1
|
Pibiri M. Liver regeneration in aged mice: new insights. Aging (Albany NY) 2019; 10:1801-1824. [PMID: 30157472 PMCID: PMC6128415 DOI: 10.18632/aging.101524] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023]
Abstract
The regenerative capacity of the liver after resection is reduced with aging. Recent studies on rodents revealed that both intracellular and extracellular factors are involved in the impairment of liver mass recovery during aging. Among the intracellular factors, age-dependent decrease of BubR1 (budding uninhibited by benzimidazole-related 1), YAP (Yes-associated protein) and SIRT1 (Sirtuin-1) have been associated to dampening of tissue reconstitution and inhibition of cell cycle genes following partial hepatectomy. Extra-cellular factors, such as age-dependent changes in hepatic stellate cells affect liver regeneration through inhibition of progenitor cells and reduction of liver perfusion. Furthermore, chronic release of pro-inflammatory proteins by senescent cells (SASP) affects cell proliferation suggesting that senescent cell clearance might improve tissue regeneration. Accordingly, young plasma restores liver regeneration in aged animals through autophagy re-establishment. This review will discuss how intracellular and extracellular factors cooperate to guarantee a proper liver regeneration and the possible causes of its impairment during aging. The possibility that an improvement of the liver regenerative capacity in elderly might be achieved through elimination of senescent cells via autophagy or by administration of direct mitogenic agents devoid of cytotoxicity will also be entertained.
Collapse
Affiliation(s)
- Monica Pibiri
- Department of Biomedical Sciences, Oncology and Molecular Pathology Unit, University of Cagliari, Cagliari 09124, Italy
| |
Collapse
|
2
|
Loforese G, Malinka T, Keogh A, Baier F, Simillion C, Montani M, Halazonetis TD, Candinas D, Stroka D. Impaired liver regeneration in aged mice can be rescued by silencing Hippo core kinases MST1 and MST2. EMBO Mol Med 2017; 9:46-60. [PMID: 27940445 PMCID: PMC5210079 DOI: 10.15252/emmm.201506089] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The liver has an intrinsic capacity to regenerate in response to injury or surgical resection. Nevertheless, circumstances in which hepatocytes are unresponsive to proliferative signals result in impaired regeneration and hepatic failure. As the Hippo pathway has a canonical role in the maintenance of liver size, we investigated whether it could serve as a therapeutic target to support regeneration. Using a standard two‐thirds partial hepatectomy (PH) model in young and aged mice, we demonstrate that the Hippo pathway is modulated across the phases of liver regeneration. The activity of the core kinases MST1 and LATS1 increased during the early hypertrophic phase and returned to steady state levels in the proliferative phase, coinciding with activation of YAP1 target genes and hepatocyte proliferation. Moreover, following PH in aged mice, we demonstrate that Hippo signaling is anomalous in non‐regenerating livers. We provide pre‐clinical evidence that silencing the Hippo core kinases MST1 and MST2 with siRNA provokes hepatocyte proliferation in quiescent livers and rescues liver regeneration in aged mice following PH. Our data suggest that targeting the Hippo core kinases MST1/2 has therapeutic potential to improve regeneration in non‐regenerative disorders.
Collapse
Affiliation(s)
- Giulio Loforese
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Thomas Malinka
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Adrian Keogh
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Felix Baier
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Cedric Simillion
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Matteo Montani
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | | - Daniel Candinas
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Department of Clinical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Szydlowska M, Pibiri M, Perra A, Puliga E, Mattu S, Ledda-Columbano GM, Columbano A, Leoni VP. The Thyromimetic KB2115 (Eprotirome) Induces Rat Hepatocyte Proliferation. Gene Expr 2017; 17:207-218. [PMID: 28409553 PMCID: PMC5896737 DOI: 10.3727/105221617x695438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although the hepatomitogenic activity of T3 is well established, the wide range of harmful effects exerted by this hormone precludes its use in regenerative therapy. The aim of this study was to investigate whether an agonist of TRβ, KB2115 (Eprotirome), could exert a mitogenic effect in the liver, without most of the adverse T3/TRα-dependent side effects. F-344 rats treated with KB2115 for 1 week displayed a massive increase in bromodeoxyuridine incorporation (from 20% to 40% vs. 5% of controls), which was associated with increased mitotic activity in the absence of significant signs of liver toxicity. Noteworthy, while cardiac hypertrophy typical of T3 was not observed, beneficial effects, such as lowering blood cholesterol levels, were associated to KB2115 administration. Following a single dose of KB2115, hepatocyte proliferation was evident as early as 18 h, demonstrating its direct mitogenic effect. No increase in serum transaminase levels or apoptosis was observed prior to or concomitantly with the S phase. While KB2115-induced mitogenesis was not associated to enhance expression of c-fos, c-jun, and c-myc, cyclin D1 levels rapidly increased. In conclusion, KB2115 induces hepatocyte proliferation without overt toxicity. Hence, this agent may be useful for regenerative therapies in liver transplantation or other surgical settings.
Collapse
Affiliation(s)
- Marta Szydlowska
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Monica Pibiri
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Elisabetta Puliga
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Sandra Mattu
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Giovanna M. Ledda-Columbano
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Amedeo Columbano
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Vera P. Leoni
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| |
Collapse
|
4
|
Berkenkamp B, Susnik N, Baisantry A, Kuznetsova I, Jacobi C, Sörensen-Zender I, Broecker V, Haller H, Melk A, Schmitt R. In vivo and in vitro analysis of age-associated changes and somatic cellular senescence in renal epithelial cells. PLoS One 2014; 9:e88071. [PMID: 24505380 PMCID: PMC3913727 DOI: 10.1371/journal.pone.0088071] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 01/05/2014] [Indexed: 12/22/2022] Open
Abstract
Acute kidney injury is a major clinical problem and advanced age is associated with ineffective renal regeneration and poor functional outcome. Data from kidney injury models suggest that a loss of tubular epithelial proliferation contributes to a decrease in renal repair capacity with aging, but aging can also lead to a higher severity of inflammation and damage which may influence repair. In this study we tested intrinsic age-dependent changes in tubular epithelial proliferation in young and old mice, by injecting low-dose lead acetate as a non-injurious mitogen. In parallel, we explored in vitro techniques of studying cellular senescence in primary tubular epithelial cells (PTEC). Lead acetate induced tubular epithelial proliferation at a significantly higher rate in young as compared to old mice. Old kidneys showed significantly more senescence as demonstrated by increased p16 (INK4a), senescence associated β-galactosidase, and γH2AX(+)/Ki-67(-) cells. This was paralleled in old kidneys by a higher number of Cyclin D1 positive tubular cells. This finding was corroborated by a positive correlation between Cyclin D1 positivity and age in human renal biopsies. When tubular cells were isolated from mouse kidneys they rapidly lost their age-associated differences under culture conditions. However, senescence was readily induced in PTEC by γ-irradiation representing a future model for study of cellular senescence in the renal epithelium. Together, our data indicate that the tubular epithelium of aged kidney has an intrinsically reduced proliferative capacity probably due to a higher load of senescent cells. Moreover, stress induced models of cellular senescence are preferable for study of the renal epithelium in vitro. Finally, the positive correlation of Cyclin D1 with age and cellular senescence in PTEC needs further evaluation as to a functional role of renal epithelial aging.
Collapse
Affiliation(s)
- Birgit Berkenkamp
- Department of Pediatric Nephrology and Gastroenterology, Medical School Hannover, Hannover, Lower Saxony, Germany
| | - Nathan Susnik
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Lower Saxony, Germany
| | - Arpita Baisantry
- Department of Pediatric Nephrology and Gastroenterology, Medical School Hannover, Hannover, Lower Saxony, Germany
| | - Inna Kuznetsova
- Department of Pediatric Nephrology and Gastroenterology, Medical School Hannover, Hannover, Lower Saxony, Germany
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Lower Saxony, Germany
| | - Christoph Jacobi
- Department of Pediatric Nephrology and Gastroenterology, Medical School Hannover, Hannover, Lower Saxony, Germany
| | - Inga Sörensen-Zender
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Lower Saxony, Germany
| | - Verena Broecker
- Department of Pathology, Medical School Hannover, Hannover, Lower Saxony, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Lower Saxony, Germany
| | - Anette Melk
- Department of Pediatric Nephrology and Gastroenterology, Medical School Hannover, Hannover, Lower Saxony, Germany
- * E-mail: (RS); (AM)
| | - Roland Schmitt
- Department of Nephrology and Hypertension, Medical School Hannover, Hannover, Lower Saxony, Germany
- * E-mail: (RS); (AM)
| |
Collapse
|
5
|
Elucidating the metabolic regulation of liver regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:309-21. [PMID: 24139945 DOI: 10.1016/j.ajpath.2013.04.034] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/26/2013] [Accepted: 04/01/2013] [Indexed: 02/08/2023]
Abstract
The regenerative capability of liver is well known, and the mechanisms that regulate liver regeneration are extensively studied. Such analyses have defined general principles that govern the hepatic regenerative response and implicated specific extracellular and intracellular signals as regulated during and essential for normal liver regeneration. Nevertheless, the most proximal events that stimulate liver regeneration and the distal signals that terminate this process remain incompletely understood. Recent data suggest that the metabolic response to hepatic insufficiency might be the proximal signal that initiates regenerative hepatocellular proliferation. This review provides an overview of the data in support of a metabolic model of liver regeneration and reflects on the clinical implications and areas for further study suggested by these findings.
Collapse
|
6
|
Bugyik E, Dezso K, Turányi E, Szurián K, Paku S, Nagy P. 1,4-Bis[2-(3,5-dichloropyridyloxy)]benzene induces substantial hyperplasia in fibrotic mouse liver. Int J Exp Pathol 2012; 93:125-9. [PMID: 22243368 DOI: 10.1111/j.1365-2613.2011.00803.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The proliferative response of hepatocytes in vivo can be induced by two mechanisms: severe damage to hepatic tissue results in regenerative growth and so-called primary hepatocyte mitogens can initiate liver cell proliferation without preceding loss of parenchyma. The regulation of the two responses is quite different. The decreased regenerative response of cirrhotic/fibrotic liver is well known, and is a severe obstacle to surgery of the diseased liver. In the present experiments we investigated the efficiency of a primary hepatocyte mitogen 1,4-Bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOB) on two different liver cirrhosis/fibrosis models in mice induced by chronic administration of CCl(4) and thioacetamide respectively. BrdU incorporation and cyclin A expression established clearly that there is a reduced but still powerful mitogenic response of the fibrotic livers. Therefore, primary hepatocyte mitogens appear to be suitable to be used to rescue the regenerative response of cirrhotic livers.
Collapse
Affiliation(s)
- Edina Bugyik
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
7
|
Yamamoto Y, Moore R, Flavell RA, Lu B, Negishi M. Nuclear receptor CAR represses TNFalpha-induced cell death by interacting with the anti-apoptotic GADD45B. PLoS One 2010; 5:e10121. [PMID: 20404936 PMCID: PMC2853562 DOI: 10.1371/journal.pone.0010121] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 03/15/2010] [Indexed: 01/01/2023] Open
Abstract
Background Phenobarbital (PB) is the most well-known among numerous non-genotoxic carcinogens that cause the development of hepatocellular carcinoma (HCC). PB activates nuclear xenobiotic receptor Constitutive Active/Androstane Receptor (CAR; NR1I3) and this activation is shown to determine PB promotion of HCC in mice. The molecular mechanism of CAR-mediated tumor promotion, however, remains elusive at the present time. Here we have identified Growth Arrest and DNA Damage-inducible 45β (GADD45B) as a novel CAR target, through which CAR represses cell death. Methodology/Principal Findings PB activation of nuclear xenobiotic receptor CAR is found to induce the Gadd45b gene in mouse liver throughout the development of HCC as well as in liver tumors. Given the known function of GADD45B as a factor that represses Mitogen-activated protein Kinase Kinase 7 - c-Jun N-terminal Kinase (MKK7-JNK) pathway-mediated apoptosis, we have now demonstrated that CAR interacts with GADD45B to repress Tumor Necrosis Factor α ( TNFα)-induced JNK1 phosphorylation as well as cell death. Primary hepatocytes, prepared from Car+/+, Car−/−, Gadd45b+/+ and Gadd45b−/− mice, were treated with TNFα and Actinomycin D to induce phosphorylation of JNK1 and cell death. Co-treatment with the CAR activating ligand TCPOBOP (1,4 bis[2-(3,5-dichloropyridyloxy)]benzene) has resulted in repression of both phosphorylation and cell death in the primary hepatocytes from Car+/+ but not Car−/−mice. Repression by TCPOBOP was not observed in those prepared from Gadd45b−/− mice. In vitro protein-protein interaction and phosphorylation assays have revealed that CAR interacts with MKK7 and represses the MKK7-mediated phosphorylation of JNK1. Conclusions/Significance CAR can form a protein complex with GADD45B, through which CAR represses MKK7-mediated phosphorylation of JNK1. In addition to activating the Gadd45b gene, CAR may repress death of mouse primary hepatocytes by forming a GADD45B complex and repressing MKK7-mediated phosphorylation of JNK1. The present finding that CAR can repress cell death via its interaction with GADD45B provides an insight for further investigations into the CAR-regulated molecular mechanism by which PB promotes development of HCC.
Collapse
Affiliation(s)
- Yukio Yamamoto
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Rick Moore
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Richard A. Flavell
- Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Masahiko Negishi
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
8
|
Columbano A, Simbula M, Pibiri M, Perra A, Deidda M, Locker J, Pisanu A, Uccheddu A, Ledda-Columbano GM. Triiodothyronine stimulates hepatocyte proliferation in two models of impaired liver regeneration. Cell Prolif 2008; 41:521-31. [PMID: 18422700 DOI: 10.1111/j.1365-2184.2008.00532.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES Liver regeneration is attenuated in old age and is substantially slower after 90% than after 70% partial hepatectomy (PH). We have previously demonstrated that the proliferative response to a primary mitogen is intact in aged mice, indicating that impaired liver regeneration is not due to loss of proliferative capacity. Here, we have investigated whether mitogenic effects of triiodothyronine (T3) could reverse the impaired regeneration of ageing or 90% hepatectomy, in the rat. MATERIALS AND METHODS T3 (20 microg/100 g body weight) was administered to 14-month-old rats subjected to 70% PH or to young rats subjected to 90% PH. Cell-proliferative capacity was determined by bromodeoxyuridine incorporation and microscopy and changes of cell cycle-related proteins were analysed by Western blot analysis. RESULTS Treatment of old intact rats with T3 increased cyclin D(1) expression that was followed by an enhanced proliferative response, the labelling index (LI), being 7.8% versus 1.3% of controls. T3 given before 70% PH stimulated regenerative response (LI was 10.8% versus 2.28%), and expression of cyclin D(1) and proliferating cell nuclear antigen (PCNA) 24 h after PH. Pre-treatment with T3 also improved the regenerative response of the liver after 90% hepatectomy (LI was 27.9% versus 14.2%). CONCLUSIONS These findings show in principle that mitogen-induced hyperplasia could be applied to human therapy in patients with reduced regenerative capacity or massive loss of hepatocytes.
Collapse
Affiliation(s)
- A Columbano
- Department of Toxicology, Oncology and Molecular Pathology Unit, University of Cagliari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The nuclear receptors CAR and PXR were first characterized as xenosensing transcription factors regulating the induction of phase I and II xenobiotic-metabolizing enzymes as well as transporters in response to exogenous stimuli. It has now become clear, however, that these receptors cross-talk with endogenous stimuli as well, which extends their regulation to various physiological processes such as energy metabolism and cell growth. As recognition of the function of these receptors has widened, the molecular mechanism of their regulation has evolved from simple protein-DNA binding to regulation by complex protein-protein interactions. Novel mechanisms as to how xenobiotic exposure alters hepatic metabolic pathways such as gluconeogenesis and beta-oxidation have emerged. At the same time, the molecular mechanism of how endogenous stimuli, such as insulin, regulate xenobiotc metabolism via CAR and PXR have also become evident.
Collapse
Affiliation(s)
| | - MASAHIKO NEGISHI
- Corresponding author: Masahiko Negishi, Ph.D., Tel: 919-541-2404, Fax: 919-541-0696, E-mail:
| |
Collapse
|
10
|
Seo YK, Chung YT, Kim S, Echchgadda I, Song CS, Chatterjee B. Xenobiotic- and vitamin D-responsive induction of the steroid/bile acid-sulfotransferase Sult2A1 in young and old mice: the role of a gene enhancer in the liver chromatin. Gene 2006; 386:218-23. [PMID: 17123747 PMCID: PMC1888572 DOI: 10.1016/j.gene.2006.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 09/18/2006] [Accepted: 10/12/2006] [Indexed: 01/12/2023]
Abstract
The xenobiotic-activated nuclear receptors PXR (pregnane X receptor) and CAR (constitutive androstane receptor) and the vitamin D(3)-activated nuclear receptor VDR regulate steroid and xenobiotic metabolism by inducing the phase I cytochrome P450 monooxygenases, phase II conjugating transferases, and the phase III transporters, which mediate the efflux of water-soluble lipid metabolites from cells. Metabolic stress due to the deviant expression of steroid- and xenobiotic-metabolizing enzymes is known to have severe health consequences including accelerated aging, and increased expression of these enzymes is associated with extended longevity [Gachon, F, Olela, FF, Schaad, O, Descombes, P and Schibler, U, 2006. The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. 4, 25-36.; McElwee, JJ, Schuster, E, Blanc, E, Thomas, JH and Gems, D, 2004. Shared Transcriptional Signature in Caenorhabditis elegans Dauer Larvae and Long-lived daf-2 Mutants Implicates Detoxification System in Longevity Assurance. J. Biol. Chem., 279, 44533-43.]. Information on the similarities and dissimilarities in drug metabolism between the young and old, as may be uncovered by studying aging regulation of the genes relevant to steroid and xenobiotic metabolism, is likely to have clinical significance. In this report, we examined the VDR- and PXR-mediated gene induction of the phase II sulfotransferase Sult2A1 in the livers of 4-month- and 20-month-old mice. Sult2A1 converts bile acids, steroids and a number of drugs to the corresponding sulfated metabolites, which are readily eliminated from the body due to increased water solubility. In RT-PCR assay, aging did not change the induction of Sult2A1 mRNAs by the hormonally active vitamin D(3) and the catatoxic synthetic steroid PCN (pregnenolone-16alpha-carbonitrile). Chromatin immunoprecipitation (ChIP) from liver nuclei showed that aging had no effect on the activity of an IR0 enhancer in the Sult2A1 chromatin to recruit VDR, RXR-alpha (retinoid X receptor) and PXR in mice injected with D(3) or PCN. Thus, mice in late life are as competent as those in early life in responding to the hormonal and xenobiotic signaling for Sult2A1 induction. This is the first report describing the role of aging in the functional response of an enhancer in the liver chromatin to the nuclear receptor-dependent signaling.
Collapse
Affiliation(s)
- Young-Kyo Seo
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio
- South Texas Veterans Health Care System, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Yoon-Tae Chung
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio
| | - Soyoung Kim
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio
- South Texas Veterans Health Care System, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Ibtissam Echchgadda
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio
| | - Chung S Song
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio
| | - Bandana Chatterjee
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio
- South Texas Veterans Health Care System, 15355 Lambda Drive, San Antonio, Texas 78245
- Corresponding Author*: Bandana Chatterjee, Ph.D., Department of Molecular Medicine/Institute of Biotechnology, South Texas Veterans Health Care System, 15355 Lambda Drive, San Antonio, Texas 78245, e-mail: , Tel# 210-567-7218, FAX# 210-567-7324
| |
Collapse
|