1
|
Benabdelkrim A, Tourchi AE, Hammoutène D, Ben Yaghlane S, Abdallah HH, Linguerri R, Hochlaf M. Characterization of the simplest sulfenyl thiocyanate: isomers, spectroscopy and implications of astrophysical and biological relevance. Phys Chem Chem Phys 2020; 22:17052-17061. [PMID: 32658239 DOI: 10.1039/d0cp02382e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sulfenyl thiocyanate compounds, RSSCN, are involved in the human immune system biochemical processes. They are also the routes for the synthesis of complex S-containing species such as polypeptides, or symmetrical (RSSR) and unsymmetrical disulfides (RSSR'). At present, we have characterized the stable forms of the simplest sulfenyl thiocyanate compound, HSSCN, at the coupled cluster level. We found twenty-three isomers, for which we determined a set of structural parameters, anharmonic frequencies and reaction energies for the formation of the corresponding diatomic + triatomic and atomic + tetratomic fragments. We also discussed the implications of the present findings for biological entities containing a disulfide bridge, where we identified three isomers that may serve as prototypes. Similarities and differences with other S/N hybrid bioactive molecules are also discussed. From an astrophysical point of view, we expect HSSCN isomers to be present in astrophysical media, since several of their molecular fragments have already been detected. In sum, the present set of data can be used for the identification of HSSCN compounds and understanding the physical chemistry of sulfur containing molecules in vivo, in the laboratory and in astrophysical media.
Collapse
Affiliation(s)
- Aicha Benabdelkrim
- USTHB, Faculty of Chemistry, Laboratory of Thermodynamics and Molecular Modeling, BP 32, Al Alia, 16111, Bab Ezzouar, Algiers, Algeria
| | | | | | | | | | | | | |
Collapse
|
2
|
Guo C, Davies MJ, Hawkins CL. Role of thiocyanate in the modulation of myeloperoxidase-derived oxidant induced damage to macrophages. Redox Biol 2020; 36:101666. [PMID: 32781424 PMCID: PMC7417949 DOI: 10.1016/j.redox.2020.101666] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Myeloperoxidase (MPO) is a vital component of the innate immune system, which produces the potent oxidant hypochlorous acid (HOCl) to kill invading pathogens. However, an overproduction of HOCl during chronic inflammatory conditions causes damage to host cells, which promotes disease, including atherosclerosis. As such, there is increasing interest in the use of thiocyanate (SCN-) therapeutically to decrease inflammatory disease, as SCN- is the favoured substrate for MPO, and a potent competitive inhibitor of HOCl formation. Use of SCN- by MPO forms hypothiocyanous acid (HOSCN), which can be less damaging to mammalian cells. In this study, we examined the ability of SCN- to modulate damage to macrophages induced by HOCl, which is relevant to lesion formation in atherosclerosis. Addition of SCN- prevented HOCl-mediated cell death, altered the extent and nature of thiol oxidation and the phosphorylation of mitogen activated protein kinases. These changes were dependent on the concentration of SCN- and were observed in some cases, at a sub-stoichiometric ratio of SCN-: HOCl. Co-treatment with SCN- also modulated HOCl-induced perturbations in the expression of various antioxidant and inflammatory genes. In general, the data reflect the conversion of HOCl to HOSCN, which can induce reversible modifications that are repairable by cells. However, our data also highlight the ability of HOSCN to increase pro-inflammatory gene expression and cytokine/chemokine release, which may be relevant to the use of SCN- therapeutically in atherosclerosis. Overall, this study provides further insight into the cellular pathways by which SCN- could exert protective effects on supplementation to decrease the development of chronic inflammatory diseases, such as atherosclerosis.
Collapse
Affiliation(s)
- Chaorui Guo
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen, DK-2200, Denmark.
| |
Collapse
|
3
|
Thiele GAR, Friedman CP, Tsai KJS, Beld J, Londergan CH, Charkoudian LK. Acyl Carrier Protein Cyanylation Delivers a Ketoacyl Synthase-Carrier Protein Cross-Link. Biochemistry 2017; 56:2533-2536. [PMID: 28448715 DOI: 10.1021/acs.biochem.7b00219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acyl carrier proteins (ACPs) are central hubs in polyketide and fatty acid biosynthetic pathways, but the fast motions of the ACP's phosphopantetheine (Ppant) arm make its conformational dynamics difficult to capture using traditional spectroscopic approaches. Here we report that converting the terminal thiol of Escherichia coli ACP's Ppant arm into a thiocyanate activates this site to form a selective cross-link with the active site cysteine of its partner ketoacyl synthase (FabF). The reaction releases a cyanide anion, which can be detected by infrared spectroscopy. This represents a practical and generalizable method for obtaining and visualizing ACP-protein complexes relevant to biocatalysis and will be valuable in future structural and engineering studies.
Collapse
Affiliation(s)
- Grace A R Thiele
- Department of Chemistry, Haverford College , Haverford, Pennsylvania 19041-1392, United States
| | - Connie P Friedman
- Department of Chemistry, Haverford College , Haverford, Pennsylvania 19041-1392, United States
| | - Kathleen J S Tsai
- Department of Chemistry, Haverford College , Haverford, Pennsylvania 19041-1392, United States
| | - Joris Beld
- Department of Microbiology and Immunology, Drexel University College of Medicine , 245 North 15th Street, Philadelphia, Pennsylvania 19102, United States
| | - Casey H Londergan
- Department of Chemistry, Haverford College , Haverford, Pennsylvania 19041-1392, United States
| | - Louise K Charkoudian
- Department of Chemistry, Haverford College , Haverford, Pennsylvania 19041-1392, United States
| |
Collapse
|
4
|
Love DT, Barrett TJ, White MY, Cordwell SJ, Davies MJ, Hawkins CL. Cellular targets of the myeloperoxidase-derived oxidant hypothiocyanous acid (HOSCN) and its role in the inhibition of glycolysis in macrophages. Free Radic Biol Med 2016; 94:88-98. [PMID: 26898502 DOI: 10.1016/j.freeradbiomed.2016.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 12/20/2022]
Abstract
Myeloperoxidase (MPO) released at sites of inflammation catalyzes the formation of the oxidants hypochlorous acid (HOCl) and hypothiocyanous acid (HOSCN) from H2O2 and halide and pseudo-halide ions. HOCl, a major oxidant produced under physiological conditions reacts rapidly with many biological molecules, and is strongly linked with tissue damage during inflammatory disease. The role of HOSCN in disease is less clear, though it can initiate cellular damage by pathways involving the selective oxidation of thiol-containing proteins. Utilizing a thiol-specific proteomic approach, we explored the cellular targets of HOSCN in macrophages (J774A.1). We report that multiple thiol-containing proteins involved in metabolism and glycolysis; fructose bisphosphate aldolase, triosephosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and creatine kinase, together with a number of chaperone, antioxidant and structural proteins, were modified in a reversible manner in macrophages treated with HOSCN. The modification of the metabolic enzymes was associated with a decrease in basal glycolysis, glycolytic reserve, glycolytic capacity and lactate release, which was only partly reversible on further incubation in the absence of HOSCN. Inhibition of glycolysis preceded cell death and was seen in cells exposed to low concentrations (≤25µM) of HOSCN. The ability of HOSCN to inhibit glycolysis and perturb energy production is likely to contribute to the cell death seen in macrophages on further incubation after the initial treatment period, which may be relevant for the propagation of inflammatory disease in smokers, who have elevated plasma levels of the HOSCN precursor, thiocyanate.
Collapse
Affiliation(s)
- Dominic T Love
- The Heart Research Institute, 7 Eliza St., Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Tessa J Barrett
- The Heart Research Institute, 7 Eliza St., Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Melanie Y White
- School of Molecular Bioscience, School of Medical Sciences, and Charles Perkins Centre, University of Sydney, 2006, Australia
| | - Stuart J Cordwell
- School of Molecular Bioscience, School of Medical Sciences, and Charles Perkins Centre, University of Sydney, 2006, Australia
| | - Michael J Davies
- The Heart Research Institute, 7 Eliza St., Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200, Denmark
| | - Clare L Hawkins
- The Heart Research Institute, 7 Eliza St., Newtown, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
Carroll L, Davies MJ, Pattison DI. Reaction of low-molecular-mass organoselenium compounds (and their sulphur analogues) with inflammation-associated oxidants. Free Radic Res 2015; 49:750-67. [PMID: 25854915 DOI: 10.3109/10715762.2015.1018247] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is an essential trace element in mammals, with the majority specifically encoded as seleno-L-cysteine into a range of selenoproteins. Many of these proteins play a key role in modulating oxidative stress, via either direct detoxification of biological oxidants, or repair of oxidised residues. Both selenium- and sulphur-containing residues react readily with the wide range of oxidants (including hydrogen peroxide, radicals, singlet oxygen and hypochlorous, hypobromous, hypothiocyanous and peroxynitrous acids) that are produced during inflammation and have been implicated in the development of a range of inflammatory diseases. Whilst selenium has similar properties to sulphur, it typically exhibits greater reactivity with most oxidants, and there are considerable differences in the subsequent reactivity and ease of repair of the oxidised species that are formed. This review discusses the chemistry of low-molecular-mass organoselenium compounds (e.g. selenoethers, diselenides and selenols) with inflammatory oxidants, with a particular focus on the reaction kinetics and product studies, with the differences in reactivity between selenium and sulphur analogues described in the selected examples. These data provide insight into the therapeutic potential of low-molecular-mass selenium-containing compounds to modulate the activity of both radical and molecular oxidants and provide protection against inflammation-induced damage. Progress in their therapeutic development (including modulation of potential selenium toxicity by strategic design) is demonstrated by a brief summary of some recent studies where novel organoselenium compounds have been used as wound healing or radioprotection agents and in the prevention of cardiovascular disease.
Collapse
Affiliation(s)
- L Carroll
- The Heart Research Institute , Newtown, Sydney , Australia
| | | | | |
Collapse
|
6
|
Ibrahim TS, Tala SR, El-Feky SA, Abdel-Samii ZK, Katritzky AR. Cysteinoyl- and Cysteine-containing Dipeptidoylbenzotriazoles with Free Sulfhydryl Groups: Easy Access to N-terminal and Internal Cysteine Peptides. Chem Biol Drug Des 2012; 80:194-202. [DOI: 10.1111/j.1747-0285.2011.01303.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
7
|
Pattison DI, Davies MJ, Hawkins CL. Reactions and reactivity of myeloperoxidase-derived oxidants: Differential biological effects of hypochlorous and hypothiocyanous acids. Free Radic Res 2012; 46:975-95. [DOI: 10.3109/10715762.2012.667566] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
|
9
|
Abstract
Hypothiocyanous acid (HOSCN) is produced in biological systems by the peroxidase-catalyzed reaction of thiocyanate (SCN(-)) with H(2)O(2). This oxidant plays an important role in the human immune system, owing to its potent bacteriostatic properties. Significant amounts of HOSCN are also formed by immune cells under inflammatory conditions, yet the reactivity of this oxidant with host tissue is poorly characterized. Traditionally, HOSCN has been viewed as a mild oxidant, which is innocuous to mammalian cells. Indeed, recent studies show that the presence of SCN(-) in airways has a protective function, by preventing the formation of other, more damaging, inflammatory oxidants. However, there is an increasing body of evidence that challenges this dogma, showing that the selectivity of HOSCN for specific thiol-containing cellular targets results in the initiation of significant cellular damage. This propensity to induce cellular dysfunction is gaining considerable interest, particularly in the cardiovascular field, as smokers have elevated plasma SCN(-), the precursor for HOSCN. This review will outline the beneficial and detrimental aspects of HOSCN formation in biological systems.
Collapse
Affiliation(s)
- Tessa J Barrett
- Inflammation Group, The Heart Research Institute , 7 Eliza Street, Newtown, Sydney, NSW 2042, Australia
| | | |
Collapse
|
10
|
One-pot synthesis of unsymmetrical disulfides using 1-chlorobenzotriazole as oxidant: Interception of the sulfenyl chloride intermediate. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.02.077] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Abstract
Hypohalous acids (HOX), produced by peroxidase-catalysed reactions of halide and pseudohalide ions with H(2)O(2), play an important role in the human immune system. However, there is compelling evidence that these oxidants also mediate host tissue damage and contribute to the progression of a number of inflammatory diseases. Although it is well established that significant amounts of hypothiocyanous acid (HOSCN) are formed under physiological conditions, the reactions of this oxidant with host biological systems are relatively poorly characterized. It is generally accepted that HOSCN is a mild oxidant that reacts selectively with thiols. However, it is becoming increasingly recognized that this selectivity can result in the induction of significant cellular damage, which may contribute to disease. This review will outline the formation and reactivity of HOSCN and the role of this oxidant in biological systems.
Collapse
Affiliation(s)
- Clare L Hawkins
- Inflammation Group, The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW 2042, Australia.
| |
Collapse
|
12
|
Abstract
The innate host response system is comprised of various mechanisms for orchestrating host response to microbial infection of the oral cavity. The heterogeneity of the oral cavity and the associated microenvironments that are produced give rise to different chemistries that affect the innate defense system. One focus of this review is on how these spatial differences influence the two major defensive peroxidases of the oral cavity, salivary peroxidase (SPO) and myeloperoxidase (MPO). With hydrogen peroxide (H(2)O(2)) as an oxidant, the defensive peroxidases use inorganic ions to produce antimicrobials that are generally more effective than H(2)O(2) itself. The concentrations of the inorganic substrates are different in saliva vs. gingival crevicular fluid (GCF). Thus, in the supragingival regime, SPO and MPO work in unison for the exclusive production of hypothiocyanite (OSCN(-), a reactive inorganic species), which constantly bathes nascent plaques. In contrast, MPO is introduced to the GCF during inflammatory response, and in that environment it is capable of producing hypochlorite (OCl(-)), a chemically more powerful oxidant that is implicated in host tissue damage. A second focus of this review is on inter-person variation that may contribute to different peroxidase function. Many of these differences are attributed to dietary or smoking practices that alter the concentrations of relevant inorganic species in the oral cavity (e.g.: fluoride, F(-); cyanide, CN(-); cyanate, OCN(-); thiocyanate, SCN(-); and nitrate, NO(3)(-)). Because of the complexity of the host and microflora biology and the associated chemistry, it is difficult to establish the significance of the human peroxidase systems during the pathogenesis of oral diseases. The problem is particularly complex with respect to the gingival sulcus and periodontal pockets (where the very different defensive stratagems of GCF and saliva co-mingle). Despite this complexity, intriguing in vitro and in vivo studies are reviewed here that reveal the interplay between peroxidase function and associated inorganic chemistry.
Collapse
Affiliation(s)
- M T Ashby
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA.
| |
Collapse
|
13
|
Wang X, Ashby MT. Reactive Sulfur Species: Kinetics and Mechanism of the Reaction of Thiocarbamate-S-oxide with Cysteine. Chem Res Toxicol 2008; 21:2120-6. [DOI: 10.1021/tx800195n] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoguang Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| | - Michael T. Ashby
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019
| |
Collapse
|