1
|
Bourdillon AT. Computer Vision-Radiomics & Pathognomics. Otolaryngol Clin North Am 2024; 57:719-751. [PMID: 38910065 DOI: 10.1016/j.otc.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The role of computer vision in extracting radiographic (radiomics) and histopathologic (pathognomics) features is an extension of molecular biomarkers that have been foundational to our understanding across the spectrum of head and neck disorders. Especially within head and neck cancers, machine learning and deep learning applications have yielded advances in the characterization of tumor features, nodal features, and various outcomes. This review aims to overview the landscape of radiomic and pathognomic applications, informing future work to address gaps. Novel methodologies will be needed to potentially engineer ways of integrating multidimensional data inputs to examine disease features to guide prognosis comprehensively and ultimately clinical management.
Collapse
Affiliation(s)
- Alexandra T Bourdillon
- Department of Otolaryngology-Head & Neck Surgery, University of California-San Francisco, San Francisco, CA 94115, USA.
| |
Collapse
|
2
|
Alapati R, Renslo B, Wagoner SF, Karadaghy O, Serpedin A, Kim YE, Feucht M, Wang N, Ramesh U, Bon Nieves A, Lawrence A, Virgen C, Sawaf T, Rameau A, Bur AM. Assessing the Reporting Quality of Machine Learning Algorithms in Head and Neck Oncology. Laryngoscope 2024. [PMID: 39258420 DOI: 10.1002/lary.31756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVE This study aimed to assess reporting quality of machine learning (ML) algorithms in the head and neck oncology literature using the TRIPOD-AI criteria. DATA SOURCES A comprehensive search was conducted using PubMed, Scopus, Embase, and Cochrane Database of Systematic Reviews, incorporating search terms related to "artificial intelligence," "machine learning," "deep learning," "neural network," and various head and neck neoplasms. REVIEW METHODS Two independent reviewers analyzed each published study for adherence to the 65-point TRIPOD-AI criteria. Items were classified as "Yes," "No," or "NA" for each publication. The proportion of studies satisfying each TRIPOD-AI criterion was calculated. Additionally, the evidence level for each study was evaluated independently by two reviewers using the Oxford Centre for Evidence-Based Medicine (OCEBM) Levels of Evidence. Discrepancies were reconciled through discussion until consensus was reached. RESULTS The study highlights the need for improvements in ML algorithm reporting in head and neck oncology. This includes more comprehensive descriptions of datasets, standardization of model performance reporting, and increased sharing of ML models, data, and code with the research community. Adoption of TRIPOD-AI is necessary for achieving standardized ML research reporting in head and neck oncology. CONCLUSION Current reporting of ML algorithms hinders clinical application, reproducibility, and understanding of the data used for model training. To overcome these limitations and improve patient and clinician trust, ML developers should provide open access to models, code, and source data, fostering iterative progress through community critique, thus enhancing model accuracy and mitigating biases. LEVEL OF EVIDENCE NA Laryngoscope, 2024.
Collapse
Affiliation(s)
- Rahul Alapati
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Bryan Renslo
- Department of Otolaryngology-Head & Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, U.S.A
| | - Sarah F Wagoner
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Omar Karadaghy
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Aisha Serpedin
- Department of Otolaryngology-Head & Neck Surgery, Weill Cornell, New York City, New York, U.S.A
| | - Yeo Eun Kim
- Department of Otolaryngology-Head & Neck Surgery, Weill Cornell, New York City, New York, U.S.A
| | - Maria Feucht
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Naomi Wang
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Uma Ramesh
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Antonio Bon Nieves
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Amelia Lawrence
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Celina Virgen
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Tuleen Sawaf
- Department of Otolaryngology-Head & Neck Surgery, University of Maryland, Baltimore, Maryland, U.S.A
| | - Anaïs Rameau
- Department of Otolaryngology-Head & Neck Surgery, Weill Cornell, New York City, New York, U.S.A
| | - Andrés M Bur
- Department of Otolaryngology-Head & Neck Surgery, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| |
Collapse
|
3
|
Lee JC, Hamill CS, Shnayder Y, Buczek E, Kakarala K, Bur AM. Exploring the Role of Artificial Intelligence Chatbots in Preoperative Counseling for Head and Neck Cancer Surgery. Laryngoscope 2024; 134:2757-2761. [PMID: 38126511 DOI: 10.1002/lary.31243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE To evaluate the potential use of artificial intelligence (AI) chatbots, such as ChatGPT, in preoperative counseling for patients undergoing head and neck cancer surgery. STUDY DESIGN Cross-Sectional Survey Study. SETTING Single institution tertiary care center. METHODS ChatGPT was used to generate presurgical educational information including indications, risks, and recovery time for five common head and neck surgeries. Chatbot-generated information was compared with information gathered from a simple browser search (first publicly available website excluding scholarly articles). The accuracy of the information, readability, thoroughness, and number of errors were compared by five experienced head and neck surgeons in a blinded fashion. Each surgeon then chose a preference between the two information sources for each surgery. RESULTS With the exception of total word count, ChatGPT-generated pre-surgical information has similar readability, content of knowledge, accuracy, thoroughness, and numbers of medical errors when compared to publicly available websites. Additionally, ChatGPT was preferred 48% of the time by experienced head and neck surgeons. CONCLUSION Head and neck surgeons rated ChatGPT-generated and readily available online educational materials similarly. Further refinement in AI technology may soon open more avenues for patient counseling. Future investigations into the medical safety of AI counseling and exploring patients' perspectives would be of strong interest. LEVEL OF EVIDENCE N/A. Laryngoscope, 134:2757-2761, 2024.
Collapse
Affiliation(s)
- Jason C Lee
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Chelsea S Hamill
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Yelizaveta Shnayder
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Erin Buczek
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Kiran Kakarala
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| | - Andrés M Bur
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas, U.S.A
| |
Collapse
|
4
|
Alter IL, Chan K, Lechien J, Rameau A. An introduction to machine learning and generative artificial intelligence for otolaryngologists-head and neck surgeons: a narrative review. Eur Arch Otorhinolaryngol 2024; 281:2723-2731. [PMID: 38393353 DOI: 10.1007/s00405-024-08512-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
PURPOSE Despite the robust expansion of research surrounding artificial intelligence (AI) and machine learning (ML) and their applications to medicine, these methodologies often remain opaque and inaccessible to many otolaryngologists. Especially, with the increasing ubiquity of large-language models (LLMs), such as ChatGPT and their potential implementation in clinical practice, clinicians may benefit from a baseline understanding of some aspects of AI. In this narrative review, we seek to clarify underlying concepts, illustrate applications to otolaryngology, and highlight future directions and limitations of these tools. METHODS Recent literature regarding AI principles and otolaryngologic applications of ML and LLMs was reviewed via search in PubMed and Google Scholar. RESULTS Significant recent strides have been made in otolaryngology research utilizing AI and ML, across all subspecialties, including neurotology, head and neck oncology, laryngology, rhinology, and sleep surgery. Potential applications suggested by recent publications include screening and diagnosis, predictive tools, clinical decision support, and clinical workflow improvement via LLMs. Ongoing concerns regarding AI in medicine include ethical concerns around bias and data sharing, as well as the "black box" problem and limitations in explainability. CONCLUSIONS Potential implementations of AI in otolaryngology are rapidly expanding. While implementation in clinical practice remains theoretical for most of these tools, their potential power to influence the practice of otolaryngology is substantial. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
- Isaac L Alter
- Department of Otolaryngology-Head and Neck Surgery, Sean Parker Institute for the Voice, Weill Cornell Medical College, 240 E 59 St, New York, NY, 10022, USA
| | - Karly Chan
- Department of Otolaryngology-Head and Neck Surgery, Sean Parker Institute for the Voice, Weill Cornell Medical College, 240 E 59 St, New York, NY, 10022, USA
| | - Jérome Lechien
- Department of Otorhinolaryngology, Head and Neck Surgery, Hôpital Foch, School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), Paris, France
- Department of Human Anatomy and Experimental Oncology, Faculty of Medicine, UMONS Research Institute for Health and Sciences Technology, University of Mons (UMons), Mons, Belgium
| | - Anaïs Rameau
- Department of Otolaryngology-Head and Neck Surgery, Sean Parker Institute for the Voice, Weill Cornell Medical College, 240 E 59 St, New York, NY, 10022, USA.
| |
Collapse
|