1
|
Li X, Escoffier H, Sauter T, Tavassoli M. Targeting Fibroblast-Derived Interleukin 6: A Strategy to Overcome Epithelial-Mesenchymal Transition and Radioresistance in Head and Neck Cancer. Cancers (Basel) 2025; 17:267. [PMID: 39858048 PMCID: PMC11763410 DOI: 10.3390/cancers17020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/06/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Cancer-associated fibroblasts have been reported to play a central role in driving cancer progression, promoting metastasis, and conferring resistance to therapy in HNSCC. METHODS Indirect and direct co-culture models of HPV-positive and HPV-negative HNSCC cells with fibroblasts were developed to study the effect of fibroblasts on cancer cells. ELISA was used to measure IL-6 secretion in these models. To dissect the underlying signalling mechanisms, the effects of IL-6, an IL-6 receptor (IL-6R) inhibitor, a MAPK/ERK inhibitor, and a JAK/STAT inhibitor were evaluated. Epithelial-to-mesenchymal transition (EMT) was assessed by measuring EMT markers and conducting scratch assays and spheroid assays. Radioresistance was evaluated using clonogenic assays. Additionally, radioresistant (RR) cell lines were established from parental cells to examine the correlation between radioresistance and EMT. RESULTS Fibroblasts were found to drive EMT-like changes and heightened radioresistance in HNSCC cells through IL-6 secretion. Remarkably, these Fb-driven effects were robustly reversed using IL-6R and MAPK/ERK inhibitors in both HPV-positive and HPV-negative cell lines, whereas JAK/STAT inhibitors proved effective only in HPV-negative cells. RR cell lines exhibit a more aggressive phenotype than their parental counterparts, marked by pronounced EMT features and heightened resistance to radiotherapy. Importantly, these aggressive characteristics were substantially attenuated by targeting IL-6R or MAPK/ERK pathways. CONCLUSIONS This study highlights the critical role of fibroblast-secreted IL-6 in driving and maintaining EMT and radioresistance in HNSCC, resulting in a more aggressive tumour phenotype. Targeting the IL-6/IL-6R/ERK pathway emerges as a promising therapeutic approach for combating CAF-driven tumour progression and improving clinical outcomes in patients with aggressive, therapy-resistant HNSCC.
Collapse
Affiliation(s)
- Xinyang Li
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King’s College London, Hodgkin Building, London SE1 1UL, UK;
| | - Hugues Escoffier
- Department of Life Sciences and Medicine, University of Luxembourg, L-4370 Belvaux, Luxembourg (T.S.)
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, L-4370 Belvaux, Luxembourg (T.S.)
| | - Mahvash Tavassoli
- Head and Neck Oncology Group, Centre for Host Microbiome Interaction, King’s College London, Hodgkin Building, London SE1 1UL, UK;
| |
Collapse
|
2
|
Systemic immune-inflammation index during treatment predicts prognosis and guides clinical treatment in patients with nasopharyngeal carcinoma. J Cancer Res Clin Oncol 2023; 149:191-202. [PMID: 36595043 PMCID: PMC9889477 DOI: 10.1007/s00432-022-04506-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/30/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE Systemic immune-inflammation index (SII) has been demonstrated to be closely associated with the poor prognosis of nasopharyngeal carcinoma (NPC). However, the role of SII during treatment of NPC has not been reported. This study aimed to determine the prognostic value of SII during treatment for NPC patients. METHODS A total of 759 patients diagnosed with NPC were included in this retrospective study (393 in training cohort and 366 in validation cohort). The correlation between variables was analyzed by the chi-squared test, the Fisher's exact test or the likelihood test. Kaplan-Meier method and log-rank test were used to analyze progression-free survival (PFS) and overall survival (OS). The independent prognostic factors were determined by multivariate analysis of Cox proportional hazards regression model. The uncontrolled risk was analyzed by Logistic regression. Receiver operating characteristic (ROC) curves were used to assess prognostic value. RESULTS The optimal cut-off point for the SII during treatment was 937.32. High SII during treatment group had higher uncontrolled risk than low SII during treatment group (p = 0.008). In multivariate Cox proportional hazard models analysis, SII during treatment was an independent prognostic factor for 5-year PFS (p < 0.001) and 5-year OS (p < 0.001). All results were found in the training cohort and confirmed in the validation cohort. CONCLUSIONS The SII during treatment is a promising indicator of predicting the survival in NPC patients, especially the risk of uncontrolled occurrence. By monitoring the SII during treatment, it is possible to better evaluate the treatment effect and formulate personalized treatment.
Collapse
|
3
|
Wang ZT, Peng Y, Lou DD, Zeng SY, Zhu YC, Li AW, Lyu Y, Zhu DQ, Fan Q. Effect of Shengmai Yin on Epithelial-Mesenchymal Transition of Nasopharyngeal Carcinoma Radioresistant Cells. Chin J Integr Med 2022:10.1007/s11655-022-3689-2. [PMID: 36477450 PMCID: PMC9734894 DOI: 10.1007/s11655-022-3689-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the mechanism by which Chinese medicine Shengmai Yin (SMY) reverses epithelial-mesenchymal transition (EMT) through lipocalin-2 (LCN2) in nasopharyngeal carcinoma (NPC) cells CNE-2R. METHODS Morphological changes in EMT in CNE-2R cells were observed under a microscope, and the expressions of EMT markers were detected using quantitative real-time PCR (RT-qPCR) and Western blot assays. Through the Gene Expression Omnibus dataset and text mining, LCN2 was found to be highly related to radiation resistance and EMT in NPC. The expressions of LCN2 and EMT markers following SMY treatment (50 and 100 µ g/mL) were detected by RT-qPCR and Western blot assays in vitro. Cell proliferation, migration, and invasion abilities were measured using colony formation, wound healing, and transwell invasion assays, respectively. The inhibitory effect of SMY in vivo was determined by observing a zebrafish xenograft model with a fluorescent label. RESULTS The CNE-2R cells showed EMT transition and high expression of LCN2, and the use of SMY (5, 10 and 20 µ g/mL) reduced the expression of LCN2 and reversed the EMT in the CNE-2R cells. Compared to that of the CNE-2R group, the proliferation, migration, and invasion abilities of SMY high-concentration group were weakened (P<0.05). Moreover, SMY mediated tumor growth and metastasis in a dose-dependent manner in a zebrafish xenograft model, which was consistent with the in vitro results. CONCLUSIONS SMY can reverse the EMT process of CNE-2R cells, which may be related to its inhibition of LCN2 expression. Therefore, LCN2 may be a potential diagnostic marker and therapeutic target in patients with NPC.
Collapse
Affiliation(s)
- Ze-tai Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 China
| | - Yan Peng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 China
| | - Dan-dan Lou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 China
| | - Si-ying Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 China
| | - Yuan-chao Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 China
| | - Ai-wu Li
- Department of Traditional Chinese Medicine, Nanfang Hospital, Guangzhou, 510515 China
| | - Ying Lyu
- Department of Traditional Chinese Medicine, Nanfang Hospital, Guangzhou, 510515 China
| | - Dao-qi Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
4
|
Ling J, Huang Y, Sun Z, Guo X, Chang A, Pan J, Zhuo X. Exploration of the effect of Celastrol on protein targets in nasopharyngeal carcinoma: Network pharmacology, molecular docking and experimental evaluations. Front Pharmacol 2022; 13:996728. [PMID: 36506508 PMCID: PMC9726908 DOI: 10.3389/fphar.2022.996728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Celastrol, an important extract of Tripterygium wilfordii, shows strong antitumor activity in a variety of tumors including nasopharyngeal carcinoma (NPC). However, little is known about its targets in NPC. We aimed to screen the key gene targets of Celastrol in the treatment of NPC by means of in silico analyses (including network pharmacology and molecular docking) and experimental evaluations. Methods: The main target genes of Celastrol and the genes related to NPC were obtained by retrieving the relevant biological databases, and the common targets were screened. Protein-protein interaction analysis was used to screen the hub genes. Then, a "compound-target-disease" network model was created and molecular docking was used to predict the binding of Celastrol to the candidate hub proteins. Afterward, the expression changes of the candidate genes under the administration of Celastrol were verified in vitro and in vivo. Results: Sixty genes common to Celastrol and NPC were screened out, which may be related to numerous biological processes such as cell proliferation, apoptosis, and tube development, and enriched in various pathways such as PI3K- Akt, EGFR tyrosine kinase inhibitor resistance, and Apoptosis. The tight binding ability of the candidate hub proteins (TNF, VEGFA, and IL6) to Celastrol was predicted by molecular docking [Docking energy: TNF, -6.08; VEGFA,-6.76; IL6,-6.91(kcal/mol)]. In vitro experiments showed that the expression of TNF and VEGFA decreased while the expression of IL6 increased in NPC cells (CNE2 and HONE1) treated with Celastrol. In vivo experiments suggested that Celastrol significantly reduced the weight and volume of the transplanted tumors in tumor-bearing mice in vivo. The expression of TNF, VEGFA, and IL6 in the transplanted tumor cells could be regulated by using Celastrol, and the expression trends were consistent with the in vitro model. Conclusion: Several gene targets have been filtered out as the core targets of Celastrol in the treatment of NPC, which might be involved in a variety of signaling pathways. Hence, Celastrol may exert its anti-NPC activity through multiple targets and multiple pathways, which will provide new clues for further research. Future experiments are warranted to validate the findings.
Collapse
Affiliation(s)
- Junjun Ling
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Yu Huang
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhen Sun
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaopeng Guo
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Aoshuang Chang
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Jigang Pan
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China,*Correspondence: Jigang Pan, ; Xianlu Zhuo,
| | - Xianlu Zhuo
- Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China,*Correspondence: Jigang Pan, ; Xianlu Zhuo,
| |
Collapse
|
5
|
Zhang Z, Du J, Xu Q, Xing C, Li Y, Zhou S, Zhao Z, Mu Y, Zhao Z(A, Cao S, Li F. Adiponectin Suppresses Metastasis of Nasopharyngeal Carcinoma through Blocking the Activation of NF-κB and STAT3 Signaling. Int J Mol Sci 2022; 23:12729. [PMID: 36361525 PMCID: PMC9658954 DOI: 10.3390/ijms232112729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 09/10/2023] Open
Abstract
Adiponectin is an adipocytokine with anti-inflammatory and anticancer properties. Our previous study has shown that blood adiponectin levels were inversely correlated to the risk of nasopharyngeal carcinoma (NPC), and that adiponectin could directly suppress the proliferation of NPC cells. However, the effect of adiponectin on NPC metastasis remains unknown. Here, we revealed in clinical studies that serum adiponectin level was inversely correlated with tumor stage, recurrence, and metastasis in NPC patients, and that low serum adiponectin level also correlates with poor metastasis-free survival. Coculture with recombinant adiponectin suppressed the migration and invasion of NPC cells as well as epithelial-mesenchymal transition (EMT). In addition, recombinant adiponectin dampened the activation of NF-κB and STAT3 signaling pathways induced by adipocyte-derived proinflammatory factors such as leptin, IL-6, and TNF-α. Pharmacological activation of adiponectin receptor through its specific agonist, AdipoRon, largely stalled the metastasis of NPC cells. Taken together, these findings demonstrated that adiponectin could not only regulate metabolism and inhibit cancer growth, but also suppress the metastasis of NPC. Pharmacological activation of adiponectin receptor may be a promising therapeutic strategy to stall NPC metastasis and extend patients' survival.
Collapse
Affiliation(s)
- Zongmeng Zhang
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinlin Du
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Qihua Xu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Chaofeng Xing
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuyu Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Sujin Zhou
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhenggang Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yunping Mu
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zijian (Allan) Zhao
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Sumei Cao
- Department of Cancer Prevention Research, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Fanghong Li
- The School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
The role of tumor acidification in aggressiveness, cell dissemination and treatment resistance of oral squamous cell carcinoma. Life Sci 2022; 288:120163. [PMID: 34822797 DOI: 10.1016/j.lfs.2021.120163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022]
Abstract
AIMS To investigate the role of tumor acidification in cell behavior, migration, and treatment resistance of oral squamous cell carcinoma (OSCC). MAIN METHODS The SCC4 and SCC25 cell lines were exposed to acidified (pH 6.8) cell culture medium for 7 days. Alternatively, a long-term acidosis was induced for 21 days. In addition, to mimic dynamic pH fluctuation of the tumor microenvironment, cells were reconditioned to neutral pH after experimental acidosis. This study assessed cell proliferation and viability by sulforhodamine B and flow cytometry. Individual and collective cell migration was analyzed by wound healing, time lapse, and transwell assays. Modifications of cell phenotype, EMT induction and stemness potential were investigated by qRT-PCR, western blot, and immunofluorescence. Finally, resistance to chemo- and radiotherapy of OSCC when exposed to acidified environmental conditions (pH 6.8) was determined. KEY FINDINGS The exposure to an acidic microenvironment caused an initial reduction of OSCC cells viability, followed by an adaptation process. Acidic adapted cells acquired a mesenchymal-like phenotype along with increased migration and motility indexes. Moreover, tumoral extracellular acidity was capable to induce cellular stemness and to increase chemo- and radioresistance of oral cancer cells. SIGNIFICANCE In summary, the results showed that the acidic microenvironment leads to a more aggressive and treatment resistant OSCC cell population.
Collapse
|
7
|
Rühle A, Wiedenmann N, Fennell JT, Mix M, Ruf J, Stoian R, Thomsen AR, Vaupel P, Baltas D, Grosu AL, Nicolay NH. Interleukin-6 as surrogate marker for imaging-based hypoxia dynamics in patients with head-and-neck cancers undergoing definitive chemoradiation-results from a prospective pilot trial. Eur J Nucl Med Mol Imaging 2021; 49:1650-1660. [PMID: 34773163 PMCID: PMC8940848 DOI: 10.1007/s00259-021-05602-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/21/2021] [Indexed: 11/29/2022]
Abstract
Purpose Intratumoral hypoxia increases resistance of head-and-neck squamous cell carcinoma (HNSCC) to radiotherapy. [18F]FMISO PET imaging enables noninvasive hypoxia monitoring, though requiring complex logistical efforts. We investigated the role of plasma interleukin-6 (IL-6) as potential surrogate parameter for intratumoral hypoxia in HNSCC using [18F]FMISO PET/CT as reference. Methods Within a prospective trial, serial blood samples of 27 HNSCC patients undergoing definitive chemoradiation were collected to analyze plasma IL-6 levels. Intratumoral hypoxia was assessed in treatment weeks 0, 2, and 5 using [18F]FMISO PET/CT imaging. The association between PET-based hypoxia and IL-6 was examined using Pearson’s correlation and multiple regression analyses, and the diagnostic power of IL-6 for tumor hypoxia response prediction was determined with receiver-operating characteristic analyses. Results Mean IL-6 concentrations were 15.1, 19.6, and 31.0 pg/mL at baseline, week 2 and week 5, respectively. Smoking (p=0.050) and reduced performance status (p=0.011) resulted in higher IL-6 levels, whereas tumor (p=0.427) and nodal stages (p=0.334), tumor localization (p=0.439), and HPV status (p=0.294) had no influence. IL-6 levels strongly correlated with the intratumoral hypoxic subvolume during treatment (baseline: r=0.775, p<0.001; week 2: r=0.553, p=0.007; week 5: r=0.734, p<0.001). IL-6 levels in week 2 were higher in patients with absent early tumor hypoxia response (p=0.016) and predicted early hypoxia response (AUC=0.822, p=0.031). Increased IL-6 levels at week 5 resulted in a trend towards reduced progression-free survival (p=0.078) and overall survival (p=0.013). Conclusion Plasma IL-6 is a promising surrogate marker for tumor hypoxia dynamics in HNSCC patients and may facilitate hypoxia-directed personalized radiotherapy concepts. Trial registration The prospective trial was registered in the German Clinical Trial Register (DRKS00003830). Registered 20 August 2015 Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05602-x.
Collapse
Affiliation(s)
- Alexander Rühle
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nicole Wiedenmann
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jamina T Fennell
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Mix
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Juri Ruf
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raluca Stoian
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas R Thomsen
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Vaupel
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dimos Baltas
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anca-L Grosu
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nils H Nicolay
- Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Robert-Koch-Str. 3, 79106, Freiburg, Germany. .,German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|