1
|
Huang HYR, Badar S, Said M, Shah S, Bharadwaj HR, Ramamoorthy K, Alrawashdeh MM, Haroon F, Basit J, Saeed S, Aji N, Tse G, Roy P, Bardhan M. The advent of RNA-based therapeutics for metabolic syndrome and associated conditions: a comprehensive review of the literature. Mol Biol Rep 2024; 51:493. [PMID: 38580818 DOI: 10.1007/s11033-024-09457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
Metabolic syndrome (MetS) is a prevalent and intricate health condition affecting a significant global population, characterized by a cluster of metabolic and hormonal disorders disrupting lipid and glucose metabolism pathways. Clinical manifestations encompass obesity, dyslipidemia, insulin resistance, and hypertension, contributing to heightened risks of diabetes and cardiovascular diseases. Existing medications often fall short in addressing the syndrome's multifaceted nature, leading to suboptimal treatment outcomes and potential long-term health risks. This scenario underscores the pressing need for innovative therapeutic approaches in MetS management. RNA-based treatments, employing small interfering RNAs (siRNAs), microRNAs (miRNAs), and antisense oligonucleotides (ASOs), emerge as promising strategies to target underlying biological abnormalities. However, a summary of research available on the role of RNA-based therapeutics in MetS and related co-morbidities is limited. Murine models and human studies have been separately interrogated to determine whether there have been recent advancements in RNA-based therapeutics to offer a comprehensive understanding of treatment available for MetS. In a narrative fashion, we searched for relevant articles pertaining to MetS co-morbidities such as cardiovascular disease, fatty liver disease, dementia, colorectal cancer, and endocrine abnormalities. We emphasize the urgency of exploring novel therapeutic avenues to address the intricate pathophysiology of MetS and underscore the potential of RNA-based treatments, coupled with advanced delivery systems, as a transformative approach for achieving more comprehensive and efficacious outcomes in MetS patients.
Collapse
Affiliation(s)
- Helen Ye Rim Huang
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sarah Badar
- Department of Biomedical Science, The University of the West Scotland, Paisley, Scotland
| | - Mohammad Said
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Siddiqah Shah
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Krishna Ramamoorthy
- Department of Biochemistry and Microbiology, Rutgers University-New Brunswick, Brunswick, NJ, USA
| | | | | | - Jawad Basit
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Sajeel Saeed
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Narjiss Aji
- Faculty of Medicine and Health, McGill University, Montreal, QC, Canada
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Priyanka Roy
- Directorate of Factories, Department of Labour, Government of West Bengal, Kolkata, India
| | - Mainak Bardhan
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.
| |
Collapse
|
2
|
Pakalniškytė D, Schönberger T, Strobel B, Stierstorfer B, Lamla T, Schuler M, Lenter M. Rosa26-LSL-dCas9-VPR: a versatile mouse model for tissue specific and simultaneous activation of multiple genes for drug discovery. Sci Rep 2022; 12:19268. [PMID: 36357523 PMCID: PMC9649745 DOI: 10.1038/s41598-022-23127-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/25/2022] [Indexed: 11/12/2022] Open
Abstract
Transgenic animals with increased or abrogated target gene expression are powerful tools for drug discovery research. Here, we developed a CRISPR-based Rosa26-LSL-dCas9-VPR mouse model for targeted induction of endogenous gene expression using different Adeno-associated virus (AAV) capsid variants for tissue-specific gRNAs delivery. To show applicability of the model, we targeted low-density lipoprotein receptor (LDLR) and proprotein convertase subtilisin/kexin type 9 (PCSK9), either individually or together. We induced up to ninefold higher expression of hepatocellular proteins. In consequence of LDLR upregulation, plasma LDL levels almost abolished, whereas upregulation of PCSK9 led to increased plasma LDL and cholesterol levels. Strikingly, simultaneous upregulation of both LDLR and PCSK9 resulted in almost unaltered LDL levels. Additionally, we used our model to achieve expression of all α1-Antitrypsin (AAT) gene paralogues simultaneously. These results show the potential of our model as a versatile tool for optimized targeted gene expression, alone or in combination.
Collapse
Affiliation(s)
- Dalia Pakalniškytė
- grid.420061.10000 0001 2171 7500Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, 88400 Biberach an der Riß, Germany
| | - Tanja Schönberger
- grid.420061.10000 0001 2171 7500Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, 88400 Biberach an der Riß, Germany
| | - Benjamin Strobel
- grid.420061.10000 0001 2171 7500Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, 88400 Biberach an der Riß, Germany
| | - Birgit Stierstorfer
- grid.420061.10000 0001 2171 7500Boehringer Ingelheim Pharma GmbH & Co. KG, Nonclinical Drug Safety Germany, 88400 Biberach an der Riß, Germany
| | - Thorsten Lamla
- grid.420061.10000 0001 2171 7500Boehringer Ingelheim Pharma GmbH & Co. KG, Discovery Research Coordination, 88400 Biberach an der Riß, Germany
| | - Michael Schuler
- grid.420061.10000 0001 2171 7500Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, 88400 Biberach an der Riß, Germany
| | - Martin Lenter
- grid.420061.10000 0001 2171 7500Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, 88400 Biberach an der Riß, Germany
| |
Collapse
|
3
|
Rohilla S, Awasthi A, Kaur S, Puria R. Evolutionary conservation of long non-coding RNAs in non-alcoholic fatty liver disease. Life Sci 2020; 264:118560. [PMID: 33045214 DOI: 10.1016/j.lfs.2020.118560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/20/2020] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of conditions ranging from hepatic steatosis to steatohepatitis (NASH) to fibrosis in the absence of alcohol consumption. Its pathogenesis involves both genetic and environmental factors with a multitude of underlying molecular mechanisms and mediators at each stage. Recent transcriptomic-based studies have led to the identification and association of long non-coding RNAs (lncRNAs) with disease pathology in NAFLD patients and in vivo rodent models. However, the knowledge of function of most of the lncRNAs in NAFLD pathology remains obscure. In the current review, we give a comprehensive catalogue of well reported lncRNAs in NAFLD and classify them using sequence and synteny-based evolutionary conservation across rodents, nonhuman primate and human species. The conserved lncRNAs across all the three species may be dissected in larger clinical studies of NAFLD and can be explored as biomarkers and therapeutic targets. In addition, we also review and analyse single nucleotide polymorphisms (SNPs) in these lncRNAs. It adds another facet to the regulatory role of NAFLD-associated lncRNAs and underscores the significance of a novel genetic landscape of non-coding genome in determining the genetic susceptibility of NAFLD.
Collapse
Affiliation(s)
| | | | - Savneet Kaur
- Institute of Liver and Biliary Sciences, New Delhi, India
| | - Rekha Puria
- Gautam Buddha University, Greater Noida, India.
| |
Collapse
|
4
|
Rational Design of an Activatable Reporter for Quantitative Imaging of RNA Aberrant Splicing In Vivo. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:904-911. [PMID: 32405512 PMCID: PMC7210378 DOI: 10.1016/j.omtm.2020.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 02/02/2023]
Abstract
Pre-mRNA splicing, the process of removing introns from pre-mRNA and the arrangement of exons to produce mature transcripts, is a crucial step in the expression of most eukaryote genes. However, the splicing kinetics remain poorly characterized in living cells, mainly because current methods cannot provide the dynamic information of splicing events. Here, we developed a genetically encoded bioluminescence reporter for real-time imaging of the pre-mRNA splicing process in living subjects. We showed that the bioluminescence reporter is able to visualize the pre-mRNA aberrant splicing process in living cells in a dose- and time-dependent manner. Moreover, this reporter could provide quantitative and longitudinal information of splicing activity in response to exogenous splicing inhibitors in living animals. Our data suggest that this activatable reporter could serve as a promising tool for the high-throughput screening of splicing modulators, which would facilitate the drug development for human diseases caused by the abnormal splicing of mRNA.
Collapse
|
5
|
Application of Locked Nucleic Acid Oligonucleotides for siRNA Preclinical Bioanalytics. Sci Rep 2019; 9:3566. [PMID: 30837588 PMCID: PMC6401054 DOI: 10.1038/s41598-019-40187-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/06/2019] [Indexed: 12/21/2022] Open
Abstract
Despite the exquisite potential of siRNA as a therapeutic, the mechanism(s) responsible for the robust indirect exposure-response relationships have not been fully elucidated. To understand the siRNA properties linked to potent activity, requires the disposition of siRNA to be characterized. A technical challenge in the characterization is the detection and quantitation of siRNA from biological samples. Described herein, a Locked Nucleic Acid (LNA) Hybridization-Ligation ECL ELISA was designed for ultra-sensitive quantification of both sense and antisense strands of siRNA independent of structural modifica-tions. This assay was applied to measure siRNA in serum and tissue homogenate in preclinical species. We observed rapid clearance of siRNA from the systemic circulation which contrasted the prolonged accumulation within the tissue. The assay was also able to distinguish and quantify free siRNA from RNA-induced silencing complex (RISC) and Argonaute 2 (Ago2) associated with therapeutic siRNA. We utilized an orthogonal method, LC-MS, to investigate 3′ exonuclease activity toward the antisense strand metabolism. Taken together, we have demonstrated that the LNA Hybridization-Ligation ECL ELISA is arobust analytical method with direct application to measuring the exposure of siRNA therapeutics seamlessly across biological matrices.
Collapse
|
6
|
Soini T, Eloranta K, Pihlajoki M, Kyrönlahti A, Akinrinade O, Andersson N, Lohi J, Pakarinen MP, Wilson DB, Heikinheimo M. Transcription factor GATA4 associates with mesenchymal-like gene expression in human hepatoblastoma cells. Tumour Biol 2018; 40:1010428318785498. [PMID: 30074440 DOI: 10.1177/1010428318785498] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
GATA4, a transcription factor crucial for early liver development, has been implicated in the pathophysiology of hepatoblastoma, an embryonal tumor of childhood. However, the molecular and phenotypic consequences of GATA4 expression in hepatoblastoma are not fully understood. We surveyed GATA4 expression in 24 hepatoblastomas using RNA in situ hybridization and immunohistochemistry. RNA interference was used to inhibit GATA4 in human HUH6 hepatoblastoma cells, and changes in cell migration were measured with wound healing and transwell assays. RNA microarray hybridization was performed on control and GATA4 knockdown HUH6 cells, and differentially expressed genes were validated by quantitative polymerase chain reaction or immunostaining. Plasmid transfection was used to overexpress GATA4 in primary human hepatocytes and ensuring changes in gene expression were measured by quantitative polymerase chain reaction. We found that GATA4 expression was high in most hepatoblastomas but weak or negligible in normal hepatocytes. GATA4 gene silencing impaired HUH6 cell migration. We identified 106 differentially expressed genes (72 downregulated, 34 upregulated) in knockdown versus control HUH6 cells. GATA4 silencing altered the expression of genes associated with cytoskeleton organization, cell-to-cell adhesion, and extracellular matrix dynamics (e.g. ADD3, AHNAK, DOCK8, RHOU, MSF, IGFBP1, COL4A2). These changes in gene expression reflected a more epithelial (less malignant) phenotype. Consistent with this notion, there was reduced F-actin stress fiber formation in knockdown HUH6 cells. Forced expression of GATA4 in primary human hepatocytes triggered opposite changes in the expression of genes identified by GATA4 silencing in HUH6 cells. In conclusion, GATA4 is highly expressed in most hepatoblastomas and correlates with a mesenchymal, migratory phenotype of hepatoblastoma cells.
Collapse
Affiliation(s)
- Tea Soini
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Katja Eloranta
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjut Pihlajoki
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- 2 Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Antti Kyrönlahti
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- 2 Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Oyediran Akinrinade
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Noora Andersson
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jouko Lohi
- 3 Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko P Pakarinen
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- 4 Unit of Pediatric Surgery and Pediatric Liver and Gut Research Group, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - David B Wilson
- 2 Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- 5 Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Markku Heikinheimo
- 1 Pediatric Research Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- 2 Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
7
|
Cohen A, Combes V, Grau GER. MicroRNAs and Malaria - A Dynamic Interaction Still Incompletely Understood. JOURNAL OF NEUROINFECTIOUS DISEASES 2015; 6:165. [PMID: 26005686 PMCID: PMC4441219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Malaria is a mosquito-borne infectious disease caused by parasitic protozoa of the genus Plasmodium. It remains a major problem affecting humans today, especially children. However, the pathogenesis of malaria, especially severe malaria, remains incompletely understood, hindering our ability to treat this disease. Of recent interest is the role that small, non-coding RNAs play in the progression, pathogenesis of, and resistance to, malaria. Independent studies have now revealed the presence of microRNA (miRNA) in the malaria parasite, vector, and host, though these studies are relatively few. Here, we review these studies, focusing on the roles specific miRNA have in the disease, and how they may be harnessed for therapeutic purposes.
Collapse
Affiliation(s)
| | | | - Georges ER Grau
- Corresponding author: Grau GER, Medical Foundation Building (K25), 92-94 Parramatta Rd, Camperdown NSW 2050, Australia, Tel: +61 2 9036 3260;
| |
Collapse
|
8
|
Shah N, Nelson JE, Kowdley KV. MicroRNAs in Liver Disease: Bench to Bedside. J Clin Exp Hepatol 2013; 3:231-42. [PMID: 25755505 PMCID: PMC3940370 DOI: 10.1016/j.jceh.2013.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRs) are small non-coding RNAs that negatively regulate gene expression by pairing with partially complementary target sequences in the 3'UTRs of mRNAs to promote degradation and/or block translation. Aberrant miR expression is associated with development of multiple diseases including hepatic diseases. The role of miRs in the regulation of gene expression and rapid progress in the field of microRNA research are resulting in momentum toward development of diagnostic markers and novel therapeutic strategies for human liver diseases. Recent studies provide clear evidence that miRs are abundant in the liver and modulate a diverse spectrum of biological functions, thereby supporting an association between alterations of miR homeostasis and pathological liver diseases. Here we review the role of miRs in liver as their physiological and pathological importance has been demonstrated in metabolism, immunity, viral hepatitis, oncogenesis, fatty liver diseases (alcoholic and non-alcoholic), drug-induced liver injury, fibrosis as well as acute liver failure.
Collapse
Key Words
- ALD, alcoholic liver disease
- ALF, acute liver failure
- DILI, drug-induced liver injury
- HBV, hepatitis B virus
- HCC, hepatocellular carcinoma
- HCV, hepatitis C virus
- HSC, hepatic stellate cell
- IFN, interferon
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- PPAR γ, peroxisome proliferator-activated receptor γ
- TGF, transforming growth factor
- TNF, tumor necrosis factor
- UTR, untranslated region
- down-regulation
- liver
- miR-122
- miRs/miRNA, microRNA
- microRNA
- up-regulation
Collapse
Affiliation(s)
- Nihar Shah
- Liver Center of Excellence, Digestive Disease Institute, Virginia Mason Medical Center, Seattle, WA, United States
| | - James E. Nelson
- Benaroya Research Institute, Virginia Mason Medical Center, Seattle, WA, United States
| | - Kris V. Kowdley
- Liver Center of Excellence, Digestive Disease Institute, Virginia Mason Medical Center, Seattle, WA, United States,Benaroya Research Institute, Virginia Mason Medical Center, Seattle, WA, United States,Address for correspondence: Kris V. Kowdley, MD, 1201 9th Ave., Seattle, WA 98101, United States. Tel.: +1 (206) 287 1083; fax: +1 (206) 341 1934.
| |
Collapse
|
9
|
Chen SL, Zheng MH, Shi KQ, Yang T, Chen YP. A new strategy for treatment of liver fibrosis: letting MicroRNAs do the job. BioDrugs 2013; 27:25-34. [PMID: 23329398 DOI: 10.1007/s40259-012-0005-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are short, endogenous, noncoding RNA molecules that regulate gene expression at a post-translational level. MiRNAs have been recognized in the regulation of physiological conditions. Moreover, awareness of the association between dysregulated miRNAs and human diseases is increasing, which consequently brings miRNAs to the frontline in the development of novel therapeutic strategies. We review the latest advances in our knowledge of the involvement of miRNAs in fibrosis with particular emphasis on hepatic fibrosis and the possibilities in the near future for miRNA-based therapy for targeted treatment of liver fibrosis. With recent advances in our understanding of the important role of senescence in the resolution of activated hepatic stellate cells (HSCs), we suggested the therapeutic potential of inducing activated HSCs into senescence by an miRNA-based strategy.
Collapse
Affiliation(s)
- Shao-Long Chen
- Department of Infection and Liver Diseases, Liver Research Center, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | | | | | | | | |
Collapse
|
10
|
Templin T, Young EF, Smilenov LB. Proton radiation-induced miRNA signatures in mouse blood: characterization and comparison with 56Fe-ion and gamma radiation. Int J Radiat Biol 2012; 88:531-9. [PMID: 22551419 DOI: 10.3109/09553002.2012.690549] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Previously, we showed that microRNA (miRNA) signatures derived from the peripheral blood of mice are highly specific for both radiation energy (γ-rays or high linear energy transfer [LET] (56)Fe ions) and radiation dose. Here, we investigate to what extent miRNA expression signatures derived from mouse blood can be used as biomarkers for exposure to 600 MeV proton radiation. MATERIALS AND METHODS We exposed mice to 600 MeV protons, using doses of 0.5 or 1.0 Gy, isolated total RNA at 6 h or 24 h after irradiation, and used quantitative real-time polymerase chain reaction (PCR) to determine the changes in miRNA expression. RESULTS A total of 26 miRNA were differentially expressed after proton irradiation, in either one (77%) or multiple conditions (23%). Statistical classifiers based on proton, γ, and (56)Fe-ion miRNA expression signatures predicted radiation type and proton dose with accuracies of 81% and 88%, respectively. Importantly, gene ontology analysis for proton-irradiated cells shows that genes targeted by radiation-induced miRNA are involved in biological processes and molecular functions similar to those controlled by miRNA in γ ray- and (56)Fe-irradiated cells. CONCLUSIONS Mouse blood miRNA signatures induced by proton, γ, or (56)Fe irradiation are radiation type- and dose-specific. These findings underline the complexity of the miRNA-mediated radiation response.
Collapse
Affiliation(s)
- Thomas Templin
- Center for Radiological Research, Columbia University Medical Center, New York, NY, USA
| | | | | |
Collapse
|
11
|
Epidermal growth factor improves lentivirus vector gene transfer into primary mouse hepatocytes. Gene Ther 2011; 19:425-34. [PMID: 21850050 DOI: 10.1038/gt.2011.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Partial resistance of primary mouse hepatocytes to lentiviral (LV) vector transduction poses a challenge for ex vivo gene therapy protocols in models of monogenetic liver disease. We thus sought to optimize ex vivo LV gene transfer while preserving the hepatocyte integrity for subsequent transplantation into recipient animals. We found that culture media supplemented with epidermal growth factor (EGF) and, to a lesser extent, hepatocyte growth factor (HGF) markedly improved transduction efficacy at various multiplicities of infection. Up to 87% of primary hepatocytes were transduced in the presence of 10 ng EGF, compared with ~30% in standard culture medium (SCMs). The increased number of transgene-expressing cells correlated with increased nuclear import and more integrated pro-viral copies per cell. Higher LV transduction efficacy was not associated with proliferation, as transduction capacity of gammaretroviral vectors remained low (<1%). Finally, we developed an LV transduction protocol for short-term (maximum 24 h) adherent hepatocyte cultures. LV-transduced hepatocytes showed liver repopulation capacities similar to freshly isolated hepatocytes in alb-uPA mouse recipients. Our findings highlight the importance of EGF for efficient LV transduction of primary hepatocytes in culture and should facilitate studies of LV gene transfer in mouse models of monogenetic liver disease.
Collapse
|
12
|
Raschzok N, Werner W, Sallmon H, Billecke N, Dame C, Neuhaus P, Sauer IM. Temporal expression profiles indicate a primary function for microRNA during the peak of DNA replication after rat partial hepatectomy. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1363-72. [DOI: 10.1152/ajpregu.00632.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The liver has the unique capacity to regenerate after surgical resection. However, the regulation of liver regeneration is not completely understood. Recent reports indicate an essential role for small noncoding microRNAs (miRNAs) in the regulation of hepatic development, carcinogenesis, and early regeneration. We hypothesized that miRNAs are critically involved in all phases of liver regeneration after partial hepatectomy. We performed miRNA microarray analyses after 70% partial hepatectomy in rats under isoflurane anesthesia at different time points (0 h to 5 days) and after sham laparotomy. Putative targets of differentially expressed miRNAs were determined using a bioinformatic approach. Two-dimensional (2D)-PAGE proteomic analyses and protein identification were performed on specimens at 0 and 24 h after resection. The temporal dynamics of liver regeneration were characterized by 5-bromo- 2-deoxyuridine, proliferating cell nuclear antigen, IL-6, and hepatocyte growth factor. We demonstrate that miRNA expression patterns changed during liver regeneration and that these changes were most evident during the peak of DNA replication at 24 h after resection. Expression of 13 miRNAs was significantly reduced 12–48 h after resection (>25% change), out of which downreguation was confirmed in isolated hepatocytes for 6 miRNAs at 24 h, whereas three miRNAs were significantly upregulated. Proteomic analysis revealed 65 upregulated proteins; among them, 23 represent putative targets of the differentially expressed miRNAs. We provide a temporal miRNA expression and proteomic dataset of the regenerating rat liver, which indicates a primary function for miRNA during the peak of DNA replication. These data will assist further functional studies on the role of miRNAs during liver regeneration.
Collapse
Affiliation(s)
- Nathanael Raschzok
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Campus Virchow; and
| | - Wiebke Werner
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Campus Virchow; and
| | - Hannes Sallmon
- Department of Neonatology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Billecke
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Campus Virchow; and
| | - Christof Dame
- Department of Neonatology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Neuhaus
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Campus Virchow; and
| | - Igor M. Sauer
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Charité-Campus Virchow; and
| |
Collapse
|
13
|
Lakner AM, Bonkovsky HL, Schrum LW. microRNAs: Fad or future of liver disease. World J Gastroenterol 2011; 17:2536-42. [PMID: 21633658 PMCID: PMC3103811 DOI: 10.3748/wjg.v17.i20.2536] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/23/2011] [Accepted: 03/30/2011] [Indexed: 02/06/2023] Open
Abstract
microRNAs (miRs) are small non-coding RNAs that regulate both mRNA and protein expression of target genes, which results in alterations in mRNA stability or translation inhibition. miRs influence at least one third of all human transcripts and are known regulators of various important cellular growth and differentiation factors. miRs have recently emerged as key regulatory molecules in chronic liver disease. This review details recent contributions to the field of miRs that influence liver development and the broad spectrum of disease, from non-alcoholic fatty liver disease to fibrosis/cirrhosis, with particular emphasis on hepatic stellate cells and potential use of miRs as therapeutic tools.
Collapse
|
14
|
Templin T, Paul S, Amundson SA, Young EF, Barker CA, Wolden SL, Smilenov LB. Radiation-induced micro-RNA expression changes in peripheral blood cells of radiotherapy patients. Int J Radiat Oncol Biol Phys 2011; 80:549-57. [PMID: 21420249 DOI: 10.1016/j.ijrobp.2010.12.061] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 12/23/2022]
Abstract
PURPOSE MicroRNAs (miRNAs), a class of noncoding small RNAs that regulate gene expression, are involved in numerous physiologic processes in normal and malignant cells. Our in vivo study measured miRNA and gene expression changes in human blood cells in response to ionizing radiation, to develop miRNA signatures that can be used as biomarkers for radiation exposure. METHODS AND MATERIALS Blood from 8 radiotherapy patients in complete remission 1 or 2 was collected immediately before and 4 hours after total body irradiation with 1.25 Gy x-rays. Both miRNA and gene expression changes were measured by means of quantitative polymerase chain reaction and microarray hybridization, respectively. Hierarchic clustering, multidimensional scaling, class prediction, and gene ontology analysis were performed to investigate the potential of miRNAs to serve as radiation biomarkers and to elucidate their likely physiologic roles in the radiation response. RESULTS The expression levels of 45 miRNAs were statistically significantly upregulated 4 hours after irradiation with 1.25 Gy x-rays, 27 of them in every patient. Nonirradiated and irradiated samples form separate clusters in hierarchic clustering and multidimensional scaling. Out of 223 differentially expressed genes, 37 were both downregulated and predicted targets of the upregulated miRNAs. Paired and unpaired miRNA-based classifiers that we developed can predict the class membership of a sample with unknown irradiation status, with accuracies of 100% when all 45 upregulated miRNAs are included. Both miRNA control of and gene involvement in biologic processes such as hemopoiesis and the immune response are increased after irradiation, whereas metabolic processes are underrepresented among all differentially expressed genes and the genes controlled by miRNAs. CONCLUSIONS Exposure to ionizing radiation leads to the upregulation of the expression of a considerable proportion of the human miRNAome of peripheral blood cells. These miRNA expression signatures can be used as biomarkers of radiation exposure.
Collapse
Affiliation(s)
- Thomas Templin
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Delić D, Dkhil M, Al-Quraishy S, Wunderlich F. Hepatic miRNA expression reprogrammed by Plasmodium chabaudi malaria. Parasitol Res 2010; 108:1111-21. [DOI: 10.1007/s00436-010-2152-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 10/29/2010] [Indexed: 01/23/2023]
|
16
|
Abstract
Animal models of autoimmune hepatitis have been important in defining pathogenic mechanisms, and they promise to aid in the evaluation of new molecular and cellular treatments. They have evolved from models based on crude liver homogenates that produced a transient hepatitis to models that express antibodies to human antigens, manifest liver-infiltrating T cells, persist for at least 3 months and develop fibrosis. Animal models allow the study of autoimmune hepatitis from its inception, and they can detail the progression of pathological events. Key imbalances in counter-regulatory mechanisms can be isolated and manipulated. Models can be humanized by the insertion of human genetic promoters and the expression of human antigens. Genetic engineering and preconditioning have been milestones in the evolution of animal models. Vaccination or infection of murine models with viral vectors carrying human antigens are the most recent developments. Animal models promise to extend the knowledge of etiological agents and improve treatment algorithms.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|