1
|
Akt Interacts with Usutu Virus Polymerase, and Its Activity Modulates Viral Replication. Pathogens 2021; 10:pathogens10020244. [PMID: 33672588 PMCID: PMC7924047 DOI: 10.3390/pathogens10020244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
Usutu virus (USUV) is a flavivirus that mainly infects wild birds through the bite of Culex mosquitoes. Recent outbreaks have been associated with an increased number of cases in humans. Despite being a growing source of public health concerns, there is yet insufficient data on the virus or host cell targets for infection control. In this work we have investigated whether the cellular kinase Akt and USUV polymerase NS5 interact and co-localize in a cell. To this aim, we performed co-immunoprecipitation (Co-IP) assays, followed by confocal microscopy analyses. We further tested whether NS5 is a phosphorylation substrate of Akt in vitro. Finally, to examine its role in viral replication, we chemically silenced Akt with three inhibitors (MK-2206, honokiol and ipatasertib). We found that both proteins are localized (confocal) and pulled down (Co-IP) together when expressed in different cell lines, supporting the fact that they are interacting partners. This possibility was further sustained by data showing that NS5 is phosphorylated by Akt. Treatment of USUV-infected cells with Akt-specific inhibitors led to decreases in virus titers (>10-fold). Our results suggest an important role for Akt in virus replication and stimulate further investigations to examine the PI3K/Akt/mTOR pathway as an antiviral target.
Collapse
|
2
|
Zheng F, Li N, Xu Y, Zhou Y, Li YP. Adaptive mutations promote hepatitis C virus assembly by accelerating core translocation to the endoplasmic reticulum. J Biol Chem 2021; 296:100018. [PMID: 33144326 PMCID: PMC7949066 DOI: 10.1074/jbc.ra120.016010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
The envelopment of hepatitis C virus (HCV) is believed to occur primarily in the endoplasmic reticulum (ER)-associated membrane, and the translocation of viral Core protein from lipid droplets (LDs) to the ER is essential for the envelopment of viral particles. However, the factors involved are not completely understood. Herein, we identified eight adaptive mutations that enhanced virus spread and infectivity of genotype 1a clone TNcc in hepatoma Huh7 cells through long-term culture adaptation and reverse genetic study. Of eight mutations, I853V in NS2 and C2865F in NS5B were found to be minimal mutation sets that enabled an increase in virus production without apparently affecting RNA replication, thus suggesting its roles in the post-replication stage of the HCV life cycle. Using a protease K protection and confocal microscopy analysis, we demonstrated that C2865F and the combination of I853V/C2865F enhanced virus envelopment by facilitating Core translocation from the LDs to the ER. Buoyant density analysis revealed that I853V/C2865F contributed to the release of virion with a density of ∼1.10 g/ml. Moreover, we demonstrated that NS5B directly interacted with NS2 at the protease domain and that mutations I853V, C2865F, and I853V/C2865F enhanced the interaction. In addition, C2865F also enhanced the interaction between NS5B and Core. In conclusion, this study demonstrated that adaptive mutations in NS2 and NS5B promoted HCV envelopment by accelerating Core translocation from the LDs to the ER and reinforced the interaction between NS2 and NS5B. The findings facilitate our understanding of the assembly of HCV morphogenesis.
Collapse
Affiliation(s)
- Fuxiang Zheng
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Ni Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yi Xu
- Department of Pediatric, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yuanping Zhou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi-Ping Li
- Institute of Human Virology, Zhongshan School of Medicine, and Key Laboratory of Tropical Disease Control of Ministry of Education, Sun Yat-sen University, Guangzhou, China; Department of Infectious Disease, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.
| |
Collapse
|
3
|
Klinker S, Stindt S, Gremer L, Bode JG, Gertzen CGW, Gohlke H, Weiergräber OH, Hoffmann S, Willbold D. Phosphorylated tyrosine 93 of hepatitis C virus nonstructural protein 5A is essential for interaction with host c-Src and efficient viral replication. J Biol Chem 2019; 294:7388-7402. [PMID: 30862675 DOI: 10.1074/jbc.ra119.007656] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/11/2019] [Indexed: 12/23/2022] Open
Abstract
The hepatitis C virus (HCV) nonstructural protein 5A (NS5A) plays a key role in viral replication and virion assembly, and the regulation of the assembly process critically depends on phosphorylation of both serine and threonine residues in NS5A. We previously identified SRC proto-oncogene, nonreceptor tyrosine kinase (c-Src), as an essential host component of the HCV replication complex consisting of NS5A, the RNA-dependent RNA polymerase NS5B, and c-Src. Pulldown assays revealed an interaction between NS5A and the Src homology 2 (SH2) domain of c-Src; however, the precise binding mode remains undefined. In this study, using a variety of biochemical and biophysical techniques, along with molecular dynamics simulations, we demonstrate that the interaction between NS5A and the c-Src SH2 domain strictly depends on an intact phosphotyrosine-binding competent SH2 domain and on tyrosine phosphorylation within NS5A. Detailed analysis of c-Src SH2 domain binding to a panel of phosphorylation-deficient NS5A variants revealed that phosphorylation of Tyr-93 located within domain 1 of NS5A, but not of any other tyrosine residue, is crucial for complex formation. In line with these findings, effective replication of subgenomic HCV replicons as well as production of infectious virus particles in mammalian cell culture models were clearly dependent on the presence of tyrosine at position 93 of NS5A. These findings indicate that phosphorylated Tyr-93 in NS5A plays an important role during viral replication by facilitating NS5A's interaction with the SH2 domain of c-Src.
Collapse
Affiliation(s)
- Stefan Klinker
- From the Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf
| | - Sabine Stindt
- the Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf
| | - Lothar Gremer
- From the Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf.,the Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich
| | - Johannes G Bode
- the Department of Gastroenterology, Hepatology and Infectiology, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf
| | - Christoph G W Gertzen
- the Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich.,the John von Neumann Institute for Computing (NIC) and Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, 52425 Jülich, and.,the Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Holger Gohlke
- the Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich.,the John von Neumann Institute for Computing (NIC) and Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich, 52425 Jülich, and.,the Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Oliver H Weiergräber
- the Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich
| | - Silke Hoffmann
- the Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich
| | - Dieter Willbold
- From the Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, .,the Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich
| |
Collapse
|
4
|
Shin JS, Jung E, Kim M, Baric RS, Go YY. Saracatinib Inhibits Middle East Respiratory Syndrome-Coronavirus Replication In Vitro. Viruses 2018; 10:v10060283. [PMID: 29795047 PMCID: PMC6024778 DOI: 10.3390/v10060283] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 11/16/2022] Open
Abstract
The Middle East respiratory syndrome-coronavirus (MERS-CoV), first identified in Saudi Arabia, is an emerging zoonotic pathogen that causes severe acute respiratory illness in humans with a high fatality rate. Since its emergence, MERS-CoV continues to spread to countries outside of the Arabian Peninsula and gives rise to sporadic human infections following the entry of infected individuals to other countries, which can precipitate outbreaks similar to the one that occurred in South Korea in 2015. Current therapeutics against MERS-CoV infection have primarily been adapted from previous drugs used for the treatment of severe acute respiratory syndrome. In search of new potential drug candidates, we screened a library composed of 2334 clinically approved drugs and pharmacologically active compounds. The drug saracatinib, a potent inhibitor of Src-family of tyrosine kinases (SFK), was identified as an inhibitor of MERS-CoV replication in vitro. Our results suggest that saracatinib potently inhibits MERS-CoV at the early stages of the viral life cycle in Huh-7 cells, possibly through the suppression of SFK signaling pathways. Furthermore, saracatinib exhibited a synergistic effect with gemcitabine, an anticancer drug with antiviral activity against several RNA viruses. These data indicate that saracatinib alone or in combination with gemcitabine can provide a new therapeutic option for the treatment of MERS-CoV infection.
Collapse
Affiliation(s)
- Jin Soo Shin
- Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| | - Eunhye Jung
- Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
| | - Meehyein Kim
- Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34114, Korea.
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Yun Young Go
- Virus Research Group, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34114, Korea.
| |
Collapse
|
5
|
Hepatitis C virus infection inhibits a Src-kinase regulatory phosphatase and reduces T cell activation in vivo. PLoS Pathog 2017; 13:e1006232. [PMID: 28235043 PMCID: PMC5342304 DOI: 10.1371/journal.ppat.1006232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/08/2017] [Accepted: 02/12/2017] [Indexed: 12/31/2022] Open
Abstract
Among human RNA viruses, hepatitis C virus (HCV) is unusual in that it causes persistent infection in the majority of infected people. To establish persistence, HCV evades host innate and adaptive immune responses by multiple mechanisms. Recent studies identified virus genome-derived small RNAs (vsRNAs) in HCV-infected cells; however, their biological significance during human HCV infection is unknown. One such vsRNA arising from the hepatitis C virus (HCV) E2 coding region impairs T cell receptor (TCR) signaling by reducing expression of a Src-kinase regulatory phosphatase (PTPRE) in vitro. Since TCR signaling is a critical first step in T cell activation, differentiation, and effector function, its inhibition may contribute towards HCV persistence in vivo. The effect of HCV infection on PTPRE expression in vivo has not been examined. Here, we found that PTPRE levels were significantly reduced in liver tissue and peripheral blood mononuclear cells (PBMCs) obtained from HCV-infected humans compared to uninfected controls. Loss of PTPRE expression impaired antigen-specific TCR signaling, and curative HCV therapy restored PTPRE expression in PBMCs; restoring antigen-specific TCR signaling defects. The extent of PTPRE expression correlated with the amount of sequence complementarity between the HCV E2 vsRNA and the PTPRE 3' UTR target sites. Transfection of a hepatocyte cell line with full-length HCV RNA or with synthetic HCV vsRNA duplexes inhibited PTPRE expression, recapitulating the in vivo observation. Together, these data demonstrate that HCV infection reduces PTPRE expression in the liver and PBMCs of infected humans, and suggest that the HCV E2 vsRNA is a novel viral factor that may contribute towards viral persistence.
Collapse
|
6
|
Key Molecular Mechanisms of Chaiqinchengqi Decoction in Alleviating the Pulmonary Albumin Leakage Caused by Endotoxemia in Severe Acute Pancreatitis Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:3265368. [PMID: 27413385 PMCID: PMC4930819 DOI: 10.1155/2016/3265368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/02/2016] [Accepted: 05/16/2016] [Indexed: 02/05/2023]
Abstract
To reveal the key molecular mechanisms of Chaiqinchengqi decoction (CQCQD) in alleviating the pulmonary albumin leakage caused by endotoxemia in severe acute pancreatitis (SAP) rats. Rats models of SAP endotoxemia-induced acute lung injury were established, the studies in vivo provided the important evidences that the therapy of CQCQD significantly ameliorated the increases in plasma levels of lipopolysaccharide (LPS), sCd14, and Lbp, the elevation of serum amylase level, the enhancements of systemic and pulmonary albumin leakage, and the depravation of airways indicators, thus improving respiratory dysfunction and also pancreatic and pulmonary histopathological changes. According to the analyses of rats pulmonary tissue microarray and protein-protein interaction network, c-Fos, c-Src, and p85α were predicted as the target proteins for CQCQD in alleviating pulmonary albumin leakage. To confirm these predictions, human umbilical vein endothelial cells were employed in in vitro studies, which provide the evidences that (1) LPS-induced paracellular leakage and proinflammatory cytokines release were suppressed by pretreatment with inhibitors of c-Src (PP1) or PI3K (LY294002) or by transfection with siRNAs of c-Fos; (2) fortunately, CQCQD imitated the actions of these selective inhibitions agents to inhibit LPS-induced high expressions of p-Src, p-p85α, and c-Fos, therefore attenuating paracellular leakage and proinflammatory cytokines release.
Collapse
|
7
|
Hepatitis C virus NS5A protein cooperates with phosphatidylinositol 4-kinase IIIα to induce mitochondrial fragmentation. Sci Rep 2016; 6:23464. [PMID: 27010100 PMCID: PMC4806301 DOI: 10.1038/srep23464] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 03/07/2016] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) has long been observed to take advantage of the host mitochondria to support viral replication and assembly. The HCV core protein has been implicated to fragment host mitochondria. In this report, we have discovered that the non-structural protein 5A (NS5A) plays an instructive role in attaching ER with mitochondria, causing mitochondrial fragmentation. Dynamin-related protein 1(Drp1), a host protein essential to mitochondrial membrane fission, does not play a role in NS5A-induced mitochondrial fragmentation. Instead, phosphatidylinositol 4-kinase IIIα (PI4KA), which has been demonstrated to bind to NS5A and is required to support HCV life cycle, is required for NS5A to induce mitochondrial fragmentation. Both NS5A and core are required by HCV to fragment the mitochondria, as inhibiting either of their respective downstream proteins, PI4KA or Drp1, resulted in lengthening of mitochondria tubules in HCVcc-infected cells. By fragmenting the mitochondria, NS5A renders the cells more resistant to mitochondria mediated apoptosis. This finding indicates previously-ignored contribution of NS5A in HCV-induced mitochondria dysfunction.
Collapse
|
8
|
Yamauchi S, Takeuchi K, Chihara K, Sun X, Honjoh C, Yoshiki H, Hotta H, Sada K. Hepatitis C Virus Particle Assembly Involves Phosphorylation of NS5A by the c-Abl Tyrosine Kinase. J Biol Chem 2015. [PMID: 26203192 DOI: 10.1074/jbc.m115.666859] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is thought to regulate the replication of viral RNA and the assembly of virus particles in a serine/threonine phosphorylation-dependent manner. However, the host kinases that phosphorylate NS5A have not been fully identified. Here, we show that HCV particle assembly involves the phosphorylation of NS5A by the c-Abl tyrosine kinase. Pharmacological inhibition or knockdown of c-Abl reduces the production of infectious HCV (J6/JFH1) particles in Huh-7.5 cells without markedly affecting viral RNA translation and replication. NS5A is tyrosine-phosphorylated in HCV-infected cells, and this phosphorylation is also reduced by the knockdown of c-Abl. Mutational analysis reveals that NS5A tyrosine phosphorylation is dependent, at least in part, on Tyr(330) (Tyr(2306) in polyprotein numbering). Mutation of this residue to phenylalanine reduces the production of infectious HCV particles but does not affect the replication of the JFH1 subgenomic replicon. These findings suggest that c-Abl promotes HCV particle assembly by phosphorylating NS5A at Tyr(330).
Collapse
Affiliation(s)
- Shota Yamauchi
- From the Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, the Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193, Japan and
| | - Kenji Takeuchi
- From the Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, the Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193, Japan and
| | - Kazuyasu Chihara
- From the Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, the Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193, Japan and
| | - Xuedong Sun
- From the Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences
| | - Chisato Honjoh
- From the Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, the Third Department of Internal Medicine, Faculty of Medical Sciences, and
| | - Hatsumi Yoshiki
- From the Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences
| | - Hak Hotta
- the Division of Microbiology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Kiyonao Sada
- From the Division of Genome Science and Microbiology, Department of Pathological Sciences, Faculty of Medical Sciences, the Organization for Life Science Advancement Programs, University of Fukui, Fukui 910-1193, Japan and
| |
Collapse
|
9
|
Vincetti P, Caporuscio F, Kaptein S, Gioiello A, Mancino V, Suzuki Y, Yamamoto N, Crespan E, Lossani A, Maga G, Rastelli G, Castagnolo D, Neyts J, Leyssen P, Costantino G, Radi M. Discovery of Multitarget Antivirals Acting on Both the Dengue Virus NS5-NS3 Interaction and the Host Src/Fyn Kinases. J Med Chem 2015; 58:4964-75. [DOI: 10.1021/acs.jmedchem.5b00108] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Paolo Vincetti
- P4T
Group, Dipartimento di Farmacia, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124 Parma, Italy
| | - Fabiana Caporuscio
- Dipartimento
di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Suzanne Kaptein
- Laboratory
of Virology and Experimental Chemotherapy, Rega Institute for Medical
Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Antimo Gioiello
- Laboratory
of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Dipartimento
di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo 1, I-06123 Perugia, Italy
| | - Valentina Mancino
- Laboratory
of Medicinal and Advanced Synthetic Chemistry (Lab MASC), Dipartimento
di Scienze Farmaceutiche, Università degli Studi di Perugia, Via del Liceo 1, I-06123 Perugia, Italy
| | - Youichi Suzuki
- Department
of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Center for Translational Medicine, 14 Medical Drive, 15-02, Level 15, Singapore 117599, Singapore
| | - Naoki Yamamoto
- Department
of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Center for Translational Medicine, 14 Medical Drive, 15-02, Level 15, Singapore 117599, Singapore
| | - Emmanuele Crespan
- Istituto
di Genetica Molecolare, IGM-CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Andrea Lossani
- Istituto
di Genetica Molecolare, IGM-CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Giovanni Maga
- Istituto
di Genetica Molecolare, IGM-CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Giulio Rastelli
- Dipartimento
di Scienze della Vita, Università degli Studi di Modena e Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Daniele Castagnolo
- Department
of Applied Sciences, Northumbria University Newcastle, Ellison Place, NE1 8ST Newcastle upon Tyne, United Kingdom
| | - Johan Neyts
- Laboratory
of Virology and Experimental Chemotherapy, Rega Institute for Medical
Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Pieter Leyssen
- Laboratory
of Virology and Experimental Chemotherapy, Rega Institute for Medical
Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Gabriele Costantino
- P4T
Group, Dipartimento di Farmacia, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124 Parma, Italy
| | - Marco Radi
- P4T
Group, Dipartimento di Farmacia, Università degli Studi di Parma, Viale delle Scienze, 27/A, 43124 Parma, Italy
| |
Collapse
|
10
|
Amberkar SS, Kaderali L. An integrative approach for a network based meta-analysis of viral RNAi screens. Algorithms Mol Biol 2015; 10:6. [PMID: 25691914 PMCID: PMC4331137 DOI: 10.1186/s13015-015-0035-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/27/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Big data is becoming ubiquitous in biology, and poses significant challenges in data analysis and interpretation. RNAi screening has become a workhorse of functional genomics, and has been applied, for example, to identify host factors involved in infection for a panel of different viruses. However, the analysis of data resulting from such screens is difficult, with often low overlap between hit lists, even when comparing screens targeting the same virus. This makes it a major challenge to select interesting candidates for further detailed, mechanistic experimental characterization. RESULTS To address this problem we propose an integrative bioinformatics pipeline that allows for a network based meta-analysis of viral high-throughput RNAi screens. Initially, we collate a human protein interaction network from various public repositories, which is then subjected to unsupervised clustering to determine functional modules. Modules that are significantly enriched with host dependency factors (HDFs) and/or host restriction factors (HRFs) are then filtered based on network topology and semantic similarity measures. Modules passing all these criteria are finally interpreted for their biological significance using enrichment analysis, and interesting candidate genes can be selected from the modules. CONCLUSIONS We apply our approach to seven screens targeting three different viruses, and compare results with other published meta-analyses of viral RNAi screens. We recover key hit genes, and identify additional candidates from the screens. While we demonstrate the application of the approach using viral RNAi data, the method is generally applicable to identify underlying mechanisms from hit lists derived from high-throughput experimental data, and to select a small number of most promising genes for further mechanistic studies.
Collapse
|
11
|
Bacarizo J, Martínez-Rodríguez S, Cámara-Artigas A. Structure of the c-Src-SH3 domain in complex with a proline-rich motif of NS5A protein from the hepatitis C virus. J Struct Biol 2014; 189:67-72. [PMID: 25447263 DOI: 10.1016/j.jsb.2014.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 10/24/2022]
Abstract
The non-structural hepatitis C virus proteins NS5A and NS5B form a complex through interaction with the SH2 and SH3 domains of the non-receptor Src tyrosine kinase, which seems essential for viral replication. We have crystallized the complex between the SH3 domain of the c-Src tyrosine kinase and the C-terminal proline rich motif of the NS5A protein (A349PPIPPPRRKR359). Crystals obtained at neutral pH belong to the space group I41, with a single molecule of the SH3/NS5A complex at the asymmetric unit. The NS5A peptide is bound in a reverse orientation (class II) and the comparison of this structure with those of the high affinity synthetic peptides APP12 and VSL12 shows some important differences at the salt bridge that drives the peptide orientation. Further conformational changes in residues placed apart from the binding site also seem to play an important role in the binding orientation of this peptide. Our results show the interaction of the SH3 domain of the c-Src tyrosine kinase with a proline rich motif in the NS5A protein and point to their potential interaction in vivo.
Collapse
Affiliation(s)
- Julio Bacarizo
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence (ceiA3), Carretera de Sacramento s/n, Almería 04120, Spain
| | - Sergio Martínez-Rodríguez
- Department of Physical Chemistry, University of Granada, Avda. de Fuentenueva s/n, Granada 18071, Spain
| | - Ana Cámara-Artigas
- Department of Chemistry and Physics, University of Almería, Agrifood Campus of International Excellence (ceiA3), Carretera de Sacramento s/n, Almería 04120, Spain.
| |
Collapse
|
12
|
Cordek DG, Croom-Perez TJ, Hwang J, Hargittai MRS, Subba-Reddy CV, Han Q, Lodeiro MF, Ning G, McCrory TS, Arnold JJ, Koc H, Lindenbach BD, Showalter SA, Cameron CE. Expanding the proteome of an RNA virus by phosphorylation of an intrinsically disordered viral protein. J Biol Chem 2014; 289:24397-416. [PMID: 25031324 DOI: 10.1074/jbc.m114.589911] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human proteome contains myriad intrinsically disordered proteins. Within intrinsically disordered proteins, polyproline-II motifs are often located near sites of phosphorylation. We have used an unconventional experimental paradigm to discover that phosphorylation by protein kinase A (PKA) occurs in the intrinsically disordered domain of hepatitis C virus non-structural protein 5A (NS5A) on Thr-2332 near one of its polyproline-II motifs. Phosphorylation shifts the conformational ensemble of the NS5A intrinsically disordered domain to a state that permits detection of the polyproline motif by using (15)N-, (13)C-based multidimensional NMR spectroscopy. PKA-dependent proline resonances were lost in the presence of the Src homology 3 domain of c-Src, consistent with formation of a complex. Changing Thr-2332 to alanine in hepatitis C virus genotype 1b reduced the steady-state level of RNA by 10-fold; this change was lethal for genotype 2a. The lethal phenotype could be rescued by changing Thr-2332 to glutamic acid, a phosphomimetic substitution. Immunofluorescence and transmission electron microscopy showed that the inability to produce Thr(P)-2332-NS5A caused loss of integrity of the virus-induced membranous web/replication organelle. An even more extreme phenotype was observed in the presence of small molecule inhibitors of PKA. We conclude that the PKA-phosphorylated form of NS5A exhibits unique structure and function relative to the unphosphorylated protein. We suggest that post-translational modification of viral proteins containing intrinsic disorder may be a general mechanism to expand the viral proteome without a corresponding expansion of the genome.
Collapse
Affiliation(s)
| | | | - Jungwook Hwang
- the Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul, 133-791, Korea
| | | | - Chennareddy V Subba-Reddy
- the Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, and
| | - Qingxia Han
- From the Department of Biochemistry and Molecular Biology
| | | | - Gang Ning
- the Huck Institutes of the Life Sciences, and
| | | | - Jamie J Arnold
- From the Department of Biochemistry and Molecular Biology
| | - Hasan Koc
- the Department of Pharmaceutical Science and Research, Marshall University School of Pharmacy, Huntington, West Virginia 25755
| | - Brett D Lindenbach
- the Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, and
| | - Scott A Showalter
- the Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802
| | | |
Collapse
|
13
|
Zhai Y, Bag S, Mitter N, Turina M, Pappu HR. Mutational analysis of two highly conserved motifs in the silencing suppressor encoded by tomato spotted wilt virus (genus Tospovirus, family Bunyaviridae). Arch Virol 2014; 159:1499-504. [PMID: 24363189 DOI: 10.1007/s00705-013-1928-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 11/14/2013] [Indexed: 10/25/2022]
Abstract
Tospoviruses cause serious economic losses to a wide range of field and horticultural crops on a global scale. The NSs gene encoded by tospoviruses acts as a suppressor of host plant defense. We identified amino acid motifs that are conserved in all of the NSs proteins of tospoviruses for which the sequence is known. Using tomato spotted wilt virus (TSWV) as a model, the role of these motifs in suppressor activity of NSs was investigated. Using site-directed point mutations in two conserved motifs, glycine, lysine and valine/threonine (GKV/T) at positions 181-183 and tyrosine and leucine (YL) at positions 412-413, and an assay to measure the reversal of gene silencing in Nicotiana benthamiana line 16c, we show that substitutions (K182 to A, and L413 to A) in these motifs abolished suppressor activity of the NSs protein, indicating that these two motifs are essential for the RNAi suppressor function of tospoviruses.
Collapse
Affiliation(s)
- Ying Zhai
- Department of Plant Pathology, Washington State University, PO Box 646430, Pullman, WA, 99164, USA
| | | | | | | | | |
Collapse
|
14
|
Waheed Y, Bhatti A, Anjum S, Ashraf M. Sequence comparison and phylogenetic analysis of hepatitis C virus genotype 3 polymerase. Mol Med Rep 2014; 9:1266-70. [PMID: 24481933 DOI: 10.3892/mmr.2014.1926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 07/04/2013] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is a worldwide health problem with high morbidity and mortality. HCV polymerase is an attractive target for the development of antiviral strategies. The aim of the present study was to report the sequence variation in the HCV NS5B gene from genotype 3 patient samples. The gene was amplified, cloned and sequenced. A nucleotide and amino acid sequence comparison of conserved motifs of HCV NS5B from the current reported sequences and previously reported genotype 3 sequences was performed. The sequence comparison indicated that the motifs A, B, C and F and β loop sequences are conserved in the reported sequences, while sequence variation was observed in motifs D and E. Amino acids E18, Y191, C274, Y276 and H502, which are involved in the interaction between template and primer, are highly conserved in the reported sequences. R48, R158, D225, S367, R386 and R394 amino acids interact with initiating GTP, and are also highly conserved in the reported sequences. A phylogenetic tree revealed that the sequences are clustered with sequences from India. HCV polymerase lacks proofreading ability and has high error rates. The present study revealed that the residues that form the important motifs of HCV NS5B remain conserved. However, it was observed that numerous place changes in the nucleotide sequences did not affect the amino acid sequences of HCV NS5B. The conserved motifs are strong targets for the development of peptide vaccines against HCV.
Collapse
Affiliation(s)
- Yasir Waheed
- Atta‑ur‑Rahman School of Applied BioSciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Attya Bhatti
- Atta‑ur‑Rahman School of Applied BioSciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Sadia Anjum
- Atta‑ur‑Rahman School of Applied BioSciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Muhammad Ashraf
- Atta‑ur‑Rahman School of Applied BioSciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
| |
Collapse
|
15
|
Amako Y, Igloi Z, Mankouri J, Kazlauskas A, Saksela K, Dallas M, Peers C, Harris M. Hepatitis C virus NS5A inhibits mixed lineage kinase 3 to block apoptosis. J Biol Chem 2013; 288:24753-63. [PMID: 23857585 PMCID: PMC3750171 DOI: 10.1074/jbc.m113.491985] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/12/2013] [Indexed: 01/28/2023] Open
Abstract
Hepatitis C virus (HCV) infection results in the activation of numerous stress responses including oxidative stress, with the potential to induce an apoptotic state. Previously we have shown that HCV attenuates the stress-induced, p38MAPK-mediated up-regulation of the K(+) channel Kv2.1, to maintain the survival of infected cells in the face of cellular stress. We demonstrated that this effect was mediated by HCV non-structural 5A (NS5A) protein, which impaired p38MAPK activity through a polyproline motif-dependent interaction, resulting in reduction of phosphorylation activation of Kv2.1. In this study, we investigated the host cell proteins targeted by NS5A to mediate Kv2.1 inhibition. We screened a phage-display library expressing the entire complement of human SH3 domains for novel NS5A-host cell interactions. This analysis identified mixed lineage kinase 3 (MLK3) as a putative NS5A interacting partner. MLK3 is a serine/threonine protein kinase that is a member of the MAPK kinase kinase (MAP3K) family and activates p38MAPK. An NS5A-MLK3 interaction was confirmed by co-immunoprecipitation and Western blot analysis. We further demonstrate a novel role of MLK3 in the modulation of Kv2.1 activity, whereby MLK3 overexpression leads to the up-regulation of channel activity. Accordingly, coexpression of NS5A suppressed this stimulation. Additionally we demonstrate that overexpression of MLK3 induced apoptosis, which was also counteracted by NS5A. We conclude that NS5A targets MLK3 with multiple downstream consequences for both apoptosis and K(+) homeostasis.
Collapse
Affiliation(s)
- Yutaka Amako
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences and
| | - Zsofia Igloi
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences and
| | - Jamel Mankouri
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences and
| | - Arunas Kazlauskas
- the Department of Virology, Haartman Institute, University of Helsinki Central Hospital, University of Helsinki and HUSLAB, FI-00014 Helsinki, Finland
| | - Kalle Saksela
- the Department of Virology, Haartman Institute, University of Helsinki Central Hospital, University of Helsinki and HUSLAB, FI-00014 Helsinki, Finland
| | - Mark Dallas
- the Division of Cardiovascular and Diabetes Research, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Chris Peers
- the Division of Cardiovascular and Diabetes Research, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Mark Harris
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences and
| |
Collapse
|
16
|
Tripathi LP, Kambara H, Chen YA, Nishimura Y, Moriishi K, Okamoto T, Morita E, Abe T, Mori Y, Matsuura Y, Mizuguchi K. Understanding the Biological Context of NS5A–Host Interactions in HCV Infection: A Network-Based Approach. J Proteome Res 2013; 12:2537-51. [DOI: 10.1021/pr3011217] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lokesh P. Tripathi
- National Institute of Biomedical Innovation, 7-6-8 Saito Asagi, Ibaraki,
Osaka, 567-0085, Japan
| | - Hiroto Kambara
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yi-An Chen
- National Institute of Biomedical Innovation, 7-6-8 Saito Asagi, Ibaraki,
Osaka, 567-0085, Japan
| | - Yorihiro Nishimura
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Kohji Moriishi
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Toru Okamoto
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Eiji Morita
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Takayuki Abe
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yoshio Mori
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology,
Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Kenji Mizuguchi
- National Institute of Biomedical Innovation, 7-6-8 Saito Asagi, Ibaraki,
Osaka, 567-0085, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-Oka, Suita, Osaka, 565-0871,
Japan
| |
Collapse
|
17
|
Pagano MA, Tibaldi E, Palù G, Brunati AM. Viral proteins and Src family kinases: Mechanisms of pathogenicity from a “liaison dangereuse”. World J Virol 2013; 2:71-78. [PMID: 24175231 PMCID: PMC3785045 DOI: 10.5501/wjv.v2.i2.71] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/07/2013] [Accepted: 01/24/2013] [Indexed: 02/05/2023] Open
Abstract
To complete their life cycle and spread, viruses interfere with and gain control of diverse cellular processes, this most often occurring through interaction between viral proteins (VPs) and resident protein partners. Among the latter, Src family kinases (SFKs), a class of non-receptor tyrosine kinases that contributes to the conversion of extracellular signals into intracellular signaling cascades and is involved in virtually all cellular processes, have recently emerged as critical mediators between the cell’s infrastructure and the viral demands. In this scenario, structural or ex novo synthesized VPs are able to bind to the different domains of these enzymes through specific short linear motifs present along their sequences. Proline-rich motifs displaying the conserved minimal consensus PxxP and recognizing the SFK Src homology (SH)3 domain constitute a cardinal signature for the formation of multiprotein complexes and this interaction may promote phosphorylation of VPs by SFKs, thus creating phosphotyrosine motifs that become a docking site for the SH2 domains of SFKs or other SH2 domain-bearing signaling molecules. Importantly, the formation of these assemblies also results in a change in the activity and/or location of SFKs, and these events are critical in perturbing key signaling pathways so that viruses can utilize the cell’s machinery to their own benefit. In the light of these observations, although VPs as such, especially those with enzyme activity, are still regarded as valuable targets for therapeutic strategies, multiprotein complexes composed of viral and host cell proteins are increasingly becoming objects of investigation with a view to deeply characterize the structural aspects that favor their formation and to develop new compounds able to contrast viral diseases in an alternative manner.
Collapse
|
18
|
The small molecules AZD0530 and dasatinib inhibit dengue virus RNA replication via Fyn kinase. J Virol 2013; 87:7367-81. [PMID: 23616652 DOI: 10.1128/jvi.00632-13] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this study, we characterized the antiviral mechanism of action of AZD0530 and dasatinib, two pharmacological inhibitors of host kinases, that also inhibit dengue virus (DV) infection. Using Northern blot and reporter replicon assays, we demonstrated that both small molecules inhibit the DV2 infectious cycle at the step of steady-state RNA replication. In order to identify the cellular target of AZD0530 and dasatinib mediating this anti-DV2 activity, we examined the effects of RNA interference (RNAi)-mediated depletion of the major kinases known to be inhibited by these small molecules. We determined that Fyn kinase, a target of both AZD0530 and dasatinib, is involved in DV2 RNA replication and is probably a major mediator of the anti-DV activity of these compounds. Furthermore, serial passaging of DV2 in the presence of dasatinib led to the identification of a mutation in the transmembrane domain 3 of the NS4B protein that overcomes the inhibition of RNA replication by AZD0530, dasatinib, and Fyn RNAi. Although we observed that dasatinib also inhibits DV2 particle assembly and/or secretion, this activity does not appear to be mediated by Src-family kinases. Together, our results suggest that AZD0530 and dasatinib inhibit DV at the step of viral RNA replication and demonstrate a critical role for Fyn kinase in this viral process. The antiviral activity of these compounds in vitro makes them useful pharmacological tools to validate Fyn or other host kinases as anti-DV targets in vivo.
Collapse
|
19
|
Arzumanyan A, Reis HMGPV, Feitelson MA. Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer 2013; 13:123-35. [PMID: 23344543 DOI: 10.1038/nrc3449] [Citation(s) in RCA: 611] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly lethal cancer, with increasing worldwide incidence, that is mainly associated with chronic hepatitis B virus (HBV) and/or hepatitis C virus (HCV) infections. There are few effective treatments partly because the cell- and molecular-based mechanisms that contribute to the pathogenesis of this tumour type are poorly understood. This Review outlines pathogenic mechanisms that seem to be common to both viruses and which suggest innovative approaches to the prevention and treatment of HCC.
Collapse
Affiliation(s)
- Alla Arzumanyan
- Department of Biology and Sbarro Health Research Organization, College of Science and Technology, Temple University, 1900 N. 12th Street, Philadelphia, Pennsylvania 19122, USA
| | | | | |
Collapse
|
20
|
Abstract
Low oxygen tension exerts a significant effect on the replication of several DNA and RNA viruses in cultured cells. In vitro propagation of hepatitis C virus (HCV) has thus far been studied under atmospheric oxygen levels despite the fact that the liver tissue microenvironment is hypoxic. In this study, we investigated the efficiency of HCV production in actively dividing or differentiating human hepatoma cells cultured under low or atmospheric oxygen tensions. By using both HCV replicons and infection-based assays, low oxygen was found to enhance HCV RNA replication whereas virus entry and RNA translation were not affected. Hypoxia signaling pathway-focused DNA microarray and real-time quantitative reverse transcription-PCR (qRT-PCR) analyses revealed an upregulation of genes related to hypoxic stress, glycolytic metabolism, cell growth, and proliferation when cells were kept under low (3% [vol/vol]) oxygen tension, likely reflecting cell adaptation to anaerobic conditions. Interestingly, hypoxia-mediated enhancement of HCV replication correlated directly with the increase in anaerobic glycolysis and creatine kinase B (CKB) activity that leads to elevated ATP production. Surprisingly, activation of hypoxia-inducible factor alpha (HIF-α) was not involved in the elevation of HCV replication. Instead, a number of oncogenes known to be associated with glycolysis were upregulated and evidence that these oncogenes contribute to hypoxia-mediated enhancement of HCV replication was obtained. Finally, in liver biopsy specimens of HCV-infected patients, the levels of hypoxia and anaerobic metabolism markers correlated with HCV RNA levels. These results provide new insights into the impact of oxygen tension on the intricate HCV-host cell interaction.
Collapse
|
21
|
Nakashima K, Takeuchi K, Chihara K, Horiguchi T, Sun X, Deng L, Shoji I, Hotta H, Sada K. HCV NS5A protein containing potential ligands for both Src homology 2 and 3 domains enhances autophosphorylation of Src family kinase Fyn in B cells. PLoS One 2012; 7:e46634. [PMID: 23077515 PMCID: PMC3473057 DOI: 10.1371/journal.pone.0046634] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 09/02/2012] [Indexed: 01/24/2023] Open
Abstract
Hepatitis C virus (HCV) infects B lymphocytes and induces mixed cryoglobulinemia and B cell non-Hodgkin's lymphoma. The molecular mechanism for the pathogenesis of HCV infection-mediated B cell disorders remains obscure. To identify the possible role for HCV nonstructural 5A (NS5A) protein in B cells, we generated the stable B cell lines expressing Myc-His tagged NS5A. Immunoprecipitation study in the presence or absence of pervanadate (PV) implied that NS5A was tyrosine phosphorylated by pervanadate (PV) treatment of the cells. Therefore we examined pull-down assay by using glutathione S-transferase (GST)-fusion proteins of various Src homology 2 (SH2) domains, which associates with phosphotyrosine within a specific amino acid sequence. The results showed that NS5A specifically bound to SH2 domain of Fyn from PV-treated B cells in addition to Src homology 3 (SH3) domain. Substitution of Arg176 to Lys in the SH2 domain of Fyn abrogated this interaction. Deletion mutational analysis demonstrated that N-terminal region of NS5A was not required for the interaction with the SH2 domain of Fyn. Tyr334 was identified as a tyrosine phosphorylation site in NS5A. Far-western analysis revealed that SH2 domain of Fyn directly bound to NS5A. Fyn and NS5A were colocalized in the lipid raft. These results suggest that NS5A directly binds to the SH2 domain of Fyn in a tyrosine phosphorylation-dependent manner. Lastly, we showed that the expression of NS5A in B cells increased phosphorylation of activation loop tyrosine in the kinase domain of Fyn. NS5A containing ligand for both SH2 and SH3 domains enhances an aberrant autophosphorylation and kinase activity of Fyn in B cells.
Collapse
Affiliation(s)
- Kenji Nakashima
- Division of Genome Science and Microbiology, Department of Pathological Sciences, School of Medicine, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Regulation of neuronal proapoptotic potassium currents by the hepatitis C virus nonstructural protein 5A. J Neurosci 2012; 32:8865-70. [PMID: 22745487 DOI: 10.1523/jneurosci.0937-12.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Apoptosis-enabling neuronal potassium efflux is mediated by an enhancement of K+ currents. In cortical neurons, increased currents are triggered by dual phosphorylation of Kv2.1 by Src and p38 at channel residues Y124 and S800. It was recently shown that a K+ current surge is also present in hepatocytes undergoing apoptosis, and that the hepatitis C virus (HCV) nonstructural protein 5A (NS5A) could inhibit Kv2.1-mediated currents and block cell death. Here, we show that NS5A1b (from HCV genotype 1b) expression in rat neurons depresses delayed rectifier potassium currents, limits the magnitude of the K+ current surge following exposure to activated microglia, and is neuroprotective. In a non-neuronal recombinant expression system, cells expressing Kv2.1 mutated at residue Y124, but not S800 mutants, are insensitive to NS5A1b-mediated current inhibition. Accordingly, NS5A1b coexpression prevents phosphorylation of wild-type Kv2.1 by Src at Y124, but is unable to inhibit p38 phosphorylation of the channel at S800. The actions of the viral protein are genotype-selective, as NS5A1a does not depress neuronal potassium currents nor inhibit Src phosphorylation of Kv2.1. Our results indicate that NS5A1b limits K+ currents following injury, leading to increased neuronal viability. NS5A1b may thus serve as a model for a new generation of neuroprotective agents.
Collapse
|
23
|
Martin-Garcia JM, Luque I, Ruiz-Sanz J, Camara-Artigas A. The promiscuous binding of the Fyn SH3 domain to a peptide from the NS5A protein. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1030-40. [PMID: 22868769 DOI: 10.1107/s0907444912019798] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/02/2012] [Indexed: 12/27/2022]
Abstract
The hepatitis C virus nonstructural 5A (NS5A) protein is a large zinc-binding phosphoprotein that plays an important role in viral RNA replication and is involved in altering signal transduction pathways in the host cell. This protein interacts with Fyn tyrosine kinase in vivo and regulates its kinase activity. The 1.5 Å resolution crystal structure of a complex between the SH3 domain of the Fyn tyrosine kinase and the C-terminal proline-rich motif of the NS5A-derived peptide APPIPPPRRKR has been solved. Crystals were obtained in the presence of ZnCl(2) and belonged to the tetragonal space group P4(1)2(1)2. The asymmetric unit is composed of four SH3 domains and two NS5A peptide molecules; only three of the domain molecules contain a bound peptide, while the fourth molecule seems to correspond to a free form of the domain. Additionally, two of the SH3 domains are bound to the same peptide chain and form a ternary complex. The proline-rich motif present in the NS5A protein seems to be important for RNA replication and virus assembly, and the promiscuous interaction of the Fyn SH3 domain with the NS5A C-terminal proline-rich peptide found in this crystallographic structure may be important in the virus infection cycle.
Collapse
Affiliation(s)
- Jose Manuel Martin-Garcia
- Department of Physical Chemistry, Biochemistry and Inorganic Chemistry, University of Almería, Agrifood Campus of International Excellence (ceiA3), Carretera de Sacramento, 04120 Almería, Spain
| | | | | | | |
Collapse
|
24
|
Treating hepatitis C infection by targeting the host. Transl Res 2012; 159:421-9. [PMID: 22633094 PMCID: PMC3361678 DOI: 10.1016/j.trsl.2011.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/15/2011] [Accepted: 12/20/2011] [Indexed: 12/11/2022]
Abstract
More than 130 million people worldwide are chronically infected with the hepatitis C virus (HCV), which can lead to cirrhosis, liver failure, and hepatocellular carcinoma. Although recently approved HCV NS3-4A protease inhibitors significantly improve treatment response rates, current HCV treatment is still frequently limited by side effects and by the low genetic barrier to viral resistance against direct-acting antiviral agents. A complementary strategy is to target the host cellular factors that support the HCV life cycle. Several studies, including RNA interference screens, demonstrated that HCV depends on dozens, if not hundreds, of cellular proteins to complete its life cycle. A better understanding of the interactions between HCV proteins and host factors may help to identify host targets for antiviral therapy. In this review, we highlight some of the host factors that are particularly attractive targets for the treatment of HCV.
Collapse
|
25
|
Feuerstein S, Solyom Z, Aladag A, Favier A, Schwarten M, Hoffmann S, Willbold D, Brutscher B. Transient structure and SH3 interaction sites in an intrinsically disordered fragment of the hepatitis C virus protein NS5A. J Mol Biol 2012; 420:310-23. [PMID: 22543239 DOI: 10.1016/j.jmb.2012.04.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/21/2012] [Indexed: 12/01/2022]
Abstract
Understanding the molecular mechanisms involved in virus replication and particle assembly is of primary fundamental and biomedical importance. Intrinsic conformational disorder plays a prominent role in viral proteins and their interaction with other viral and host cell proteins via transiently populated structural elements. Here, we report on the results of an investigation of an intrinsically disordered 188-residue fragment of the hepatitis C virus non-structural protein 5A (NS5A), which contains a classical poly-proline Src homology 3 (SH3) binding motif, using sensitivity- and resolution-optimized multidimensional NMR methods, complemented by small-angle X-ray scattering data. Our study provides detailed atomic-resolution information on transient local and long-range structure, as well as fast time scale dynamics in this NS5A fragment. In addition, we could characterize two distinct interaction modes with the SH3 domain of Bin1 (bridging integrator protein 1), a pro-apoptotic tumor suppressor. Despite being largely disordered, the protein contains three regions that transiently adopt α-helical structures, partly stabilized by long-range tertiary interactions. Two of these transient α-helices form a noncanonical SH3-binding motif, which allows low-affinity SH3 binding. Our results contribute to a better understanding of the role of the NS5A protein during hepatitis C virus infection. The present work also highlights the power of NMR spectroscopy to characterize multiple binding events including short-lived transient interactions between globular and highly disordered proteins.
Collapse
Affiliation(s)
- Sophie Feuerstein
- Institut de Biologie Structurale, Université Grenoble 1, 41 rue Jules Horowitz, 38027 Grenoble Cedex 1, France
| | | | | | | | | | | | | | | |
Collapse
|