1
|
McConnell MJ, Kostallari E, Ibrahim SH, Iwakiri Y. The evolving role of liver sinusoidal endothelial cells in liver health and disease. Hepatology 2023; 78:649-669. [PMID: 36626620 PMCID: PMC10315420 DOI: 10.1097/hep.0000000000000207] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/25/2022] [Indexed: 01/12/2023]
Abstract
LSECs are a unique population of endothelial cells within the liver and are recognized as key regulators of liver homeostasis. LSECs also play a key role in liver disease, as dysregulation of their quiescent phenotype promotes pathological processes within the liver including inflammation, microvascular thrombosis, fibrosis, and portal hypertension. Recent technical advances in single-cell analysis have characterized distinct subpopulations of the LSECs themselves with a high resolution and defined their gene expression profile and phenotype, broadening our understanding of their mechanistic role in liver biology. This article will review 4 broad advances in our understanding of LSEC biology in general: (1) LSEC heterogeneity, (2) LSEC aging and senescence, (3) LSEC role in liver regeneration, and (4) LSEC role in liver inflammation and will then review the role of LSECs in various liver pathologies including fibrosis, DILI, alcohol-associated liver disease, NASH, viral hepatitis, liver transplant rejection, and ischemia reperfusion injury. The review will conclude with a discussion of gaps in knowledge and areas for future research.
Collapse
Affiliation(s)
- Matthew J. McConnell
- Section of Digestive Disease, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | | | - Samar H. Ibrahim
- Division of Gastroenterology, Mayo Clinic, Rochester, MN
- Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, MN
| | - Yasuko Iwakiri
- Section of Digestive Disease, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
2
|
Liver Regeneration: Changes in Oxidative Stress, Immune System, Cytokines, and Epigenetic Modifications Associated with Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9018811. [PMID: 35936214 PMCID: PMC9352489 DOI: 10.1155/2022/9018811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/25/2022] [Accepted: 06/29/2022] [Indexed: 01/10/2023]
Abstract
The regenerative capacity of the liver decreases with increase in age. In recent years, studies in mice have found that the regenerative capacity of the liver is associated with changes in the immune system of the liver, cytokines in the body, aging-related epigenetic modifications in the cell, and intracellular signaling pathways. In the immune system of the aging liver, monocytes and macrophages play an important role in tissue repair. During tissue repair, monocytes and macrophages undergo a series of functional and phenotypic changes to initiate and maintain tissue repair. Studies have discovered that knocking out macrophages in the liver during the repair phase results in significant impairment of liver regeneration. Furthermore, as the body ages, the secretion and function of cytokines undergo a series of changes. For example, the levels of interleukin-6, transforming growth factor-alpha, hepatocyte growth factor, and vascular endothelial growth factor undergo changes that alter hepatocyte regulation, thereby affecting its proliferation. In addition, body aging is accompanied by cellular aging, which leads to changes in gene expression and epigenetic modifications. Additionally, this in turn causes alterations in cell function, morphology, and division and affects the regenerative capacity of the liver. As the body ages, the activity of associated functional proteins, such as CCAAT-enhancer-binding proteins, p53, and switch/sucrose nonfermentable complex, changes in the liver, leading to alterations in several signaling pathways, such as the Hippo, PI3K-Akt, mTOR, and STAT3 pathways. Therefore, in recent years, research on aging and liver regeneration has primarily focused on the immune system, signaling pathways, epigenetic changes of senescent cells, and cytokine secretion in the liver. Hence, this review details the roles of these influencing factors in liver regeneration and impact of aging-related factors.
Collapse
|
3
|
Rome FI, Hughey CC. Disrupted Liver Oxidative Metabolism in Glycine N-Methyltransferase-Deficient Mice is Mitigated by Dietary Methionine Restriction. Mol Metab 2022; 58:101452. [PMID: 35121169 PMCID: PMC8866067 DOI: 10.1016/j.molmet.2022.101452] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
|
4
|
Solhi R, Lotfinia M, Gramignoli R, Najimi M, Vosough M. Metabolic hallmarks of liver regeneration. Trends Endocrinol Metab 2021; 32:731-745. [PMID: 34304970 DOI: 10.1016/j.tem.2021.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/29/2022]
Abstract
Despite the crucial role of cell metabolism in biological processes, particularly cell division, metabolic aspects of liver regeneration are not well defined. Better understanding of the metabolic activity governing division of liver cells will provide powerful insights into mechanisms of physiological and pathological liver regeneration. Recent studies have provided evidence that metabolic response to liver failure might be a proximal signal to initiate cell proliferation in liver regeneration. In this review, we highlight how lipids, carbohydrates, and proteins dynamically change and orchestrate liver regeneration. In addition, we discuss translational studies in which metabolic intervention has been used to treat chronic liver diseases (CLDs).
Collapse
Affiliation(s)
- Roya Solhi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Majid Lotfinia
- Physiology Research Center, Basic Sciences Research Institute, Kashan University of Medical Sciences, Kashan, Iran; Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
| |
Collapse
|
5
|
Eudy BJ, McDermott CE, Liu X, da Silva RP. Targeted and untargeted metabolomics provide insight into the consequences of glycine-N-methyltransferase deficiency including the novel finding of defective immune function. Physiol Rep 2021; 8:e14576. [PMID: 32951289 PMCID: PMC7507444 DOI: 10.14814/phy2.14576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 01/27/2023] Open
Abstract
Fatty liver disease is increasing along with the prevalence of obesity and type‐2 diabetes. Hepatic fibrosis is a major health complication for which there are no efficacious treatment options available. A better understanding of the fundamental mechanisms that contribute to the accumulation of fibrosis is needed. Glycine‐N‐methyltransferase (GNMT) is a critical enzyme in one‐carbon metabolism that serves to regulate methylation and remethylation reactions. GNMT knockout (GNMT‐/‐) mice display spontaneous hepatic fibrosis and later develop hepatocellular carcinoma. Previous literature supports the idea that hypermethylation as a consequence of GNMT deletion contributes to the hepatic phenotype observed. However, limited metabolomic information is available and the underlying mechanisms that contribute to hepatic fibrogenesis in GNMT‐/‐ mice are still incomplete. Therefore, our goals were to use dietary intervention to determine whether increased lipid load exacerbates steatosis and hepatic fibrosis in this model and to employ both targeted and untargeted metabolomics to further understand the metabolic consequences of GNMT deletion. We find that GNMT mice fed high‐fat diet do not accumulate more lipid or fibrosis in the liver and are in fact resistant to weight gain. Metabolomics analysis confirmed that pan‐hypermethylation occurs in GNMT mice resulting in a depletion of nicotinamide intermediate metabolites. Further, there is a disruption in tryptophan catabolism that prevents adequate immune cell activation in the liver. The chronic cellular damage cannot be appropriately cleared due to a lack of immune checkpoint activation. This mouse model is an excellent example of how a disruption in small molecule metabolism can significantly impact immune function.
Collapse
Affiliation(s)
- Brandon J Eudy
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Caitlin E McDermott
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - Xiuli Liu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Robin P da Silva
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Kožich V, Stabler S. Lessons Learned from Inherited Metabolic Disorders of Sulfur-Containing Amino Acids Metabolism. J Nutr 2020; 150:2506S-2517S. [PMID: 33000152 DOI: 10.1093/jn/nxaa134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/12/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
The metabolism of sulfur-containing amino acids (SAAs) requires an orchestrated interplay among several dozen enzymes and transporters, and an adequate dietary intake of methionine (Met), cysteine (Cys), and B vitamins. Known human genetic disorders are due to defects in Met demethylation, homocysteine (Hcy) remethylation, or cobalamin and folate metabolism, in Hcy transsulfuration, and Cys and hydrogen sulfide (H2S) catabolism. These disorders may manifest between the newborn period and late adulthood by a combination of neuropsychiatric abnormalities, thromboembolism, megaloblastic anemia, hepatopathy, myopathy, and bone and connective tissue abnormalities. Biochemical features include metabolite deficiencies (e.g. Met, S-adenosylmethionine (AdoMet), intermediates in 1-carbon metabolism, Cys, or glutathione) and/or their accumulation (e.g. S-adenosylhomocysteine, Hcy, H2S, or sulfite). Treatment should be started as early as possible and may include a low-protein/low-Met diet with Cys-enriched amino acid supplements, pharmacological doses of B vitamins, betaine to stimulate Hcy remethylation, the provision of N-acetylcysteine or AdoMet, or experimental approaches such as liver transplantation or enzyme replacement therapy. In several disorders, patients are exposed to long-term markedly elevated Met concentrations. Although these conditions may inform on Met toxicity, interpretation is difficult due to the presence of additional metabolic changes. Two disorders seem to exhibit Met-associated toxicity in the brain. An increased risk of demyelination in patients with Met adenosyltransferase I/III (MATI/III) deficiency due to biallelic mutations in the MATIA gene has been attributed to very high blood Met concentrations (typically >800 μmol/L) and possibly also to decreased liver AdoMet synthesis. An excessively high Met concentration in some patients with cystathionine β-synthase deficiency has been associated with encephalopathy and brain edema, and direct toxicity of Met has been postulated. In summary, studies in patients with various disorders of SAA metabolism showed complex metabolic changes with distant cellular consequences, most of which are not attributable to direct Met toxicity.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Sally Stabler
- Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Caldez MJ, Bjorklund M, Kaldis P. Cell cycle regulation in NAFLD: when imbalanced metabolism limits cell division. Hepatol Int 2020; 14:463-474. [PMID: 32578019 PMCID: PMC7366567 DOI: 10.1007/s12072-020-10066-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022]
Abstract
Cell division is essential for organismal growth and tissue homeostasis. It is exceptionally significant in tissues chronically exposed to intrinsic and external damage, like the liver. After decades of studying the regulation of cell cycle by extracellular signals, there are still gaps in our knowledge on how these two interact with metabolic pathways in vivo. Studying the cross-talk of these pathways has direct clinical implications as defects in cell division, signaling pathways, and metabolic homeostasis are frequently observed in liver diseases. In this review, we will focus on recent reports which describe various functions of cell cycle regulators in hepatic homeostasis. We will describe the interplay between the cell cycle and metabolism during liver regeneration after acute and chronic damage. We will focus our attention on non-alcoholic fatty liver disease, especially non-alcoholic steatohepatitis. The global incidence of non-alcoholic fatty liver disease is increasing exponentially. Therefore, understanding the interplay between cell cycle regulators and metabolism may lead to the discovery of novel therapeutic targets amenable to intervention.
Collapse
Affiliation(s)
- Matias J Caldez
- WPI Immunology Frontiers Research Centre, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Mikael Bjorklund
- Zhejiang University-University of Edinburgh (ZJU-UoE) Institute and 2nd Affiliated Hospital, Zhejiang University School of Medicine, 718 East Haizhou Rd., Haining, 314400, Zhejiang, People's Republic of China
| | - Philipp Kaldis
- Department of Clinical Sciences, Clinical Research Centre (CRC), Lund University, Box 50332, 202 13, Malmö, Sweden.
| |
Collapse
|
8
|
Maillet V, Boussetta N, Leclerc J, Fauveau V, Foretz M, Viollet B, Couty JP, Celton-Morizur S, Perret C, Desdouets C. LKB1 as a Gatekeeper of Hepatocyte Proliferation and Genomic Integrity during Liver Regeneration. Cell Rep 2019; 22:1994-2005. [PMID: 29466728 DOI: 10.1016/j.celrep.2018.01.086] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/21/2017] [Accepted: 01/29/2018] [Indexed: 02/08/2023] Open
Abstract
Liver kinase B1 (LKB1) is involved in several biological processes and is a key regulator of hepatic metabolism and polarity. Here, we demonstrate that the master kinase LKB1 plays a dual role in liver regeneration, independently of its major target, AMP-activated protein kinase (AMPK). We found that the loss of hepatic Lkb1 expression promoted hepatocyte proliferation acceleration independently of metabolic/energetic balance. LKB1 regulates G0/G1 progression, specifically by controlling epidermal growth factor receptor (EGFR) signaling. Furthermore, later in regeneration, LKB1 controls mitotic fidelity. The deletion of Lkb1 results in major alterations to mitotic spindle formation along the polarity axis. Thus, LKB1 deficiency alters ploidy profile at late stages of regeneration. Our findings highlight the dual role of LKB1 in liver regeneration, as a guardian of hepatocyte proliferation and genomic integrity.
Collapse
Affiliation(s)
- Vanessa Maillet
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nadia Boussetta
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jocelyne Leclerc
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Véronique Fauveau
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Pierre Couty
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Séverine Celton-Morizur
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christine Perret
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chantal Desdouets
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
9
|
Hepatic accumulation of S-adenosylmethionine in hamsters with non-alcoholic fatty liver disease associated with metabolic syndrome under selenium and vitamin E deficiency. Clin Sci (Lond) 2019; 133:409-423. [PMID: 29122967 DOI: 10.1042/cs20171039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/27/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022]
Abstract
Progression of non-alcoholic fatty liver disease (NAFLD) in the context of metabolic syndrome (MetS) is only partially explored due to the lack of preclinical models. In order to study the alterations in hepatic metabolism that accompany this condition, we developed a model of MetS accompanied by the onset of steatohepatitis (NASH) by challenging golden hamsters with a high-fat diet low in vitamin E and selenium (HFD), since combined deficiency results in hepatic necroinflammation in rodents. Metabolomics and transcriptomics integrated analyses of livers revealed an unexpected accumulation of hepatic S-Adenosylmethionine (SAM) when compared with healthy livers likely due to diminished methylation reactions and repression of GNMT. SAM plays a key role in the maintenance of cellular homeostasis and cell cycle control. In agreement, analysis of over-represented transcription factors revealed a central role of c-myc and c-Jun pathways accompanied by negative correlations between SAM concentration, MYC expression and AMPK phosphorylation. These findings point to a drift of cell cycle control toward senescence in livers of HFD animals, which could explain the onset of NASH in this model. In contrast, hamsters with NAFLD induced by a conventional high-fat diet did not show SAM accumulation, suggesting a key role of selenium and vitamin E in SAM homeostasis. In conclusion, our results suggest that progression of NAFLD in the context of MetS can take place even in a situation of hepatic SAM excess and that selenium and vitamin E status might be considered in current therapies against NASH based on SAM supplementation.
Collapse
|
10
|
Fang CC, Wu CF, Liao YJ, Huang SF, Chen M, Chen YMA. AAV serotype 8-mediated liver specific GNMT expression delays progression of hepatocellular carcinoma and prevents carbon tetrachloride-induced liver damage. Sci Rep 2018; 8:13802. [PMID: 30217986 PMCID: PMC6138656 DOI: 10.1038/s41598-018-30800-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/24/2018] [Indexed: 02/08/2023] Open
Abstract
Glycine N-methyltransferase (GNMT) is abundantly expressed in normal livers and plays a protective role against tumor formation. GNMT depletion leads to progression of hepatocellular carcinoma (HCC). In this study, we investigated the activity of ectopic GNMT delivered using recombinant adeno-associated virus (AAV) gene therapy in mouse models of liver cirrhosis and HCC. Injection of AAV serotype 8 (AAV8) vector carrying the GNMT gene (AAV8-GNMT) in Gnmt−/− mice increased GNMT expression and downregulated pro-inflammatory responses, resulting in reduced liver damage and incidence of liver tumors. Moreover, AAV8-GNMT resulted in the amelioration of carbon tetrachloride (CCl4)-induced liver fibrosis in BALB/c mice. We showed that AAV8-GNMT protected hepatocytes from CCl4-induced liver damage. AAV8-GNMT significantly attenuated the levels of pro-fibrotic markers and increased efficiency of hepatocyte proliferation. These results suggest that correction of hepatic GNMT by gene therapy of AAV8-mediated gene enhancement may provide a potential strategy for preventing and delaying development of liver diseases.
Collapse
Affiliation(s)
- Cheng-Chieh Fang
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Fen Wu
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shiu-Feng Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Marcelo Chen
- Department of Urology, Mackay Memorial Hospital, Taipei, Taiwan.,School of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Yi-Ming Arthur Chen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan. .,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan. .,Department of Microbiology and Immunology, Institute of Medical Research and Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Delgado TC, Barbier-Torres L, Zubiete-Franco I, Lopitz-Otsoa F, Varela-Rey M, Fernández-Ramos D, Martínez-Chantar ML. Neddylation, a novel paradigm in liver cancer. Transl Gastroenterol Hepatol 2018; 3:37. [PMID: 30050997 DOI: 10.21037/tgh.2018.06.05] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022] Open
Abstract
Liver cancer is the sixth most prevailing cancer worldwide. Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, has a rather heterogeneous pathogenesis making it highly refractive to current therapeutic approaches. Hence, HCC patients have a poor and gloomy prognosis making liver cancer the second leading cause of global cancer-related deaths. On this basis, a more global mechanism, such as post-translational modifications (PTMs) of proteins, may provide a valuable therapeutic approach for HCC clinical management by simultaneously regulating multiple disrupted signaling pathways. In the last years, the ubiquitin-like molecule NEDD8 (Neural precursor cell-expressed developmentally downregulated-8) conjugation pathway, neddylation, was shown to be aberrant in HCC patients with a significant positive correlation found among global levels of neddylation and poorer prognosis. Even though the best-established role for NEDD8 is the activation of ubiquitin E3 ligase family of cullin-RING ligases, the putative role for other NEDD8 substrates has been explored in recent years leading to the identification of novel neddylation targets in HCC. Importantly, treatment with the small pharmacological inhibitor Pevonedistat (MLN4924) (Millennium Pharmaceuticals, Takeda Pharmaceutical), currently in clinical trials for the treatment of some types of leukemias and other advanced solid tumors, was shown to suppress the outgrowth of hepatoma cells and liver cancer in pre-clinical mouse models. Overall, considering that the neddylation inhibitor Pevonedistat was well-tolerated and displayed a significant antitumor effect in pre-clinical models, combinatory pharmacological treatment based on Pevonedistat are highly recommended to enter clinical trials targeting advanced HCC.
Collapse
Affiliation(s)
- Teresa Cardoso Delgado
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Lúcia Barbier-Torres
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain.,Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Imanol Zubiete-Franco
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Fernando Lopitz-Otsoa
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - Marta Varela-Rey
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - David Fernández-Ramos
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| | - María-Luz Martínez-Chantar
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Derio, Bizkaia, Spain
| |
Collapse
|
12
|
Yang MH, Chen WJ, Fu YS, Huang B, Tsai WC, Arthur Chen YM, Lin PC, Yuan CH, Tyan YC. Utilizing glycine N-methyltransferasegene knockout mice as a model for identification of missing proteins in hepatocellular carcinoma. Oncotarget 2017; 9:442-452. [PMID: 29416626 PMCID: PMC5787479 DOI: 10.18632/oncotarget.23064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/13/2017] [Indexed: 11/25/2022] Open
Abstract
Glycine N-methyltransferase is a tumor suppressor gene for hepatocellular carcinoma, which can activate DNA methylation by inducing the S-adenosylmethionine to S-adenosylhomocystine. Previous studies have indicated that the expression of Glycine N-methyltransferase is inhibited in hepatocellular carcinoma. To confirm and identify missing proteins, the pathologic analysis of the tumor-bearing mice will provide critical histologic information. Such a mouse model is applied as a screening tool for hepatocellular carcinoma as well as a strategy for missing protein discovery. In this study we designed an analysis platform using the human proteome atlas to compare the possible missing proteins to human whole chromosomes. This will integrate the information from animal studies to establish an optimal technique in the missing protein biomarker discovery.
Collapse
Affiliation(s)
- Ming-Hui Yang
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Jou Chen
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yaw-Syan Fu
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bin Huang
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Chi Tsai
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ming Arthur Chen
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Chiao Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Cheng-Hui Yuan
- Mass Spectrometry Laboratory, Department of Chemistry, National University of Singapore, Singapore
| | - Yu-Chang Tyan
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
13
|
Schofield Z, Reed MAC, Newsome PN, Adams DH, Günther UL, Lalor PF. Changes in human hepatic metabolism in steatosis and cirrhosis. World J Gastroenterol 2017; 23:2685-2695. [PMID: 28487605 PMCID: PMC5403747 DOI: 10.3748/wjg.v23.i15.2685] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/11/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To understand the underlying metabolic changes in human liver disease we have applied nuclear magnetic resonance (NMR) metabolomics analysis to human liver tissue.
METHODS We have carried out pilot study using 1H-NMR to derive metabolomic signatures from human liver from patients with steatosis, nonalcoholic steatohepatitis (NASH) or alcohol-related liver damage (ARLD) to identify species that can predict outcome and discriminate between alcohol and metabolic-induced liver injuries.
RESULTS Changes in branched chain amino acid homeostasis, tricarboxylic acid cycle and purine biosynthesis intermediates along with betaine were associated with the development of cirrhosis in both ARLD and nonalcoholic fatty liver disease. Species such as propylene glycol and as yet unidentified moieties that allowed discrimination between NASH and ARLD samples were also detected using our approach.
CONCLUSION Our high throughput, non-destructive technique for multiple analyte quantification in human liver specimens has potential for identification of biomarkers with prognostic and diagnostic significance.
Collapse
|
14
|
Barić I, Staufner C, Augoustides-Savvopoulou P, Chien YH, Dobbelaere D, Grünert SC, Opladen T, Petković Ramadža D, Rakić B, Wedell A, Blom HJ. Consensus recommendations for the diagnosis, treatment and follow-up of inherited methylation disorders. J Inherit Metab Dis 2017; 40:5-20. [PMID: 27671891 PMCID: PMC5203850 DOI: 10.1007/s10545-016-9972-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 12/24/2022]
Abstract
Inherited methylation disorders are a group of rarely reported, probably largely underdiagnosed disorders affecting transmethylation processes in the metabolic pathway between methionine and homocysteine. These are methionine adenosyltransferase I/III, glycine N-methyltransferase, S-adenosylhomocysteine hydrolase and adenosine kinase deficiencies. This paper provides the first consensus recommendations for the diagnosis and management of methylation disorders. Following search of the literature and evaluation according to the SIGN-methodology of all reported patients with methylation defects, graded recommendations are provided in a structured way comprising diagnosis (clinical presentation, biochemical abnormalities, differential diagnosis, newborn screening, prenatal diagnosis), therapy and follow-up. Methylation disorders predominantly affect the liver, central nervous system and muscles, but clinical presentation can vary considerably between and within disorders. Although isolated hypermethioninemia is the biochemical hallmark of this group of disorders, it is not always present, especially in early infancy. Plasma S-adenosylmethionine and S-adenosylhomocysteine are key metabolites for the biochemical clarification of isolated hypermethioninemia. Mild hyperhomocysteinemia can be present in all methylation disorders. Methylation disorders do not qualify as primary targets of newborn screening. A low-methionine diet can be beneficial in patients with methionine adenosyltransferase I/III deficiency if plasma methionine concentrations exceed 800 μmol/L. There is some evidence that this diet may also be beneficial in patients with S-adenosylhomocysteine hydrolase and adenosine kinase deficiencies. S-adenosylmethionine supplementation may be useful in patients with methionine adenosyltransferase I/III deficiency. Recommendations given in this article are based on general principles and in practice should be adjusted individually according to patient's age, severity of the disease, clinical and laboratory findings.
Collapse
Affiliation(s)
- Ivo Barić
- Department of Pediatrics, University Hospital Center Zagreb, Kišpatićeva 12, Rebro, 10000, Zagreb, Croatia.
- University of Zagreb, School of Medicine, Zagreb, Croatia.
| | - Christian Staufner
- Department of General Pediatrics, Division of Metabolic Medicine and Neuropediatrics, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | | | - Yin-Hsiu Chien
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Dries Dobbelaere
- Medical Reference Center for Inherited Metabolic Diseases, Jeanne de Flandre University Hospital and RADEME Research Team for Rare Metabolic and Developmental Diseases, EA 7364 CHRU Lille, 59037, Lille, France
| | | | - Thomas Opladen
- Department of General Pediatrics, Division of Metabolic Medicine and Neuropediatrics, University Hospital Heidelberg, 69120, Heidelberg, Germany
| | - Danijela Petković Ramadža
- Department of Pediatrics, University Hospital Center Zagreb, Kišpatićeva 12, Rebro, 10000, Zagreb, Croatia
| | - Bojana Rakić
- Biochemical Genetics Laboratory, BC Children's Hospital, 4500 Oak Street, Vancouver, BC, V6H 3N1, Canada
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Henk J Blom
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics Adolescent Medicine and Neonatology, University Medical Centre Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Pérez C, Pérez-Zúñiga FJ, Garrido F, Reytor E, Portillo F, Pajares MA. The Oncogene PDRG1 Is an Interaction Target of Methionine Adenosyltransferases. PLoS One 2016; 11:e0161672. [PMID: 27548429 PMCID: PMC4993455 DOI: 10.1371/journal.pone.0161672] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/03/2016] [Indexed: 12/15/2022] Open
Abstract
Methionine adenosyltransferases MAT I and MAT III (encoded by Mat1a) catalyze S-adenosylmethionine synthesis in normal liver. Major hepatic diseases concur with reduced levels of this essential methyl donor, which are primarily due to an expression switch from Mat1a towards Mat2a. Additional changes in the association state and even in subcellular localization of these isoenzymes are also detected. All these alterations result in a reduced content of the moderate (MAT I) and high Vmax (MAT III) isoenzymes, whereas the low Vmax (MAT II) isoenzyme increases and nuclear accumulation of MAT I is observed. These changes derive in a reduced availability of cytoplasmic S-adenosylmethionine, together with an effort to meet its needs in the nucleus of damaged cells, rendering enhanced levels of certain epigenetic modifications. In this context, the putative role of protein-protein interactions in the control of S-adenosylmethionine synthesis has been scarcely studied. Using yeast two hybrid and a rat liver library we identified PDRG1 as an interaction target for MATα1 (catalytic subunit of MAT I and MAT III), further confirmation being obtained by immunoprecipitation and pull-down assays. Nuclear MATα interacts physically and functionally with the PDRG1 oncogene, resulting in reduced DNA methylation levels. Increased Pdrg1 expression is detected in acute liver injury and hepatoma cells, together with decreased Mat1a expression and nuclear accumulation of MATα1. Silencing of Pdrg1 expression in hepatoma cells alters their steady-state expression profile on microarrays, downregulating genes associated with tumor progression according to GO pathway analysis. Altogether, the results unveil the role of PDRG1 in the control of the nuclear methylation status through methionine adenosyltransferase binding and its putative collaboration in the progression of hepatic diseases.
Collapse
Affiliation(s)
- Claudia Pérez
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Francisco J. Pérez-Zúñiga
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Francisco Garrido
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Edel Reytor
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | - Francisco Portillo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - María A. Pajares
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain
- * E-mail:
| |
Collapse
|
16
|
Abstract
Living organisms experience tissue damage from both, the surrounding environment and from inside their bodies. Tissue repair/regeneration is triggered by local tissue injury to restore an injured, or lost, part of the body. Tissue damage results in a series of responses, not only locally but also systemically in distant tissues. In our recent publication, we established a "dual system" that induces spatiotemporal tissue damage simultaneously with gene manipulation in surrounding tissues. With this system, we demonstrated that appropriate regulation of methionine metabolism in the fat body is required for tissue repair in Drosophila wing discs, thus highlighting the importance of systemic damage response (SDR) in tissue repair. This "Extra View" aims to discuss our recent reports that propose methionine metabolism to be an essential part of SDR, together with related topics in several model organisms.
Collapse
Affiliation(s)
- Soshiro Kashio
- a Department of Genetics , Graduate School of Pharmaceutical Sciences, The University of Tokyo , Bunkyo-ku, Tokyo , Japan
| | - Fumiaki Obata
- a Department of Genetics , Graduate School of Pharmaceutical Sciences, The University of Tokyo , Bunkyo-ku, Tokyo , Japan.,b The Francis Crick Institute , The Ridgeway, Mill Hill, London , United Kingdom
| | - Masayuki Miura
- a Department of Genetics , Graduate School of Pharmaceutical Sciences, The University of Tokyo , Bunkyo-ku, Tokyo , Japan.,c Agency for Medical Research and Development-Core Research for Evolutional Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development , Chiyoda-ku, Tokyo , Japan
| |
Collapse
|
17
|
Tissue nonautonomous effects of fat body methionine metabolism on imaginal disc repair in Drosophila. Proc Natl Acad Sci U S A 2016; 113:1835-40. [PMID: 26831070 DOI: 10.1073/pnas.1523681113] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulatory mechanisms for tissue repair and regeneration within damaged tissue have been extensively studied. However, the systemic regulation of tissue repair remains poorly understood. To elucidate tissue nonautonomous control of repair process, it is essential to induce local damage, independent of genetic manipulations in uninjured parts of the body. Herein, we develop a system in Drosophila for spatiotemporal tissue injury using a temperature-sensitive form of diphtheria toxin A domain driven by the Q system to study factors contributing to imaginal disc repair. Using this technique, we demonstrate that methionine metabolism in the fat body, a counterpart of mammalian liver and adipose tissue, supports the repair processes of wing discs. Local injury to wing discs decreases methionine and S-adenosylmethionine, whereas it increases S-adenosylhomocysteine in the fat body. Fat body-specific genetic manipulation of methionine metabolism results in defective disc repair but does not affect normal wing development. Our data indicate the contribution of tissue interactions to tissue repair in Drosophila, as local damage to wing discs influences fat body metabolism, and proper control of methionine metabolism in the fat body, in turn, affects wing regeneration.
Collapse
|
18
|
Obata F, Kuranaga E, Tomioka K, Ming M, Takeishi A, Chen CH, Soga T, Miura M. Necrosis-driven systemic immune response alters SAM metabolism through the FOXO-GNMT axis. Cell Rep 2014; 7:821-33. [PMID: 24746817 DOI: 10.1016/j.celrep.2014.03.046] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/25/2014] [Accepted: 03/18/2014] [Indexed: 01/27/2023] Open
Abstract
Sterile inflammation triggered by endogenous factors is thought to contribute to the pathogenesis of acute and chronic inflammatory diseases. Here, we demonstrate that apoptosis-deficient mutants spontaneously develop a necrosis-driven systemic immune response in Drosophila and provide an in vivo model for studying the organismal response to sterile inflammation. Metabolomic analysis of hemolymph from apoptosis-deficient mutants revealed increased sarcosine and reduced S-adenosyl-methionine (SAM) levels due to glycine N-methyltransferase (Gnmt) upregulation. We showed that Gnmt was elevated in response to Toll activation induced by the local necrosis of wing epidermal cells. Necrosis-driven inflammatory conditions induced dFoxO hyperactivation, leading to an energy-wasting phenotype. Gnmt was cell-autonomously upregulated by dFoxO in the fat body as a possible rheostat for controlling energy loss, which functioned during fasting as well as inflammatory conditions. We propose that the dFoxO-Gnmt axis is essential for the maintenance of organismal SAM metabolism and energy homeostasis.
Collapse
Affiliation(s)
- Fumiaki Obata
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Erina Kuranaga
- Laboratory for Histogenetic Dynamics, RIKEN CDB, Kobe 650-0047, Japan
| | - Katsura Tomioka
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ming Ming
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Asuka Takeishi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Chun-Hong Chen
- National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0052, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan.
| |
Collapse
|
19
|
Hosoda F, Arai Y, Okada N, Shimizu H, Miyamoto M, Kitagawa N, Katai H, Taniguchi H, Yanagihara K, Imoto I, Inazawa J, Ohki M, Shibata T. Integrated genomic and functional analyses reveal glyoxalase I as a novel metabolic oncogene in human gastric cancer. Oncogene 2014; 34:1196-206. [PMID: 24662817 DOI: 10.1038/onc.2014.57] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 11/15/2013] [Accepted: 12/16/2013] [Indexed: 02/07/2023]
Abstract
Chromosomal abnormalities are good guideposts when hunting for cancer-related genes. We analyzed copy number alterations of 163 primary gastric cancers using array-based comparative genomic hybridization and simultaneously performed a genome-wide integrated analysis of copy number and gene expression using microarray data for 58 tumors. We showed that chromosome 6p21 amplification frequently occurred secondary to ERBB2 amplification, was associated with poorer prognosis and caused overexpression of half of the genes mapped. A comprehensive small interfering RNA knockdown of 58 genes overexpressed in tumors identified 32 genes that reduced gastric cancer cell growth. Enforced expression of 16 of these genes promoted cell growth in vitro, and six genes showing more than two-fold activity conferred tumor-forming ability in vivo. Among these six candidates, GLO1, encoding a detoxifying enzyme glyoxalase I (GLO1), exhibited the strongest tumor-forming activity. Coexpression of other genes with GLO1 enhanced growth-stimulating activity. A GLO1 inhibitor, S-p-bromobenzyl glutathione cyclopentyl diester, inhibited the growth of two-thirds of 24 gastric cancer cell lines examined. The efficacy was found to be associated with the mRNA expression ratio of GLO1 to GLO2, encoding glyoxalase II (GLO2), another constituent of the glyoxalase system. GLO1 downregulation affected cell growth through inactivating central carbon metabolism and reduced the transcriptional activities of nuclear factor kappa B and activator protein-1. Our study demonstrates that GLO1 is a novel metabolic oncogene of the 6p21 amplicon, which promotes tumor growth and aberrant transcriptional signals via regulating cellular metabolic activities for energy production and could be a potential therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- F Hosoda
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Y Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - N Okada
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - H Shimizu
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - M Miyamoto
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - N Kitagawa
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - H Katai
- Division of Gastric Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - H Taniguchi
- Division of Clinical Laboratory, National Cancer Center Hospital, Tokyo, Japan
| | - K Yanagihara
- Division of Translational Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - I Imoto
- 1] Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan [2] Department of Human Genetics and Public Health, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | - J Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - M Ohki
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - T Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
20
|
Chou WY, Zhao JF, Chen YMA, Lee KI, Su KH, Shyue SK, Lee TS. Role of glycine N-methyltransferase in experimental ulcerative colitis. J Gastroenterol Hepatol 2014; 29:494-501. [PMID: 24219143 DOI: 10.1111/jgh.12434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders with unclear etiology and mechanism(s). Glycine N-methyltransferase (GNMT) plays a central role in inflammatory diseases such as hepatitis and atherosclerosis. However, little is known about the impact of GNMT and the involved mechanism in the pathogenesis of IBD. In the current study, we investigated the role of GNMT in the mouse model of dextran sulfate sodium (DSS)-induced colitis. METHODS Protein expression was determined by Western blotting or immunohistochemistry. Histopathology was examined by hematoxylin and eosin staining. Levels of pro-inflammatory cytokines were evaluated by ELISA kits. RESULTS GNMT was expressed in the epithelium of the colon under normal conditions, and with DSS treatment, its expression was predominant in infiltrated leukocytes of lesions. Mice with genetic deletion of GNMT (GNMT(-/-) ) showed increased susceptibility to DSS induction of colitis, as revealed by the progression of colitis. Additionally, severe colonic inflammation, including increased crypt loss, leukocyte infiltration, and hemorrhage, was greater with DSS treatment in GNMT(-/-) than wild-type mice. Furthermore, the expression of adhesion molecule and inflammatory mediators in the colon was significantly higher with DSS treatment in GNMT(-/-) than wild-type mice. Moreover, loss of GNMT decreased cell apoptosis in colitis lesions with DSS treatment. CONCLUSIONS Collectively, our findings suggest that GNMT may be a crucial molecule in the pathogenesis of DSS-induced colitis. This finding may provide new information for a potential therapeutic target in treating IBD.
Collapse
Affiliation(s)
- Wen-Yueh Chou
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
21
|
Liu GY, Wang W, Jia WD, Xu GL, Ma JL, Ge YS, Yu JH, Sun QK, Meng FL. Protective effect of S-adenosylmethionine on hepatic ischemia-reperfusion injury during hepatectomy in HCC patients with chronic HBV infection. World J Surg Oncol 2014; 12:27. [PMID: 24485003 PMCID: PMC3914845 DOI: 10.1186/1477-7819-12-27] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 01/18/2014] [Indexed: 12/15/2022] Open
Abstract
Background Although hepatectomy is often performed with the Pringle maneuver, the problem of hepatic ischemia-reperfusion injury (HIRI) can also be serious. Thus, the present study was designed to investigate the protective effect of S-adenosylmethionine (SAMe) on HIRI, especially for patients with hepatocellular carcinoma (HCC) associated with chronic hepatitis B virus (HBV) infection and cirrhosis. Methods Eighty-one HCC patients with chronic HBV infection, undergoing partial hepatectomy with inflow occlusion, were divided into three groups. In the pretreatment group (PR group, n = 26), patients were given SAMe two hours before surgery. In the post-treatment group (PO group, n = 25), patients were given SAMe six hours after surgery. And in the control group (control group, n = 30), patients received partial hepatectomy without any SAMe. All pre-, intra- and postoperative blood samples were collected to measure the plasma levels of transaminases, bilirubin and cytokines. The results were compared among the three groups. Results There were no statistically significant intergroup differences observed in age, gender, hepatic inflow occlusion time and the results of liver function tests. Preoperative administration of SAMe (PR group) significantly reduced the plasma levels of alanine transaminase (ALT), aspartate transferase (AST), total bilirubin (TBIL) and direct bilirubin (DBIL) as compared to the other two groups. In the PO group, TBIL and DBIL were significantly lower than in the control group. Significant differences were also seen in IL-6 and TNF-α between the PR group and the other groups. In all groups, postoperative liver reserve function in the PR group as revealed by ICGR15 (Post ICGR15) was at its best before abdominal closure. Compared to the control group, the risk of complications and the hospital stay after surgery were significantly meliorated in the PR group. Additionally, patients with cirrhosis had a more acute rate of change in ALT and AST than non-cirrhotic patients. Conclusions Taken together, our preliminary findings suggest that preoperative administration of SAMe is useful and safe for reducing the HIRI in partial hepatectomy, especially for HCC patients whose disease is associated with chronic HBV infection and cirrhosis.
Collapse
Affiliation(s)
| | | | - Wei-dong Jia
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, 17 Lujiang Road, Hefei 230001, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Merlen G, Gentric G, Celton-Morizur S, Foretz M, Guidotti JE, Fauveau V, Leclerc J, Viollet B, Desdouets C. AMPKα1 controls hepatocyte proliferation independently of energy balance by regulating Cyclin A2 expression. J Hepatol 2014; 60:152-9. [PMID: 24012615 DOI: 10.1016/j.jhep.2013.08.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 08/27/2013] [Accepted: 08/30/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is an evolutionarily conserved sensor of cellular energy status that contributes to restoration of energy homeostasis by slowing down ATP-consuming pathways and activating ATP-producing pathways. Unexpectedly, in different systems, AMPK is also required for proper cell division. In the current study, we evaluated the potential effect of the AMPK catalytic subunit, AMPKα1, on hepatocyte proliferation. METHODS Hepatocyte proliferation was determined in AMPKα1 knockout and wild-type mice in vivo after two thirds partial hepatectomy, and in vitro in primary hepatocyte cultures. The activities of metabolic and cell cycle-related signaling pathways were measured. RESULTS After partial hepatectomy, hepatocytes proliferated rapidly, correlating with increased AMPK phosphorylation. Deletion of AMPKα1 delayed liver regeneration by impacting on G1/S transition phase. The proliferative defect of AMPKα1-deficient hepatocytes was cell autonomous, and independent of energy balance. The priming phase, lipid droplet accumulation, protein anabolic responses and growth factor activation after partial hepatectomy occurred normally in the absence of AMPKα1 activity. By contrast, mRNA and protein expression of cyclin A2, a key driver of S phase progression, were compromised in the absence of AMPK activity. Importantly, AMPKα1 controlled cyclin A2 transcription mainly through the ATF/CREB element. CONCLUSIONS Our study highlights a novel role for AMPKα1 as a positive regulator of hepatocyte division occurring independently of energy balance.
Collapse
Affiliation(s)
- Grégory Merlen
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Géraldine Gentric
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Séverine Celton-Morizur
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marc Foretz
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jacques-Emmanuel Guidotti
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Véronique Fauveau
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jocelyne Leclerc
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Benoit Viollet
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chantal Desdouets
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
23
|
O'Connor MA, Koza-Taylor P, Campion SN, Aleksunes LM, Gu X, Enayetallah AE, Lawton MP, Manautou JE. Analysis of changes in hepatic gene expression in a murine model of tolerance to acetaminophen hepatotoxicity (autoprotection). Toxicol Appl Pharmacol 2013; 274:156-67. [PMID: 24126418 DOI: 10.1016/j.taap.2013.09.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 12/23/2022]
Abstract
Pretreatment of mice with a low hepatotoxic dose of acetaminophen (APAP) results in resistance to a subsequent, higher dose of APAP. This mouse model, termed APAP autoprotection was used here to identify differentially expressed genes and cellular pathways that could contribute to this development of resistance to hepatotoxicity. Male C57BL/6J mice were pretreated with APAP (400mg/kg) and then challenged 48h later with 600mg APAP/kg. Livers were obtained 4 or 24h later and total hepatic RNA was isolated and hybridized to Affymetrix Mouse Genome MU430_2 GeneChip. Statistically significant genes were determined and gene expression changes were also interrogated using the Causal Reasoning Engine (CRE). Extensive literature review narrowed our focus to methionine adenosyl transferase-1 alpha (MAT1A), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), flavin-containing monooxygenase 3 (Fmo3) and galectin-3 (Lgals3). Down-regulation of MAT1A could lead to decreases in S-adenosylmethionine (SAMe), which is known to protect against APAP toxicity. Nrf2 activation is expected to play a role in protective adaptation. Up-regulation of Lgals3, one of the genes supporting the Nrf2 hypothesis, can lead to suppression of apoptosis and reduced mitochondrial dysfunction. Fmo3 induction suggests the involvement of an enzyme not known to metabolize APAP in the development of tolerance to APAP toxicity. Subsequent quantitative RT-PCR and immunochemical analysis confirmed the differential expression of some of these genes in the APAP autoprotection model. In conclusion, our genomics strategy identified cellular pathways that might further explain the molecular basis for APAP autoprotection.
Collapse
Affiliation(s)
- Meeghan A O'Connor
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA; Boehringer Ingelheim Pharmaceuticals Inc., 900 Ridgebury Road, Ridgefield, CT 06877-0368, USA.
| | | | | | - Lauren M Aleksunes
- Rutgers University, Department of Pharmacology and Toxicology, Environmental and Occupational Health Sciences Institute, Piscataway, NJ 08854, USA.
| | - Xinsheng Gu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA.
| | | | | | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092, USA.
| |
Collapse
|
24
|
Wang YC, Lin WL, Lin YJ, Tang FY, Chen YM, Chiang EPI. A novel role of the tumor suppressor GNMT in cellular defense against DNA damage. Int J Cancer 2013; 134:799-810. [PMID: 23922098 DOI: 10.1002/ijc.28420] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 07/22/2013] [Indexed: 12/28/2022]
Abstract
Glycine N-methyltransferase (GNMT) is a folate binding protein commonly diminished in human hepatoma yet its role in tumor development remains to be established. GNMT binds to methylfolate but is also inhibited by it; how such interactions affect human carcinogenesis is unclear. We postulated that GNMT plays a role in folate-dependent methyl group homeostasis and helps maintain genome integrity by promoting nucleotide biosynthesis and DNA repair. To test the hypothesis, GNMT was over-expressed in GNMT-null cell lines cultured in conditions of folate abundance or restriction. The partitioning of folate dependent 1-carbon groups was investigated using stable isotopic tracers and GC/MS. DNA damage was assessed as uracil content in cell models, as well as in Gnmt wildtype (Gnmt(+/+)), heterozygote (Gnmt(+/-)) and knockout (Gnmt(-/-)) mice under folate deplete, replete, or supplementation conditions. Our study demonstrated that GMMT 1) supports methylene-folate dependent pyrimidine synthesis; 2) supports formylfolate dependent purine syntheses; 3) minimizes uracil incorporation into DNA when cells and animals were exposed to folate depletion; 4) translocates into nuclei during prolonged folate depletion. In conclusion, loss of GNMT impairs nucleotide biosynthesis. Over-expression of GNMT enhances nucleotide biosynthesis and improves DNA integrity by reducing uracil misincorporation in DNA both in vitro and in vivo. To our best knowledge, the role of GNMT in folate dependent 1-carbon transfer in nucleotide biosynthesis has never been investigated. The present study gives new insights into the underlying mechanism by which GNMT can participate in tumor prevention/suppression in humans.
Collapse
Affiliation(s)
- Yi-Cheng Wang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
DebRoy S, Kramarenko II, Ghose S, Oleinik NV, Krupenko SA, Krupenko NI. A novel tumor suppressor function of glycine N-methyltransferase is independent of its catalytic activity but requires nuclear localization. PLoS One 2013; 8:e70062. [PMID: 23936142 PMCID: PMC3728347 DOI: 10.1371/journal.pone.0070062] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/18/2013] [Indexed: 01/22/2023] Open
Abstract
Glycine N-methyltransferase (GNMT), an abundant cytosolic enzyme, catalyzes the transfer of a methyl group from S-adenosylmethionine (SAM) to glycine generating S-adenosylhomocysteine and sarcosine (N-methylglycine). This reaction is regulated by 5-methyltetrahydrofolate, which inhibits the enzyme catalysis. In the present study, we observed that GNMT is strongly down regulated in human cancers and is undetectable in cancer cell lines while the transient expression of the protein in cancer cells induces apoptosis and results in the activation of ERK1/2 as an early pro-survival response. The antiproliferative effect of GNMT can be partially reversed by treatment with the pan-caspase inhibitor zVAD-fmk but not by supplementation with high folate or SAM. GNMT exerts the suppressor effect primarily in cells originated from malignant tumors: transformed cell line of non-cancer origin, HEK293, was insensitive to GNMT. Of note, high levels of GNMT, detected in regenerating liver and in NIH3T3 mouse fibroblasts, do not produce cytotoxic effects. Importantly, GNMT, a predominantly cytoplasmic protein, was translocated into nuclei upon transfection of cancer cells. The presence of GNMT in the nuclei was also observed in normal human tissues by immunohistochemical staining. We further demonstrated that the induction of apoptosis is associated with the GNMT nuclear localization but is independent of its catalytic activity or folate binding. GNMT targeted to nuclei, through the fusion with nuclear localization signal, still exerts strong antiproliferative effects while its restriction to cytoplasm, through the fusion with nuclear export signal, prevents these effects (in each case the protein was excluded from cytosol or nuclei, respectively). Overall, our study indicates that GNMT has a secondary function, as a regulator of cellular proliferation, which is independent of its catalytic role.
Collapse
Affiliation(s)
- Suchandra DebRoy
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Inga I. Kramarenko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Sampa Ghose
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Natalia V. Oleinik
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Sergey A. Krupenko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Natalia I. Krupenko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
26
|
Huidobro C, Fernandez AF, Fraga MF. The role of genetics in the establishment and maintenance of the epigenome. Cell Mol Life Sci 2013; 70:1543-73. [PMID: 23474979 PMCID: PMC11113764 DOI: 10.1007/s00018-013-1296-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/19/2022]
Abstract
Epigenetic mechanisms play an important role in gene regulation during development. DNA methylation, which is probably the most important and best-studied epigenetic mechanism, can be abnormally regulated in common pathologies, but the origin of altered DNA methylation remains unknown. Recent research suggests that these epigenetic alterations could depend, at least in part, on genetic mutations or polymorphisms in DNA methyltransferases and certain genes encoding enzymes of the one-carbon metabolism pathway. Indeed, the de novo methyltransferase 3B (DNMT3B) has been recently found to be mutated in several types of cancer and in the immunodeficiency, centromeric region instability and facial anomalies syndrome (ICF), in which these mutations could be related to the loss of global DNA methylation. In addition, mutations in glycine-N-methyltransferase (GNMT) could be associated with a higher risk of hepatocellular carcinoma and liver disease due to an unbalanced S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio, which leads to aberrant methylation reactions. Also, genetic variants of chromatin remodeling proteins and histone tail modifiers are involved in genetic disorders like α thalassemia X-linked mental retardation syndrome, CHARGE syndrome, Cockayne syndrome, Rett syndrome, systemic lupus erythematous, Rubinstein-Taybi syndrome, Coffin-Lowry syndrome, Sotos syndrome, and facioescapulohumeral syndrome, among others. Here, we review the potential genetic alterations with a possible role on epigenetic factors and discuss their contribution to human disease.
Collapse
Affiliation(s)
- Covadonga Huidobro
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA-HUCA), University of Oviedo, Oviedo, Spain
| | - Agustin F. Fernandez
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA-HUCA), University of Oviedo, Oviedo, Spain
| | - Mario F. Fraga
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA-HUCA), University of Oviedo, Oviedo, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
27
|
Abstract
S-adenosylmethionine (AdoMet, also known as SAM and SAMe) is the principal biological methyl donor synthesized in all mammalian cells but most abundantly in the liver. Biosynthesis of AdoMet requires the enzyme methionine adenosyltransferase (MAT). In mammals, two genes, MAT1A that is largely expressed by normal liver and MAT2A that is expressed by all extrahepatic tissues, encode MAT. Patients with chronic liver disease have reduced MAT activity and AdoMet levels. Mice lacking Mat1a have reduced hepatic AdoMet levels and develop oxidative stress, steatohepatitis, and hepatocellular carcinoma (HCC). In these mice, several signaling pathways are abnormal that can contribute to HCC formation. However, injury and HCC also occur if hepatic AdoMet level is excessive chronically. This can result from inactive mutation of the enzyme glycine N-methyltransferase (GNMT). Children with GNMT mutation have elevated liver transaminases, and Gnmt knockout mice develop liver injury, fibrosis, and HCC. Thus a normal hepatic AdoMet level is necessary to maintain liver health and prevent injury and HCC. AdoMet is effective in cholestasis of pregnancy, and its role in other human liver diseases remains to be better defined. In experimental models, it is effective as a chemopreventive agent in HCC and perhaps other forms of cancer as well.
Collapse
Affiliation(s)
- Shelly C Lu
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine, Los Angeles, California 90033, USA.
| | | |
Collapse
|
28
|
Chen CY, Ching LC, Liao YJ, Yu YB, Tsou CY, Shyue SK, Chen YMA, Lee TS. Deficiency of glycine N-methyltransferase aggravates atherosclerosis in apolipoprotein E-null mice. Mol Med 2012; 18:744-52. [PMID: 22415010 DOI: 10.2119/molmed.2011.00396] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 03/07/2012] [Indexed: 12/22/2022] Open
Abstract
The mechanism underlying the dysregulation of cholesterol metabolism and inflammation in atherogenesis is not understood fully. Glycine N-methyltransferase (GNMT) has been implicated in hepatic lipid metabolism and the pathogenesis of liver diseases. However, little is known about the significance of GNMT in atherosclerosis. We showed the predominant expression of GNMT in foamy macrophages of mouse atherosclerotic aortas. Genetic deletion of GNMT exacerbated the hyperlipidemia, inflammation and development of atherosclerosis in apolipoprotein E-deficient mice. In addition, ablation of GNMT in macrophages aggravated oxidized low-density lipoprotein-mediated cholesterol accumulation in macrophage foam cells by downregulating the expression of reverse cholesterol transporters including ATP-binding cassette transporters-A1 and G1 and scavenger receptor BI. Furthermore, tumor necrosis factor-α-induced inflammatory response was promoted in GNMT-null macrophages. Collectively, our data suggest that GNMT is a crucial regulator in cholesterol metabolism and in inflammation, and contributes to the pathogenesis of atherosclerosis. This finding may reveal a potential therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- Chien-Yu Chen
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gomez-Santos L, Vazquez-Chantada M, Mato JM, Martinez-Chantar ML. SAMe and HuR in liver physiology: usefulness of stem cells in hepatic differentiation research. Methods Mol Biol 2012; 826:133-49. [PMID: 22167646 DOI: 10.1007/978-1-61779-468-1_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
S-Adenosylmethionine, abbreviated as SAM, SAMe or AdoMet, is the principal methyl group donor in the mammalian cell and the first step metabolite of the methionine cycle, being synthesized by MAT (methionine adenosyltransferase) from methionine and ATP. About 60 years after its identification, SAMe is admitted as a key hepatic regulator whose level needs to be maintained within a specific range in order to avoid liver damage. Recently, in vitro and in vivo studies have demonstrated the regulatory role of SAMe in HGF (hepatocyte growth factor)-mediated hepatocyte proliferation through a mechanism that implicates the activation of the non-canonical LKB1/AMPK/eNOS cascade and HuR function. Regarding hepatic differentiation, cellular SAMe content varies depending on the status of the cell, being lower in immature than in adult hepatocytes. This finding suggests a SAMe regulatory effect also in this cellular process, which very recently was reported and related to HuR activity. Although in the last years this and other discoveries contributed to throw light into the tangle of regulatory mechanisms that govern this complex process, an overall understanding is still a challenge. For this purpose, the in vitro hepatic differentiation culture systems by using stem cells or fetal hepatoblasts are considered as valuable tools which, in combination with the methods used in current days to elucidate cell signaling pathways, surely will help to clear up this question.
Collapse
Affiliation(s)
- Laura Gomez-Santos
- Metabolomics Unit, CIC bioGUNE, Technology Park of Bizkaia, Bizkaia, Basque Country, Spain.
| | | | | | | |
Collapse
|
30
|
Correa-Fiz F, Reyes-Palomares A, Fajardo I, Melgarejo E, Gutiérrez A, García-Ranea JA, Medina MA, Sánchez-Jiménez F. Regulatory cross-talk of mouse liver polyamine and methionine metabolic pathways: a systemic approach to its physiopathological consequences. Amino Acids 2011; 42:577-95. [PMID: 21818563 DOI: 10.1007/s00726-011-1044-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 04/22/2011] [Indexed: 12/15/2022]
Abstract
Both polyamines and methionine derivatives are nitrogen compounds directly related to the regulation of gene expression. In silico predictions and experimental evidence suggest a cross-talk between polyamine and methionine metabolism in mammalian tissues. Since liver is the major organ that controls nitrogen metabolism of the whole organism, it is the best tissue to further test this hypothesis in vivo. In this work, we studied the effects of the chronic administration of a methionine-supplemented diet (0.5% Met in drinking water for 5 months) on the liver of mice (designated as MET-mice). Metabolic and proteomic approaches were performed and the data obtained were subjected to biocomputational analysis. Results showed that a supplemental methionine intake can indeed regulate biogenic amine metabolism in an in vivo model by multiple mechanisms including metabolic regulation and specific gene demethylation. Furthermore, putative systemic effects were investigated by molecular and cellular biology methods. Among other results, altered expression levels of multiple inflammation and cell proliferation/death balance markers were found and macrophage activation was observed. Overall, the results presented here will be of interest across a variety of biomedical disciplines, including nutrition, orphan diseases, immunology and oncology.
Collapse
Affiliation(s)
- F Correa-Fiz
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Metabolomic analysis of sulfur-containing substances and polyamines in regenerating rat liver. Amino Acids 2011; 42:2095-102. [PMID: 21626405 DOI: 10.1007/s00726-011-0946-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/17/2011] [Indexed: 01/20/2023]
Abstract
We studied the significance of alterations in the metabolomics of sulfur-containing substances in rapidly regenerating rat livers. Male rats were subjected to two-thirds partial hepatectomy (PHx), and the changes in hepatic levels of major sulfur-containing amino acids and related substances were monitored for 2 weeks. Liver weight began to increase from 24 h after the surgery, and appeared to recover fully in 2 weeks. Serum alanine aminotransferase and aspartate aminotransferase activities were elevated immediately after the surgery and returned slowly to normal levels in 2 weeks. Methionine, S-adenosylmethionine (SAM), cystathionine and cysteine were increased rapidly and remained elevated for longer than 1 week. Hepatic glutathione concentration was increased gradually for 24 h, and then decreased thereafter, whereas hypotaurine was elevated drastically right after the surgery. Hepatic concentrations of polyamines were altered significantly by PHx. In the hepatectomized livers putrescine concentration was elevated rapidly, reaching a level 40- to 50-fold greater than normal in 6-12 h. Ornithine, the metabolic substrate for putrescine synthesis, was also elevated markedly. Spermidine was increased significantly, whereas spermine was depressed below normal, which appeared to be due to the increased consumption of decarboxylated SAM for spermidine biosynthesis. The results show that the metabolomics of sulfur-containing amino acids and related substances is altered profoundly in regenerating rat livers until the original weight is recovered. Hepatic concentrations of polyamines after PHx are closely associated with the alteration in the metabolomics of sulfur-containing substances. The implication of these changes in the progression of liver regeneration is discussed.
Collapse
|
32
|
Varela-Rey M, Beraza N, Lu SC, Mato JM, Martínez-Chantar ML. Role of AMP-activated protein kinase in the control of hepatocyte priming and proliferation during liver regeneration. Exp Biol Med (Maywood) 2011; 236:402-8. [PMID: 21427236 DOI: 10.1258/ebm.2011.010352] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The enzyme AMP-activated protein kinase (AMPK) is the main energy sensor in cells and is responsible for controlling the balance of anabolic/catabolic processes under metabolic stress conditions. This metabolic control exerted by AMPK is critical for energy-demanding situations, such as liver regeneration. Immediately after partial hepatectomy (PH), the liver undergoes the priming phase, mediated by the proinflammatory cytokines tumor necrosis factor (TNF) and interleukin-6, which promote responsiveness of hepatocytes to growth factors, such as hepatocyte growth factor (HGF) and epidermal growth factor, which lead to proliferation. In addition to its metabolic function, AMPK is likely to be a key mediator in both hepatocyte priming and the proliferative phases, induced by TNF-α and HGF, respectively. TNF-α-induced AMPK activation has been shown to be necessary for nuclear factor κappa B (NF-κB)-induced inducible nitric oxide synthase expression and for blocking TNF-α-induced apoptosis. On the other hand, HGF-induced LKB1/AMPK activation has been found to play a critical role in controlling Hu antigen R cytosolic localization and endothelial nitric oxide synthase activation, and consequently Cyclin D1 and Cyclin A expressions, and nitric oxide generation, respectively. During PH, levels of S-adenosylmethionine (SAMe), the principal methyl donor in the liver, have to decrease to allow liver proliferation. Our studies also show that SAMe inhibits hepatocyte proliferation by controlling the hepatocyte's responsiveness to mitogenic signals such as HGF through the inhibition of AMPK activity. In summary, these data highlight the essential role of AMPK in controlling the balance between hepatocyte metabolic adaptations, cell cycle progression and apoptosis during liver regeneration.
Collapse
Affiliation(s)
- Marta Varela-Rey
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain.
| | | | | | | | | |
Collapse
|
33
|
Martinez-Chantar ML, Lu SC, Mato JM, Luka Z, Wagner C, French BA, French SW. The role of stem cells/progenitor cells in liver carcinogenesis in glycine N-methyltransferase deficient mice. Exp Mol Pathol 2010; 88:234-7. [PMID: 20080087 DOI: 10.1016/j.yexmp.2010.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 01/09/2010] [Indexed: 11/18/2022]
Abstract
Regeneration of the liver is inhibited as a result of a sustained increase in S-adenosylmethionine levels in glycine N-methyltransferase (GNMT)-/- mice. This sets the stage for normally dormant stem cells/progenitor cells to replicate and differentiate to replenish the liver parenchyma with liver cells. With time the stem cells/progenitor cells may aggregate and ultimately form liver tumors. This transformation of stem cells persists within the tumors that form in order to maintain the growth of the tumors that have formed. To test this hypothesis, GNMT-/- mice were maintained for 18 months and their livers were studied at intervals, in order to document the process of tumors formation and the identification of stem cells/progenitor cells involved in the process. Progenitor cell (OV-6 positive cells) hyperplasia was already established at 8 months in the livers of the GNMT-/- mice. This process was expanded at 18 months when liver tumors had formed. Stem cells which stained positive in the livers at 8 months and within tumors at 18 months (Oct 4 and CK 19 positive cells) were found. Fat 10, a marker for progenitor liver cells, was uniformly expressed by all tumors that developed at 8 and 18 months in GNMT-/- mice.
Collapse
|