - Lindsay M. Oberman
- Noninvasive Neuromodulation Unit, Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Peter G. Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, Australia
| |
Collapse
|
3
|
Hernandez H, Baez S, Medel V, Moguilner S, Cuadros J, Santamaria-Garcia H, Tagliazucchi E, Valdes-Sosa PA, Lopera F, OchoaGómez JF, González-Hernández A, Bonilla-Santos J, Gonzalez-Montealegre RA, Aktürk T, Yıldırım E, Anghinah R, Legaz A, Fittipaldi S, Yener GG, Escudero J, Babiloni C, Lopez S, Whelan R, Lucas AAF, García AM, Huepe D, Caterina GD, Soto-Añari M, Birba A, Sainz-Ballesteros A, Coronel C, Herrera E, Abasolo D, Kilborn K, Rubido N, Clark R, Herzog R, Yerlikaya D, Güntekin B, Parra MA, Prado P, Ibanez A. Brain health in diverse settings: How age, demographics and cognition shape brain function. Neuroimage 2024; 295:120636. [PMID: 38777219 PMCID: PMC11812057 DOI: 10.1016/j.neuroimage.2024.120636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/17/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Diversity in brain health is influenced by individual differences in demographics and cognition. However, most studies on brain health and diseases have typically controlled for these factors rather than explored their potential to predict brain signals. Here, we assessed the role of individual differences in demographics (age, sex, and education; n = 1298) and cognition (n = 725) as predictors of different metrics usually used in case-control studies. These included power spectrum and aperiodic (1/f slope, knee, offset) metrics, as well as complexity (fractal dimension estimation, permutation entropy, Wiener entropy, spectral structure variability) and connectivity (graph-theoretic mutual information, conditional mutual information, organizational information) from the source space resting-state EEG activity in a diverse sample from the global south and north populations. Brain-phenotype models were computed using EEG metrics reflecting local activity (power spectrum and aperiodic components) and brain dynamics and interactions (complexity and graph-theoretic measures). Electrophysiological brain dynamics were modulated by individual differences despite the varied methods of data acquisition and assessments across multiple centers, indicating that results were unlikely to be accounted for by methodological discrepancies. Variations in brain signals were mainly influenced by age and cognition, while education and sex exhibited less importance. Power spectrum activity and graph-theoretic measures were the most sensitive in capturing individual differences. Older age, poorer cognition, and being male were associated with reduced alpha power, whereas older age and less education were associated with reduced network integration and segregation. Findings suggest that basic individual differences impact core metrics of brain function that are used in standard case-control studies. Considering individual variability and diversity in global settings would contribute to a more tailored understanding of brain function.
Collapse
Affiliation(s)
- Hernan Hernandez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Sandra Baez
- Universidad de los Andes, Bogota, Colombia; Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland
| | - Vicente Medel
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Sebastian Moguilner
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Harvard Medical School, Boston, MA, USA
| | - Jhosmary Cuadros
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Advanced Center for Electrical and Electronic Engineering, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile; Grupo de Bioingeniería, Decanato de Investigación, Universidad Nacional Experimental del Táchira, San Cristóbal 5001, Venezuela
| | - Hernando Santamaria-Garcia
- Pontificia Universidad Javeriana (PhD Program in Neuroscience) Bogotá, San Ignacio, Colombia; Center of Memory and Cognition Intellectus, Hospital Universitario San Ignacio Bogotá, San Ignacio, Colombia
| | - Enzo Tagliazucchi
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; University of Buenos Aires, Argentina
| | - Pedro A Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Sciences, University of Electronic Sciences Technology of China, Chengdu, China; Cuban Neuroscience Center, La Habana, Cuba
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, University of Antioquia, Medellín, Colombia
| | | | | | | | | | - Tuba Aktürk
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Ebru Yıldırım
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Renato Anghinah
- Reference Center of Behavioural Disturbances and Dementia, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; Traumatic Brain Injury Cognitive Rehabilitation Out-Patient Center, University of Sao Paulo, Sao Paulo, Brazil
| | - Agustina Legaz
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Sol Fittipaldi
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Görsev G Yener
- Faculty of Medicine, Izmir University of Economics, 35330, Izmir, Turkey; Brain Dynamics Multidisciplinary Research Center, Dokuz Eylul University, Izmir, Turkey; Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Javier Escudero
- School of Engineering, Institute for Imaging, Data and Communications, University of Edinburgh, Scotland, UK
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, (FR), Italy
| | - Susanna Lopez
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Robert Whelan
- Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; Department of Legal Medicine, Psychiatry and Pathology at the Complutense University of Madrid, Madrid, Spain
| | - Alberto A Fernández Lucas
- Department of Legal Medicine, Psychiatry and Pathology at the Complutense University of Madrid, Madrid, Spain
| | - Adolfo M García
- Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; Cognitive Neuroscience Center, Universidad de San Andréss, Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - David Huepe
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez
| | - Gaetano Di Caterina
- Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, UK
| | | | - Agustina Birba
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | | | - Carlos Coronel
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Global Brain Health Institute (GBHI), University of California, San Francisco, US Trinity College Dublin, Dublin, Ireland; Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Eduar Herrera
- Departamento de Estudios Psicológicos, Universidad ICESI, Cali, Colombia
| | - Daniel Abasolo
- Centre for Biomedical Engineering, School of Mechanical Engineering Sciences, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Kerry Kilborn
- School of Psychology, University of Glasgow, Glasgow, Scotland, UK
| | - Nicolás Rubido
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Ruaridh Clark
- Centre for Signal and Image Processing, Department of Electronic and Electrical Engineering, University of Strathclyde, UK
| | - Ruben Herzog
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris 75013, France
| | - Deniz Yerlikaya
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Bahar Güntekin
- Health Sciences and Technology Research Institute (SABITA), Istanbul Medipol University, Istanbul, Turkey; Department of Biophysics, School of Medicine, Istanbul Medipol University, Turkey
| | - Mario A Parra
- Department of Psychological Sciences and Health, University of Strathclyde, United Kingdom and Associate Researcher of the Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Pavel Prado
- Escuela de Fonoaudiología, Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| | - Agustin Ibanez
- Latin American Brain Health Institute, Universidad Adolfo Ibañez, Santiago de Chile, Chile; Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA; Cognitive Neuroscience Center, Universidad de San Andrés and Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Trinity College Dublin, The University of Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Bagdasarov A, Brunet D, Michel CM, Gaffrey MS. Microstate Analysis of Continuous Infant EEG: Tutorial and Reliability. Brain Topogr 2024; 37:496-513. [PMID: 38430283 PMCID: PMC11199263 DOI: 10.1007/s10548-024-01043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Microstate analysis of resting-state EEG is a unique data-driven method for identifying patterns of scalp potential topographies, or microstates, that reflect stable but transient periods of synchronized neural activity evolving dynamically over time. During infancy - a critical period of rapid brain development and plasticity - microstate analysis offers a unique opportunity for characterizing the spatial and temporal dynamics of brain activity. However, whether measurements derived from this approach (e.g., temporal properties, transition probabilities, neural sources) show strong psychometric properties (i.e., reliability) during infancy is unknown and key information for advancing our understanding of how microstates are shaped by early life experiences and whether they relate to individual differences in infant abilities. A lack of methodological resources for performing microstate analysis of infant EEG has further hindered adoption of this cutting-edge approach by infant researchers. As a result, in the current study, we systematically addressed these knowledge gaps and report that most microstate-based measurements of brain organization and functioning except for transition probabilities were stable with four minutes of video-watching resting-state data and highly internally consistent with just one minute. In addition to these results, we provide a step-by-step tutorial, accompanying website, and open-access data for performing microstate analysis using a free, user-friendly software called Cartool. Taken together, the current study supports the reliability and feasibility of using EEG microstate analysis to study infant brain development and increases the accessibility of this approach for the field of developmental neuroscience.
Collapse
Affiliation(s)
- Armen Bagdasarov
- Department of Psychology & Neuroscience, Duke University, Reuben-Cooke Building, 417 Chapel Drive, Durham, NC, 27708, USA.
| | - Denis Brunet
- Department of Basic Neurosciences, University of Geneva, Campus Biotech, 9 Chemin des Mines, Geneva, 1202, Switzerland
- Center for Biomedical Imaging (CIBM) Lausanne, EPFL AVP CP CIBM Station 6, Lausanne, 1015, Switzerland
| | - Christoph M Michel
- Department of Basic Neurosciences, University of Geneva, Campus Biotech, 9 Chemin des Mines, Geneva, 1202, Switzerland
- Center for Biomedical Imaging (CIBM) Lausanne, EPFL AVP CP CIBM Station 6, Lausanne, 1015, Switzerland
| | - Michael S Gaffrey
- Department of Psychology & Neuroscience, Duke University, Reuben-Cooke Building, 417 Chapel Drive, Durham, NC, 27708, USA
- Children's Wisconsin, 9000 W. Wisconsin Avenue, Milwaukee, WI, 53226, USA
- Medical College of Wisconsin, Division of Pediatric Psychology and Developmental Medicine, Department of Pediatrics, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| |
Collapse
|
5
|
Das S, Zomorrodi R, Kirkovski M, Hill AT, Enticott PG, Blumberger DM, Rajji TK, Desarkar P. Atypical alpha band microstates produced during eyes-closed resting state EEG in autism. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110958. [PMID: 38309329 DOI: 10.1016/j.pnpbp.2024.110958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Electroencephalogram (EEG) microstates, which represent quasi-stable patterns of scalp topography, are a promising tool that has the temporal resolution to study atypical spatial and temporal networks in autism spectrum disorder (ASD). While current literature suggests microstates are atypical in ASD, their clinical utility, i.e., relationship with the core behavioural characteristics of ASD, is not fully understood. The aim of this study was to examine microstate parameters in ASD, and examine the relationship between these parameters and core behavioural characteristics in ASD. We compared duration, occurrence, coverage, global explained variance percentage, global field power and spatial correlation of EEG microstates between autistic and neurotypical (NT) adults. Modified k-means cluster analysis was used on eyes-closed, resting state EEG from 30 ASD (10 females, 28.97 ± 9.34 years) and 30 age-equated NT (13 females, 29.33 ± 8.88 years) adults. Five optimal microstates, A to E, were selected to best represent the data. Five microstate maps explaining 80.44% of the NT and 78.44% of the ASD data were found. The ASD group was found to have atypical parameters of microstate A, C, D, and E. Of note, all parameters of microstate C in the ASD group were found to be significantly less than NT. While parameters of microstate D, and E were also found to significantly correlate with subscales of the Ritvo Autism Asperger Diagnostic Scale - Revised (RAADS-R), these findings did not survive a Bonferroni Correction. These findings, in combination with previous findings, highlight the potential clinical utility of EEG microstates and indicate their potential value as a neurophysiologic marker that can be further studied.
Collapse
Affiliation(s)
- Sushmit Das
- Centre for Addiction and Mental Health, Toronto, Canada; Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Reza Zomorrodi
- Centre for Addiction and Mental Health, Toronto, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Department of Psychiatry, Central Clinical School, Monash University, Melbourne, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Daniel M Blumberger
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Toronto Dementia Research Alliance, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Pushpal Desarkar
- Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| |
Collapse
|