1
|
Porto E, De Backer J, Thuy LTT, Kawada N, Hankeln T. Transcriptomics of a cytoglobin knockout mouse: Insights from hepatic stellate cells and brain. J Inorg Biochem 2024; 250:112405. [PMID: 37977965 DOI: 10.1016/j.jinorgbio.2023.112405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
The vertebrate respiratory protein cytoglobin (Cygb) is thought to exert multiple cellular functions. Here we studied the phenotypic effects of a Cygb knockout (KO) in mouse on the transcriptome level. RNA sequencing (RNA-Seq) was performed for the first time on sites of major endogenous Cygb expression, i.e. quiescent and activated hepatic stellate cells (HSCs) and two brain regions, hippocampus and hypothalamus. The data recapitulated the up-regulation of Cygb during HSC activation and its expression in the brain. Differential gene expression analyses suggested a role of Cygb in the response to inflammation in HSCs and its involvement in retinoid metabolism, retinoid X receptor (RXR) activation-induced xenobiotics metabolism, and RXR activation-induced lipid metabolism and signaling in activated cells. Unexpectedly, only minor effects of the Cygb KO were detected in the transcriptional profiles in hippocampus and hypothalamus, precluding any enrichment analyses. Furthermore, the transcriptome data pointed at a previously undescribed potential of the Cygb- knockout allele to produce cis-acting effects, necessitating future verification studies.
Collapse
Affiliation(s)
- Elena Porto
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, Mainz D-55128, Germany
| | - Joey De Backer
- Research Group PPES, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp 1610, Belgium
| | - Le Thi Thanh Thuy
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, Mainz D-55128, Germany.
| |
Collapse
|
2
|
Krylov D, Rodimova S, Karabut M, Kuznetsova D. Experimental Models for Studying Structural and Functional State of the Pathological Liver (Review). Sovrem Tekhnologii Med 2023; 15:65-82. [PMID: 38434194 PMCID: PMC10902899 DOI: 10.17691/stm2023.15.4.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Indexed: 03/05/2024] Open
Abstract
Liver pathologies remain one of the leading causes of mortality worldwide. Despite a high prevalence of liver diseases, the possibilities of diagnosing, prognosing, and treating non-alcoholic and alcoholic liver diseases still have a number of limitations and require the development of new methods and approaches. In laboratory studies, various models are used to reconstitute the pathological conditions of the liver, including cell cultures, spheroids, organoids, microfluidic systems, tissue slices. We reviewed the most commonly used in vivo, in vitro, and ex vivo models for studying non-alcoholic fatty liver disease and alcoholic liver disease, toxic liver injury, and fibrosis, described their advantages, limitations, and prospects for use. Great emphasis was placed on the mechanisms of development of pathological conditions in each model, as well as the assessment of the possibility of reconstructing various key aspects of pathogenesis for all these pathologies. There is currently no consensus on the choice of the most adequate model for studying liver pathology. The choice of a certain effective research model is determined by the specific purpose and objectives of the experiment.
Collapse
Affiliation(s)
- D.P. Krylov
- Laboratory Assistant, Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Student, Institute of Biology and Biomedicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| | - S.A. Rodimova
- Junior Researcher, Laboratory of Regenerative Medicine, Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - M.M. Karabut
- Researcher, Laboratory of Genomics of Adaptive Antitumor Immunity, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - D.S. Kuznetsova
- Head of Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Head of the Research Laboratory for Molecular Genetic Researches, Institute of Clinical Medicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
3
|
Molenaar MR, Haaker MW, Vaandrager AB, Houweling M, Helms JB. Lipidomic profiling of rat hepatic stellate cells during activation reveals a two-stage process accompanied by increased levels of lysosomal lipids. J Biol Chem 2023; 299:103042. [PMID: 36803964 PMCID: PMC10033282 DOI: 10.1016/j.jbc.2023.103042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
Hepatic stellate cells (HSCs) are liver-resident cells best known for their role in vitamin A storage under physiological conditions. Upon liver injury, HSCs activate into myofibroblast-like cells, a key process in the onset of liver fibrosis. Lipids play an important role during HSC activation. Here, we provide a comprehensive characterization of the lipidomes of primary rat HSCs during 17 days of activation in vitro. For lipidomic data interpretation, we expanded our previously described Lipid Ontology (LION) and associated web application (LION/Web) with the LION-PCA heatmap module, which generates heatmaps of the most typical LION-signatures in lipidomic datasets. Furthermore, we used LION to perform pathway analysis to determine the significant metabolic conversions in lipid pathways. Together, we identify two distinct stages of HSC activation. In the first stage, we observe a decrease of saturated phosphatidylcholine, sphingomyelin, and phosphatidic acid and an increase in phosphatidylserine and polyunsaturated bis(monoacylglycero)phosphate (BMP), a lipid class typically localized at endosomes and lysosomes. In the second activation stage, BMPs, hexosylceramides, and ether-linked phosphatidylcholines are elevated, resembling a lysosomal lipid storage disease profile. The presence of isomeric structures of BMP in HSCs was confirmed ex vivo in MS-imaging datasets of steatosed liver sections. Finally, treatment with pharmaceuticals targeting the lysosomal integrity led to cell death in primary HSCs but not in HeLa cells. In summary, our combined data suggest that lysosomes play a critical role during a two-stage activation process of HSCs.
Collapse
Affiliation(s)
- Martijn R Molenaar
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Maya W Haaker
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - A Bas Vaandrager
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Martin Houweling
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - J Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Zhang L, Fang X, Wang S, Ma S, Zhang J, Dong X, Dai J, Liu C, Gao Y. Integrated Analysis of mRNA and lncRNA Expression Profiles Reveals Regulatory Networks Associated with Decompensated Cirrhosis. J Immunol Res 2022; 2022:1805216. [PMID: 36438202 PMCID: PMC9691389 DOI: 10.1155/2022/1805216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 01/28/2024] Open
Abstract
The stage of decompensation is termed end-stage liver cirrhosis. Patients with decompensated cirrhosis (DCC) often have a variety of comorbidities that contribute to exacerbation of the disease and its high mortality rate. By comparing differential gene expression, transcriptomic analysis is useful for exploring relevant functional changes during disease progression. The purpose of this study was to identify differentially expressed long noncoding RNAs (lncRNAs) and mRNAs in patients with decompensated cirrhosis and to further explore the functions as well as interactions between lncRNAs and mRNAs. Four patients with decompensated cirrhosis and four controls with liver cirrhosis were recruited in this study. RNA was isolated from peripheral blood mononuclear cells, and RNA-seq was used for transcriptome analysis. The functions of differentially expressed mRNAs were revealed by Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and a regulatory network was also constructed. A total of 1046 differentially expressed mRNAs and 1175 lncRNAs were identified between the decompensated cirrhosis patients and cirrhosis controls. Functional enrichment analyses indicated enrichment of genes involved in pathways related to inflammation and cellular metabolic activities. In addition, the findings suggested that the phagosome/endosome/autophagy-lysosome pathway might play an important role in cirrhotic decompensation. In summary, this study identified differentially expressed mRNAs (DE-mRNAs) and DE-lncRNAs and predicted the biological processes and signaling pathways involved in cirrhotic decompensation, which might provide new ideas for further revealing the molecular mechanism of DCC pathogenesis.
Collapse
Affiliation(s)
- Li Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu 233030, China
| | - Xiaoyu Fang
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu 233030, China
| | - Suhua Wang
- Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu 233030, China
| | - Shasha Ma
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu 233030, China
| | - Jinyan Zhang
- School of Life Science, Bengbu Medical College, Bengbu 233030, China
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu 233030, China
| | - Xiang Dong
- School of Life Science, Bengbu Medical College, Bengbu 233030, China
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical College, Bengbu 233030, China
| | - Jing Dai
- School of Life Science, Bengbu Medical College, Bengbu 233030, China
| | - Chuanmiao Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu 233030, China
| | - Yu Gao
- School of Life Science, Bengbu Medical College, Bengbu 233030, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
5
|
Wang T, Zhu J, Gao L, Wei M, Zhang D, Chen L, Wu H, Ma J, Li L, Zhang N, Wang Y, Xing Q, He L, Hong F, Qin S. Identification of circular RNA biomarkers for Pien Tze Huang treatment of CCl4‑induced liver fibrosis using RNA‑sequencing. Mol Med Rep 2022; 26:309. [PMID: 36004475 PMCID: PMC9437966 DOI: 10.3892/mmr.2022.12825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022] Open
Abstract
Pien Tze Huang (PZH), a common hepatoprotective Traditional Chinese Medicine that has been found to be an effective treatment for carbon tetrachloride-induced hepatic damage, including liver fibrosis. Circular RNAs (circRNAs) serve a crucial role in regulating gene expression levels via circRNA/micro (mi)RNA/mRNA networks in several human diseases and biological processes. However, whether circRNAs are involved in the underlying mechanism of the therapeutic effects of PZH on liver fibrosis remains unclear. Therefore, the aim of the present study was to investigate these effects using circRNA expression profiles from PZH-treated fibrotic livers in model mice. A case-control study on >59,476 circRNAs from CCl4-induced (control group, n=6) and PZH-treated (case group, n=6) mice was performed using circRNA sequencing in liver tissues. PZH treatment resulted in the differential expression of 91 circRNAs, including 58 upregulated and 33 downregulated circRNAs. Furthermore, the construction of competing endogenous networks also indicated that differentially expressed circRNAs acted as miRNA sponges. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis of miRNA targets demonstrated that PZH-affected circRNAs were mainly involved in biological processes such as ‘positive regulation of fibroblast proliferation’, ‘cellular response to interleukin-1’ and ‘regulation of DNA-templated transcription in response to stress’ and in a number of important pathways, such as ‘TNF signaling pathway’, ‘PI3K-Akt signaling pathway’, ‘IL-17 signaling pathway’ and ‘MAPK signaling pathway’. To further validate the bioinformatics data, reverse transcription–quantitative PCR was performed on seven miRNA targets in a human hepatic stellate LX-2 cell model. The results suggested that seven of the miRNAs exhibited regulatory patterns that were consistent with those of the transcriptome sequencing results. Kaplan-Meier survival analysis demonstrated that the expression levels of dihydrodiol dehydrogenase and solute carrier family 7, member 11 gene were significantly associated with patient survival, 269 patients with liver hepatocellular carcinoma from The Cancer Genome Atlas database. To the best of our knowledge, this was the first study to provide evidence that PZH affects circRNA expression levels, which may serve important roles in PZH-treated fibrotic liver through the regulation of functional gene expression. In conclusion, the present study provided new insights into the mechanism underlying the pathogenesis of liver fibrosis and identified potential novel, efficient, therapeutic targets against liver injury.
Collapse
Affiliation(s)
- Ting Wang
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Jinhang Zhu
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Longhui Gao
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Muyun Wei
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Di Zhang
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Luan Chen
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Hao Wu
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Jingsong Ma
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Lixing Li
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Na Zhang
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Yanjing Wang
- State Key Laboratory of Microbial Metabolism, Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, School of Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Qinghe Xing
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Shanghai 201102, P.R. China
| | - Lin He
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Fei Hong
- Fujian Provincial Key Laboratory of Pien Tze Huang Natural Medicine Research and Development, Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou, Fujian 363000, P.R. China
| | - Shengying Qin
- Bio‑X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|
6
|
Šrajer Gajdošik M, Kovač Peić A, Begić M, Grbčić P, Brilliant KE, Hixson DC, Josić D. Possible Role of Extracellular Vesicles in Hepatotoxicity of Acetaminophen. Int J Mol Sci 2022; 23:8870. [PMID: 36012131 PMCID: PMC9408656 DOI: 10.3390/ijms23168870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
We examined proteomic profiles of rat liver extracellular vesicles (EVs) shed following treatment with a sub-toxic dose (500 mg/kg) of the pain reliever drug, acetaminophen (APAP). EVs representing the entire complement of hepatic cells were isolated after perfusion of the intact liver and analyzed with LC-MS/MS. The investigation was focused on revealing the function and cellular origin of identified EVs proteins shed by different parenchymal and non-parenchymal liver cells and their possible role in an early response of this organ to a toxic environment. Comparison of EV proteomic profiles from control and APAP-treated animals revealed significant differences. Alpha-1-macroglobulin and members of the cytochrome P450 superfamily were highly abundant proteins in EVs shed by the normal liver. In contrast, proteins like aminopeptidase N, metalloreductase STEAP4, different surface antigens like CD14 and CD45, and most members of the annexin family were detected only in EVs that were shed by livers of APAP-treated animals. In EVs from treated livers, there was almost a complete disappearance of members of the cytochrome P450 superfamily and a major decrease in other enzymes involved in the detoxification of xenobiotics. Additionally, there were proteins that predominated in non-parenchymal liver cells and in the extracellular matrix, like fibronectin, receptor-type tyrosine-protein phosphatase C, and endothelial type gp91. These differences indicate that even treatment with a sub-toxic concentration of APAP initiates dramatic perturbation in the function of this vital organ.
Collapse
Affiliation(s)
| | | | - Marija Begić
- Faculty of Medicine, University Juraj Dobrila of Pula, 52100 Pula, Croatia
| | - Petra Grbčić
- Faculty of Medicine, University Juraj Dobrila of Pula, 52100 Pula, Croatia
| | - Kate E. Brilliant
- Proteomics Core, COBRE CCRD, Rhode Island Hospital, Providence, RI 02903, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Douglas C. Hixson
- Proteomics Core, COBRE CCRD, Rhode Island Hospital, Providence, RI 02903, USA
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Djuro Josić
- Faculty of Medicine, University Juraj Dobrila of Pula, 52100 Pula, Croatia
- Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| |
Collapse
|
7
|
Schinagl M, Tomin T, Gindlhuber J, Honeder S, Pfleger R, Schittmayer M, Trauner M, Birner-Gruenberger R. Proteomic Changes of Activated Hepatic Stellate Cells. Int J Mol Sci 2021; 22:ijms222312782. [PMID: 34884585 PMCID: PMC8657869 DOI: 10.3390/ijms222312782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatic stellate cells (HSC) are the major cellular drivers of liver fibrosis. Upon liver inflammation caused by a broad range of insults including non-alcoholic fatty liver, HSC transform from a quiescent into a proliferating, fibrotic phenotype. Although much is known about the pathophysiology of this process, exact cellular processes which occur in HSC and enable this transformation remain yet to be elucidated. In order to investigate this HSC transformation, we employed a simple, yet reliable model of HSC activation via an increase in growth medium serum concentration (serum activation). For that purpose, immortalized human LX-2 HSC were exposed to either 1% or 10% fetal bovine serum (FBS). Resulting quiescent (1% FBS) and activated (10% FBS) LX-2 cells were then subjected to in-depth mass spectrometry-based proteomics analysis as well as comprehensive phenotyping. Protein network analysis of activated LX-2 cells revealed an increase in the production of ribosomal proteins and proteins related to cell cycle control and migration, resulting in higher proliferation and faster migration phenotypes. Interestingly, we also observed a decrease in the expression of cholesterol and fatty acid biosynthesis proteins in accordance with a concomitant loss of cytosolic lipid droplets during activation. Overall, this work provides an update on HSC activation characteristics using contemporary proteomic and bioinformatic analyses and presents an accessible model for HSC activation. Data are available via ProteomeXchange with identifier PXD029121.
Collapse
Affiliation(s)
- Maximilian Schinagl
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; (M.S.); (T.T.); (R.P.); (M.S.)
- Department of Pathology, Medical University of Graz, 8010 Graz, Austria; (J.G.); (S.H.)
| | - Tamara Tomin
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; (M.S.); (T.T.); (R.P.); (M.S.)
| | - Juergen Gindlhuber
- Department of Pathology, Medical University of Graz, 8010 Graz, Austria; (J.G.); (S.H.)
| | - Sophie Honeder
- Department of Pathology, Medical University of Graz, 8010 Graz, Austria; (J.G.); (S.H.)
| | - Raphael Pfleger
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; (M.S.); (T.T.); (R.P.); (M.S.)
| | - Matthias Schittmayer
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; (M.S.); (T.T.); (R.P.); (M.S.)
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria;
| | - Ruth Birner-Gruenberger
- Institute of Chemical Technologies and Analytics, Technische Universität Wien, 1060 Vienna, Austria; (M.S.); (T.T.); (R.P.); (M.S.)
- Department of Pathology, Medical University of Graz, 8010 Graz, Austria; (J.G.); (S.H.)
- Correspondence:
| |
Collapse
|
8
|
Li H, Rong Z, Wang H, Zhang N, Pu C, Zhao Y, Zheng X, Lei C, Liu Y, Luo X, Chen J, Wang F, Wang A, Wang J. Proteomic analysis revealed common, unique and systemic signatures in gender-dependent hepatocarcinogenesis. Biol Sex Differ 2020; 11:46. [PMID: 32792008 PMCID: PMC7427087 DOI: 10.1186/s13293-020-00316-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 07/02/2020] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer and is highly malignant. Male prevalence and frequent activation of the Ras signaling pathway are distinct characteristics of HCC. However, the underlying mechanisms remain to be elucidated. By exploring Hras12V transgenic mice showing male-biased hepatocarcinogenesis, we performed a high-throughput comparative proteomic analysis based on tandem-mass-tag (TMT) labeling combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) on the tissue samples obtained from HCC (T) and their paired adjacent precancerous (P) of Hras12V transgenic male and female mice (Ras-Tg) and normal liver (W) of wild-type male and female mice (Non-Tg). The further validation and investigation were performed using quantitative real-time PCR and western blot. Totally, 5193 proteins were quantified, originating from 5733 identified proteins. Finally, 1344 differentially expressed proteins (DEPs) (quantified in all examined samples; |ratios| ≥ 1.5, p < 0.05) were selected for further analysis. Comparison within W, P, and T of males and females indicated that the number of DEPs in males was much higher than that in females. Bioinformatics analyses showed the common and unique cluster-enriched items between sexes, indicating the common and gender-disparate pathways towards HCC. Expression change pattern analysis revealed HCC positive/negative-correlated and ras oncogene positive/negative-correlated DEPs and pathways. In addition, it showed that the ras oncogene gradually and significantly reduced the responses to sex hormones from hepatocytes to hepatoma cells and therefore shrunk the gender disparity between males and females, which may contribute to the cause of the loss of HCC clinical responses to the therapeutic approaches targeting sex hormone pathways. Additionally, gender disparity in the expression levels of key enzymes involved in retinol metabolism and terpenoid backbone/steroid biosynthesis pathways may contribute to male prevalence in hepatocarcinogenesis. Further, the biomarkers, SAA2, Orm2, and Serpina1e, may be sex differences. In conclusion, common and unique DEPs and pathways toward HCC initiated by ras oncogene from sexually dimorphic hepatocytes provide valuable and novel insights into clinical investigation and practice.
Collapse
Affiliation(s)
- Huiling Li
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Zhuona Rong
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, No. 52 Fucheng Road, Beijing, 100142, China
| | - Hong Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Nan Zhang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Chunwen Pu
- Department of Biobank, The Affiliated Sixth People's Hospital of Dalian Medical University, Dalian, 116031, China
| | - Yi Zhao
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xu Zheng
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Chuanyi Lei
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Yang Liu
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Xiaoqin Luo
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Jun Chen
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China
| | - Fujin Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China.
| | - Aiguo Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China.
| | - Jingyu Wang
- Department of Comparative Medicine, Laboratory Animal Center, Dalian Medical University, Dalian, 116044, Liaoning, China.
| |
Collapse
|
9
|
Liu X, Rosenthal SB, Meshgin N, Baglieri J, Musallam SG, Diggle K, Lam K, Wu R, Pan SQ, Chen Y, Dorko K, Presnell S, Benner C, Hosseini M, Tsukamoto H, Brenner D, Kisseleva T. Primary Alcohol-Activated Human and Mouse Hepatic Stellate Cells Share Similarities in Gene-Expression Profiles. Hepatol Commun 2020; 4:606-626. [PMID: 32258954 PMCID: PMC7109347 DOI: 10.1002/hep4.1483] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/15/2019] [Indexed: 01/18/2023] Open
Abstract
Alcoholic liver disease (ALD) is a leading cause of cirrhosis in the United States, which is characterized by extensive deposition of extracellular matrix proteins and formation of a fibrous scar. Hepatic stellate cells (HSCs) are the major source of collagen type 1 producing myofibroblasts in ALD fibrosis. However, the mechanism of alcohol-induced activation of human and mouse HSCs is not fully understood. We compared the gene-expression profiles of primary cultured human HSCs (hHSCs) isolated from patients with ALD (n = 3) or without underlying liver disease (n = 4) using RNA-sequencing analysis. Furthermore, the gene-expression profile of ALD hHSCs was compared with that of alcohol-activated mHSCs (isolated from intragastric alcohol-fed mice) or CCl4-activated mouse HSCs (mHSCs). Comparative transcriptome analysis revealed that ALD hHSCs, in addition to alcohol-activated and CCl4-activated mHSCs, share the expression of common HSC activation (Col1a1 [collagen type I alpha 1 chain], Acta1 [actin alpha 1, skeletal muscle], PAI1 [plasminogen activator inhibitor-1], TIMP1 [tissue inhibitor of metalloproteinase 1], and LOXL2 [lysyl oxidase homolog 2]), indicating that a common mechanism underlies the activation of human and mouse HSCs. Furthermore, alcohol-activated mHSCs most closely recapitulate the gene-expression profile of ALD hHSCs. We identified the genes that are similarly and uniquely up-regulated in primary cultured alcohol-activated hHSCs and freshly isolated mHSCs, which include CSF1R (macrophage colony-stimulating factor 1 receptor), PLEK (pleckstrin), LAPTM5 (lysosmal-associated transmembrane protein 5), CD74 (class I transactivator, the invariant chain), CD53, MMP9 (matrix metallopeptidase 9), CD14, CTSS (cathepsin S), TYROBP (TYRO protein tyrosine kinase-binding protein), and ITGB2 (integrin beta-2), and other genes (compared with CCl4-activated mHSCs). Conclusion: We identified genes in alcohol-activated mHSCs from intragastric alcohol-fed mice that are largely consistent with the gene-expression profile of primary cultured hHSCs from patients with ALD. These genes are unique to alcohol-induced HSC activation in two species, and therefore may become targets or readout for antifibrotic therapy in experimental models of ALD.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Surgery University of California, San Diego La Jolla CA.,Department of Medicine University of California, San Diego La Jolla CA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics University of California, San Diego La Jolla CA
| | - Nairika Meshgin
- Department of Surgery University of California, San Diego La Jolla CA.,Department of Medicine University of California, San Diego La Jolla CA
| | - Jacopo Baglieri
- Department of Surgery University of California, San Diego La Jolla CA.,Department of Medicine University of California, San Diego La Jolla CA
| | - Sami G Musallam
- Department of Surgery University of California, San Diego La Jolla CA
| | - Karin Diggle
- Department of Medicine University of California, San Diego La Jolla CA
| | - Kevin Lam
- Department of Medicine University of California, San Diego La Jolla CA
| | - Raymond Wu
- Southern California Research Center for ALPD & Cirrhosis Keck School of Medicine of the University of Southern California Los Angeles CA.,Department of Pathology Keck School of Medicine of the University of Southern California Los Angeles CA
| | - Stephanie Q Pan
- Southern California Research Center for ALPD & Cirrhosis Keck School of Medicine of the University of Southern California Los Angeles CA.,Department of Pathology Keck School of Medicine of the University of Southern California Los Angeles CA
| | - Yibu Chen
- Bioinformatics Services Keck School of Medicine of the University of Southern California Los Angeles CA
| | | | | | - Chris Benner
- Department of Medicine University of California, San Diego La Jolla CA
| | - Mojgan Hosseini
- Department of Pathology University of California, San Diego La Jolla CA
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD & Cirrhosis Keck School of Medicine of the University of Southern California Los Angeles CA.,Department of Pathology Keck School of Medicine of the University of Southern California Los Angeles CA.,Department of Veterans Affairs Great Los Angeles Healthcare System Los Angeles CA
| | - David Brenner
- Department of Medicine University of California, San Diego La Jolla CA.,Southern California Research Center for ALPD & Cirrhosis Keck School of Medicine of the University of Southern California Los Angeles CA
| | - Tatiana Kisseleva
- Department of Surgery University of California, San Diego La Jolla CA.,Southern California Research Center for ALPD & Cirrhosis Keck School of Medicine of the University of Southern California Los Angeles CA
| |
Collapse
|
10
|
Metabolic Signature of Hepatic Fibrosis: From Individual Pathways to Systems Biology. Cells 2019; 8:cells8111423. [PMID: 31726658 PMCID: PMC6912636 DOI: 10.3390/cells8111423] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is a major cause of morbidity and mortality worldwide, as it ultimately leads to cirrhosis, which is estimated to affect up to 2% of the global population. Hepatic fibrosis is confirmed by liver biopsy, and the erroneous nature of this technique necessitates the search for noninvasive alternatives. However, current biomarker algorithms for hepatic fibrosis have many limitations. Given that the liver is the largest organ and a major metabolic hub in the body, probing the metabolic signature of hepatic fibrosis holds promise for the discovery of new markers and therapeutic targets. Regarding individual metabolic pathways, accumulating evidence shows that hepatic fibrosis leads to alterations in carbohydrate metabolism, as aerobic glycolysis is aggravated in activated hepatic stellate cells (HSCs) and the whole fibrotic liver; in amino acid metabolism, as Fischer’s ratio (branched-chain amino acids/aromatic amino acids) decreases in patients with hepatic fibrosis; and in lipid metabolism, as HSCs lose vitamin A-containing lipid droplets during transdifferentiation, and cirrhotic patients have decreased serum lipids. The current review also summarizes recent findings of metabolic alterations relevant to hepatic fibrosis based on systems biology approaches, including transcriptomics, proteomics, and metabolomics in vitro, in animal models and in humans.
Collapse
|
11
|
Lu P, Yan M, He L, Li J, Ji Y, Ji J. Crosstalk between Epigenetic Modulations in Valproic Acid Deactivated Hepatic Stellate Cells: An Integrated Protein and miRNA Profiling Study. Int J Biol Sci 2019; 15:93-104. [PMID: 30662350 PMCID: PMC6329925 DOI: 10.7150/ijbs.28642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/27/2018] [Indexed: 01/20/2023] Open
Abstract
Reverting activated hepatic stellate cells (HSCs) to less activation or quiescent status is a promising strategy for liver fibrosis. Histone deacetylase inhibitor (HDACI) could suppress HSCs activation. Our previous study demonstrated a critical role of miRNAs in HSCs activation. Here, we explored the involvement of miRNAs in HDACI induced HSCs deactivation. Human cell line LX2 that resembled activated HSCs was treated with an HDACI - valproic acid (VPA). The effects of VPA on the protein and miRNA profile of LX2 were comprehensively analyzed by iTraq quantitative proteomics and miRNA microarray. The interaction between miRNA and proteins was investigated systematically. The biofunctions of differentially expressed proteins and miRNA targeted proteins were annotated. VPA treatment attenuated the activation phenotype of LX2. In VPA treated LX2, among 1548 quantified proteins, only 86 proteins were differentially expressed (VPA-proteins). While among 282 high-abundance miRNAs, 123 were differentially expressed (VPA-miRNAs), with 104 down-regulated and 19 up-regulated. The top biofunctions of VPA-proteins were closely related to HSCs activation, including cell death and survival, cell movement, cellular growth and proliferation. Furthermore, 22 out of the 36 VPA-proteins involved in cell death and survival, and 19 out of the 30 VPA-proteins involved in cellular movement were predicted targets of VPA-miRNAs. A direct regulatory effect of histone acetylation on miRNA expression was also established. In conclusion, our data provided the molecular mechanisms for VPA induced HSCs deactivation at the protein level and suggested crosstalk between histone acetylation and miRNAs in the inhibitory effects of HDACI on HSCs activation.
Collapse
Affiliation(s)
- Peng Lu
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Min Yan
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Li He
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Jing Li
- Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Yuhua Ji
- Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Juling Ji
- Department of Pathology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
12
|
Yuan B, Chen Y, Wu Z, Zhang L, Zhuang Y, Zhao X, Niu H, Cheng JCH, Zeng Z. Proteomic Profiling of Human Hepatic Stellate Cell Line LX2 Responses to Irradiation and TGF-β1. J Proteome Res 2018; 18:508-521. [PMID: 30489086 DOI: 10.1021/acs.jproteome.8b00814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatic stellate cells (HSCs) are the main target of radiation damage and primarily contribute to the development of radiation-induced liver fibrosis. However, the molecular events underlying the radiation-induced activation of HSCs are not fully elucidated. In the present study, human HSC line LX2 was treated with X-ray irradiation and/or TGF-β1, and profibrogenic molecules were evaluated. The iTRAQ LC-MS/MS technology was performed to identify global protein expression profiles in LX2 following exposure to different stimuli. Irradiation or TGF-β1 alone increased expression of α-SMA, collagen 1, CTGF, PAI-1, and fibronectin. Irradiation and TGF-β1 cooperatively induced expression of these profibrotic markers. In total, 102, 137, 155 dysregulated proteins were identified in LX2 cell samples affected by irradiation, TGF-β1, or cotreatment, respectively. Bioinformatic analyses showed that the three differentially expressed protein sets were commonly associated with cell cycle and protein processing in endoplasmic reticulum. The expression of a set of proteins was properly validated: CDC20, PRC1, KIF20A, CCNB1, SHCBP, TACC3 were upregulated upon irradiation or irradiation and TGF-β1 costimulation, whereas SPARC and THBS1 were elevated by TGF-β1 or TGF-β1 plus irradiation treatment. Furthermore, CDC20 inhibition suppressed expression of profibrotic markers in irradiated and TGF-β1-stimulated LX2 cells. Detailed data on potential molecular mechanisms causing the radiation-induced HSC activation presented here would be instrumental in developing radiotherapy strategies that minimize radiation-induced liver fibrosis.
Collapse
Affiliation(s)
- Baoying Yuan
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Yuhan Chen
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China.,Department of Radiation Oncology, Nanfang Hospital , Southern Medical University , Guangzhou 510515 , China
| | - Zhifeng Wu
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Li Zhang
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Yuan Zhuang
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Xiaomei Zhao
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Hao Niu
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| | - Jason Chia-Hsien Cheng
- Division of Radiation Oncology, Departments of Oncology , National Taiwan University Hospital , Taipei 100 , Taiwan
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital , Fudan University , Shanghai 200032 , China
| |
Collapse
|
13
|
Activated hepatic stellate cells promote epithelial-to-mesenchymal transition in hepatocellular carcinoma through transglutaminase 2-induced pseudohypoxia. Commun Biol 2018; 1:168. [PMID: 30393774 PMCID: PMC6202353 DOI: 10.1038/s42003-018-0177-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 09/20/2018] [Indexed: 01/06/2023] Open
Abstract
Activation of hepatic stellate cells reportedly contributes to progression of hepatocellular carcinoma (HCC). Herein, we use quantitative proteomics and ingenuity pathway analysis to show that transglutaminase 2 (TGM2) is upregulated in the course of activated hepatic stellate cells promoting epithelial-mesenchymal transition (EMT) in HCC-derived cells both in vivo and in vitro. Mechanistically, activated hepatic stellate cells promote TGM2 upregulation in HCC cells through inflammatory signalling; and TGM2-induced depletion of von Hippel-Lindau (VHL) protein, a key molecule in the degradation of hypoxia inducible factor-1a (HIF-1a) under normoxia, then causes HIF-1a to accumulate, thereby producing a pseudohypoxic state that promotes EMT in HCC cells. These findings suggest that the promotion of EMT in HCC cells by activated hepatic stellate cells is mediated by pseudohypoxia induced via TGM2/VHL/HIF-1a pathway. Hui Ma et al. report a new mechanism by which activated hepatic stellate cells promote the epithelial-to-mesenchymal transition (EMT) in hepatocellular carcinoma. They find that transglutaminase 2 is upregulated by activated hepatic stellate cells via inflammatory signalling, which leads to a pseudohypoxic state promoting EMT.
Collapse
|
14
|
Ding D, Chen LL, Zhai YZ, Hou CJ, Tao LL, Lu SH, Wu J, Liu XP. Trichostatin A inhibits the activation of Hepatic stellate cells by Increasing C/EBP-α Acetylation in vivo and in vitro. Sci Rep 2018. [PMID: 29535398 PMCID: PMC5849734 DOI: 10.1038/s41598-018-22662-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Reversal of activated hepatic stellate cells (HSCs) to a quiescent state and apoptosis of activated HSCs are key elements in the reversion of hepatic fibrosis. CCAAT/enhancer binding protein α (C/EBP-α) has been shown to inhibit HSC activation and promote its apoptosis. This study aims to investigate how C/EBP-α acetylation affects the fate of activated HSCs. Effects of a histone deacetylation inhibitor trichostatin A (TSA) on HSC activation were evaluated in a mouse model of liver fibrosis caused by carbon tetrachloride (CCl4) intoxication. TSA was found to ameliorate CCl4-induced hepatic fibrosis and improve liver function through increasing the protein level and enhancing C/EBP-α acetylation in the mouse liver. C/EBP-α acetylation was determined in HSC lines in the presence or absence of TSA, and the lysine residue K276 was identified as a main acetylation site in C/EBP-α protein. C/EBP-α acetylation increased its stability and protein level, and inhibited HSC activation. The present study demonstrated that C/EBP-α acetylation increases the protein level by inhibiting its ubiquitination-mediated degradation, and may be involved in the fate of activated HSCs. Use of TSA may confer an option in minimizing hepatic fibrosis by suppressing HSC activation, a key process in the initiation and progression of hepatic fibrosis.
Collapse
Affiliation(s)
- Di Ding
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Lin-Lin Chen
- Department of Pathology, The Fifth People's Hospital, Fudan University, Shanghai, 200040, China
| | - Ying-Zhen Zhai
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chen-Jian Hou
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Li-Li Tao
- Department of Pathology, Peking University, Shenzhen Hospital, Shenzhen, 518036, China
| | - Shu-Han Lu
- Department of Nutrition, University of California at Davis, Davis, California, USA
| | - Jian Wu
- Department of Medical Microbiology, Key Laboratory of Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,Shanghai Institute of Liver Disease, Fudan University, Shanghai, 200032, China.
| | - Xiu-Ping Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,Department of Pathology, The Fifth People's Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
15
|
Xu Z, Zhai L, Yi T, Gao H, Fan F, Li Y, Wang Y, Li N, Xing X, Su N, Wu F, Chang L, Chen X, Dai E, Zhao C, Yang X, Cui C, Xu P. Hepatitis B virus X induces inflammation and cancer in mice liver through dysregulation of cytoskeletal remodeling and lipid metabolism. Oncotarget 2018; 7:70559-70574. [PMID: 27708241 PMCID: PMC5342574 DOI: 10.18632/oncotarget.12372] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Hepatitis B virus X protein (HBx) participates in the occurrence and development processes of hepatocellular carcinoma (HCC) as a multifunctional regulation factor. However, the underlying molecular mechanism remains obscure. Here, we describe the use of p21HBx/+ mouse and SILAM (Stable Isotope Labeling in Mammals) strategy to define the pathological mechanisms for the occurrence and development of HBx induced liver cancer. We systematically compared a series of proteome samples from regular mice, 12- and 24-month old p21HBx/+ mice representing the inflammation and HCC stages of liver disease respectively and their nontransgenic wild-type (WT) littermates. Totally we identified 22 and 97 differentially expressed proteins out of a total of 2473 quantified proteins. Bioinformatics analysis suggested that the lipid metabolism and CDC42-induced cytoskeleton remodeling pathways were strongly activated by the HBx transgene. Interestingly, the protein-protein interaction MS study revealed that HBx directly interacted with multiple proteins in these two pathways. The same effect of up-regulation of cytoskeleton and lipid metabolism related proteins, including CDC42, CFL1, PPARγ and ADFP, was also observed in the Huh-7 cells transfected with HBx. More importantly, CFL1 and ADFP were specifically accumulated in HBV-associated HCC (HBV-HCC) patient samples, and their expression levels were positively correlated with the severity of HBV-related liver disease. These results provide evidence that HBx induces the dysregulation of cytoskeleton remodeling and lipid metabolism and leads to the occurrence and development of liver cancer. The CFL1 and ADFP might be served as potential biomarkers for prognosis and diagnosis of HBV-HCC.
Collapse
Affiliation(s)
- Zhongwei Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China.,Central Laboratory, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, P.R. China
| | - Linghui Zhai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Tailong Yi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China.,Anhui Medical University, Hefei, 230032, P.R. China
| | - Huiying Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Fengxu Fan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China.,Anhui Medical University, Hefei, 230032, P.R. China
| | - Yanchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Youliang Wang
- Beijing Institute of Bioengineering, Beijing, 100071, P. R. China
| | - Ning Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Xiaohua Xing
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Na Su
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Feilin Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Xiuli Chen
- The Fifth Hospital of Shijiazhuang City, Shijiazhuang, 050021, P.R. China
| | - Erhei Dai
- The Fifth Hospital of Shijiazhuang City, Shijiazhuang, 050021, P.R. China
| | - Chao Zhao
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, and Research Center on Aging and Medicine, Fudan University, Shanghai, 200032, P.R. China
| | - Xiao Yang
- Beijing Institute of Bioengineering, Beijing, 100071, P. R. China
| | - Chunping Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences Beijing, Institute of Radiation Medicine, Beijing, 102206, P.R. China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430072, P. R. China.,Anhui Medical University, Hefei, 230032, P.R. China
| |
Collapse
|
16
|
Fausther M, Lavoie EG, Goree JR, Dranoff JA. An Elf2-like transcription factor acts as repressor of the mouse ecto-5'-nucleotidase gene expression in hepatic myofibroblasts. Purinergic Signal 2017; 13:417-428. [PMID: 28667437 PMCID: PMC5714833 DOI: 10.1007/s11302-017-9570-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 05/12/2017] [Indexed: 01/20/2023] Open
Abstract
Hepatic fibrosis represents a pathological wound healing and tissue repair process triggered in response to chronic liver injury. A heterogeneous population of activated non-parenchymal liver cells, known as liver myofibroblasts, functions as the effector cells in hepatic fibrosis. Upon activation, liver myofibroblasts become fibrogenic, acquiring contractile properties and increasing collagen production capacity, while developing enhanced sensitivity to endogenous molecules and factors released in the local microenvironment. Hepatic extracellular adenosine is a bioactive small molecule, increasingly recognized as an important regulator of liver myofibroblast functions, and an important mediator in the pathogenesis of liver fibrosis overall. Remarkably, ecto-5'-nucleotidase/Nt5e/Cd73 enzyme, which accounts for the dominant adenosine-generating activity in the extracellular medium, is expressed by activated liver myofibroblasts. However, the molecular signals regulating Nt5e gene expression in liver myofibroblasts remain poorly understood. Here, we show that activated mouse liver myofibroblasts express Nt5e gene products and characterize the putative Nt5e minimal promoter in the mouse species. We describe the existence of an enhancer sequence upstream of the mouse Nt5e minimal promoter and establish that the mouse Nt5e minimal promoter transcriptional activity is negatively regulated by an Elf2-like Ets-related transcription factor in activated mouse liver myofibroblasts.
Collapse
Affiliation(s)
- Michel Fausther
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA.
- Research Service, Central Arkansas Veterans Administration Health System, Little Rock, AR, 72205, USA.
| | - Elise G Lavoie
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
- Research Service, Central Arkansas Veterans Administration Health System, Little Rock, AR, 72205, USA
| | - Jessica R Goree
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
- Research Service, Central Arkansas Veterans Administration Health System, Little Rock, AR, 72205, USA
| | - Jonathan A Dranoff
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
- Research Service, Central Arkansas Veterans Administration Health System, Little Rock, AR, 72205, USA
| |
Collapse
|
17
|
Romualdo GR, Grassi TF, Goto RL, Tablas MB, Bidinotto LT, Fernandes AAH, Cogliati B, Barbisan LF. An integrative analysis of chemically-induced cirrhosis-associated hepatocarcinogenesis: Histological, biochemical and molecular features. Toxicol Lett 2017; 281:84-94. [PMID: 28943392 DOI: 10.1016/j.toxlet.2017.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/29/2017] [Accepted: 09/20/2017] [Indexed: 12/17/2022]
Abstract
This study aimed the integrative characterization of morphological, biochemical and molecular features of chemically-induced cirrhosis-associated hepatocarcinogenesis. Thus, male Wistar rats were submitted to a diethylnitrosamine (DEN)/thioacetamide (TAA)-induced model. Liver tissue was processed for global gene expression, histopathological and collagen evaluations; as well as immunohistochemical and oxidative stress analysis. Gene Ontology and functional analysis showed the upregulation of extracellular matrix deposition genes, such as collagen type I alpha 1 and 2 (Col1α1 and Col1α2) and tissue inhibitor of metalloproteinase 1 and 2 genes (Timp1 and Timp2). In agreement these findings, animals presented extensive liver cirrhosis with increased collagen deposition (Sirius red). Besides, the animals developed many glutathione S-transferase pi (GST-P)-positive preneoplastic lesions showing high cell proliferation (Ki-67), in keeping with the Gstp1 and Gstp2 increased gene expression. DEN/TAA-treated rats also showed the upregulation of tumorigenesis-related annexin A2 gene (Anxa2) and few neoplastic lesions (hepatocellular adenomas, carcinomas, and cholangiocarcinoma). In contrast, gene expression and activity of antioxidant enzymes were decreased (glutathione peroxidase, total glutathione-S-transferase, and catalase). The model featured remarkable similarities to human hepatocarcinogenesis. Our findings could bring up new molecular insights into cirrhosis-associated hepatocarcinogenesis, and provide a suitable animal model for the establishment of further diagnostic, preventive and therapeutic approaches.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu - SP, Brazil
| | - Tony Fernando Grassi
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu - SP, Brazil
| | - Renata Leme Goto
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu - SP, Brazil
| | - Mariana Baptista Tablas
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu - SP, Brazil
| | - Lucas Tadeu Bidinotto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos - SP, Brazil; Barretos School of Health Sciences, Dr. Paulo Prata - FACISB, Barretos - SP, Brazil
| | - Ana Angélica Henrique Fernandes
- Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University (UNESP), Botucatu - SP, Brazil
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, São Paulo University (USP), São Paulo - SP, Brazil
| | - Luís Fernando Barbisan
- Department of Morphology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu - SP, Brazil.
| |
Collapse
|
18
|
Quantitative Proteomic analysis on Activated Hepatic Stellate Cells reversion Reveal STAT1 as a key regulator between Liver Fibrosis and recovery. Sci Rep 2017; 7:44910. [PMID: 28322315 PMCID: PMC5359621 DOI: 10.1038/srep44910] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/14/2017] [Indexed: 12/23/2022] Open
Abstract
Understanding the changes of activated HSCs reversion is an essential step toward clarifying the potential roles of HSCs in the treatment of liver fibrosis. In this study, we chose adipocyte differentiation mixture to induce LX-2 cells for 2 days in vitro as reversion phase, comparing with normal cultured LX-2 cells as activation phase. Mass spectrometric-based SILAC technology was adopted to study differentially expressed proteome of LX-2 cells between reversion and activation. Compared with activated HSCs, 273 proteins showed significant differences in reverted HSCs. The main pathway of up-regulated proteins associated with reversion of HSCs mainly related to oxidation-reduction and lipid metabolism, while the top pathway of down-regulated proteins was found in regulated cytoskeleton formation. Changes in the expression levels of selected proteins were verified by Western blotting analysis, especially STAT1, FLNA, LASP1, and NAMPT proteins. The distinct roles of STAT1 were further analyzed between activated and reverted of HSCs, it was found that STAT1 could affect cell proliferation of HSCs and could be viewed as a key regulator in the reversion of HSCs. Thus, the proteomic analysis could accelerate our understanding of the mechanisms of HSC reversion on cessation of fibrogenic stimuli and provide new targets for antifibrotic liver therapy.
Collapse
|
19
|
Vasconcellos R, Alvarenga ÉC, Parreira RC, Lima SS, Resende RR. Exploring the cell signalling in hepatocyte differentiation. Cell Signal 2016; 28:1773-88. [DOI: 10.1016/j.cellsig.2016.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 02/08/2023]
|
20
|
Kuttippurathu L, Juskeviciute E, Dippold RP, Hoek JB, Vadigepalli R. A novel comparative pattern analysis approach identifies chronic alcohol mediated dysregulation of transcriptomic dynamics during liver regeneration. BMC Genomics 2016; 17:260. [PMID: 27012785 PMCID: PMC4807561 DOI: 10.1186/s12864-016-2492-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/17/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Liver regeneration is inhibited by chronic ethanol consumption and this impaired repair response may contribute to the risk for alcoholic liver disease. We developed and applied a novel data analysis approach to assess the effect of chronic ethanol intake in the mechanisms responsible for liver regeneration. We performed a time series transcriptomic profiling study of the regeneration response after 2/3rd partial hepatectomy (PHx) in ethanol-fed and isocaloric control rats. RESULTS We developed a novel data analysis approach focusing on comparative pattern counts (COMPACT) to exhaustively identify the dominant and subtle differential expression patterns. Approximately 6500 genes were differentially regulated in Ethanol or Control groups within 24 h after PHx. Adaptation to chronic ethanol intake significantly altered the immediate early gene expression patterns and nearly completely abrogated the cell cycle induction in hepatocytes post PHx. The patterns highlighted by COMPACT analysis contained several non-parenchymal cell specific markers indicating their aberrant transcriptional response as a novel mechanism through which chronic ethanol intake deregulates the integrated liver tissue response. CONCLUSIONS Our novel comparative pattern analysis revealed new insights into ethanol-mediated molecular changes in non-parenchymal liver cells as a possible contribution to the defective liver regeneration phenotype. The results revealed for the first time an ethanol-induced shift of hepatic stellate cells from a pro-regenerative phenotype to that of an anti-regenerative state after PHx. Our results can form the basis for novel interventions targeting the non-parenchymal cells in normalizing the dysfunctional repair response process in alcoholic liver disease. Our approach is illustrated online at http://compact.jefferson.edu .
Collapse
Affiliation(s)
- Lakshmi Kuttippurathu
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Egle Juskeviciute
- MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Rachael P Dippold
- MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jan B Hoek
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.,MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA. .,MitoCare Center for Mitochondrial Research, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
21
|
Schon HT, Bartneck M, Borkham-Kamphorst E, Nattermann J, Lammers T, Tacke F, Weiskirchen R. Pharmacological Intervention in Hepatic Stellate Cell Activation and Hepatic Fibrosis. Front Pharmacol 2016; 7:33. [PMID: 26941644 PMCID: PMC4764688 DOI: 10.3389/fphar.2016.00033] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/08/2016] [Indexed: 12/17/2022] Open
Abstract
The activation and transdifferentiation of hepatic stellate cells (HSCs) into contractile, matrix-producing myofibroblasts (MFBs) are central events in hepatic fibrogenesis. These processes are driven by autocrine- and paracrine-acting soluble factors (i.e., cytokines and chemokines). Proof-of-concept studies of the last decades have shown that both the deactivation and removal of hepatic MFBs as well as antagonizing profibrogenic factors are in principle suitable to attenuate ongoing hepatic fibrosis. Although several drugs show potent antifibrotic activities in experimental models of hepatic fibrosis, there is presently no effective pharmaceutical intervention specifically approved for the treatment of liver fibrosis. Pharmaceutical interventions are generally hampered by insufficient supply of drugs to the diseased liver tissue and/or by adverse effects as a result of affecting non-target cells. Therefore, targeted delivery systems that bind specifically to receptors solely expressed on activated HSCs or transdifferentiated MFBs and delivery systems that can improve drug distribution to the liver in general are urgently needed. In this review, we summarize current strategies for targeted delivery of drugs to the liver and in particular to pro-fibrogenic liver cells. The applicability and efficacy of sequestering molecules, selective protein carriers, lipid-based drug vehicles, viral vectors, transcriptional targeting approaches, therapeutic liver- and HSC-specific nanoparticles, and miRNA-based strategies are discussed. Some of these delivery systems that had already been successfully tested in experimental animal models of ongoing hepatic fibrogenesis are expected to translate into clinically useful therapeutics specifically targeting HSCs.
Collapse
Affiliation(s)
- Hans-Theo Schon
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| | - Matthias Bartneck
- Department of Medicine III, University Hospital RWTH Aachen Aachen, Germany
| | - Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University of Bonn Bonn, Germany
| | - Twan Lammers
- Department for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital RWTH Aachen Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| |
Collapse
|
22
|
Sarr O, Blake A, Thompson JA, Zhao L, Rabicki K, Walsh JC, Welch I, Regnault TRH. The differential effects of low birth weight and Western diet consumption upon early life hepatic fibrosis development in guinea pig. J Physiol 2016; 594:1753-72. [PMID: 26662996 DOI: 10.1113/jp271777] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/06/2015] [Indexed: 02/06/2023] Open
Abstract
Postnatal intake of an energy dense diet, the Western diet (WD), is a strong risk factor for liver fibrosis. Recently, adverse in utero conditions resulting in low birth weight (LBW) have also been associated with postnatal fibrosis development. We assessed the independent and possible synergistic effects of placental insufficiency-induced LBW and postnatal WD consumption on liver fibrosis in early adulthood, with a specific focus on changes in inflammation and apoptosis pathways in association with fibrogenesis. Male LBW (uterine artery ablation) and normal birth weight (NBW) guinea pig pups were fed either a control diet (CD) or WD from weaning to 150 days. Significant steatosis, mild lobular inflammation, apoptosis and mild stage 1 fibrosis (perisinusoidal or portal) were evident in WD-fed offspring (NBW/WD and LBW/WD). In LBW/CD versus NBW/CD offspring, increased transforming growth factor-beta 1 and matrix metallopeptidase mRNA and sma- and Mad-related protein 4 (SMAD4) were present in conjunction with minimal stage 1 portal fibrosis. Further, connective tissue growth factor mRNA was increased and miR-146a expression decreased in LBW offspring, irrespective of diet. Independent of birth weight, WD-fed offspring exhibited increased expression of fibrotic genes as well as elevated inflammatory and apoptotic markers. Moreover, the augmented expression of collagen, type III, alpha 1 and tumor necrosis factor-alpha was associated with increased recruitment of RNA polymerase II and enhanced histone acetylation (K9) to their respective promoters. These data support a role for both LBW and postnatal WD as factors contributing to hepatic fibrosis development in offspring through distinct pathways.
Collapse
Affiliation(s)
- Ousseynou Sarr
- Department of Obstetrics and Gynecology, Western University, 1151 Richmond Street, London, ON, Canada, N6A 5C1.,Lawson Research Institute, 268 Grosvenor St, London, ON, Canada, N6A 4V2.,Children's Health Research Institute, 800 Commissioners Road East, London, ON, Canada, N6C 2V5
| | - Alexandra Blake
- Department of Physiology and Pharmacology, Western University, 1151 Richmond Street, London, ON, Canada, N6A 5C1
| | - Jennifer A Thompson
- Department of Physiology and Pharmacology, Western University, 1151 Richmond Street, London, ON, Canada, N6A 5C1
| | - Lin Zhao
- Department of Obstetrics and Gynecology, Western University, 1151 Richmond Street, London, ON, Canada, N6A 5C1
| | - Katherine Rabicki
- Department of Physiology and Pharmacology, Western University, 1151 Richmond Street, London, ON, Canada, N6A 5C1
| | - Joanna C Walsh
- Pathology and Laboratory Medicine, Western University, 1151 Richmond Street, London, ON, Canada, N6A 5C1
| | - Ian Welch
- Animal Care and Veterinary Services, Western University, 1151 Richmond Street, London, ON, Canada, N6A 5C1
| | - Timothy R H Regnault
- Department of Obstetrics and Gynecology, Western University, 1151 Richmond Street, London, ON, Canada, N6A 5C1.,Department of Physiology and Pharmacology, Western University, 1151 Richmond Street, London, ON, Canada, N6A 5C1.,Lawson Research Institute, 268 Grosvenor St, London, ON, Canada, N6A 4V2.,Children's Health Research Institute, 800 Commissioners Road East, London, ON, Canada, N6C 2V5
| |
Collapse
|
23
|
Lei XF, Fu W, Kim-Kaneyama JR, Omoto T, Miyazaki T, Li B, Miyazaki A. Hic-5 deficiency attenuates the activation of hepatic stellate cells and liver fibrosis through upregulation of Smad7 in mice. J Hepatol 2016; 64:110-7. [PMID: 26334580 DOI: 10.1016/j.jhep.2015.08.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/25/2015] [Accepted: 08/17/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIM Hydrogen peroxide-inducible clone-5 (Hic-5), also named as transforming growth factor beta-1-induced transcript 1 protein (Tgfb1i1), was found to be induced by TGF-β. Previous studies have shown that TGF-β is a principal mediator of hepatic stellate cell (HSC) activation in liver fibrosis. However, this process remains elusive. In this study, we aimed to define the role of Hic-5 in HSC activation and liver fibrosis. METHODS We examined the expression levels of Hic-5 during HSCs activation and in fibrotic liver tissues by quantitative real-time reverse transcriptase polymerase chain reaction, Western blot and immunohistochemistry. Hic-5 knockout (KO) and wild-type (WT) mice were subjected to bile duct ligation (BDL) or carbon tetrachloride (CCl4) injection to induce liver fibrosis. RESULTS Hic-5 expression was strongly upregulated in activated HSCs of the human fibrotic liver tissue and BDL or CCl4-induced mouse liver fibrosis. Hic-5 deficiency significantly attenuated mouse liver fibrosis and HSC activation. Furthermore, Hic-5 knockdown by siRNA in vivo repressed CCl4-induced liver fibrosis in mice. Mechanistically, the absence of Hic-5 significantly inhibited the TGF-β/Smad2 signaling pathway, proved by increasing Smad7 expression, resulting in reduced collagen production and α-smooth muscle actin expression in the activated HSCs. CONCLUSION Hic-5 deficiency attenuates the activation of HSCs and liver fibrosis though reducing the TGF-β/Smad2 signaling by upregulation of Smad7. Thus, Hic-5 can be regarded as a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Xiao-Feng Lei
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Wenguang Fu
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sichuan Medical University, Luzhou, China
| | - Joo-Ri Kim-Kaneyama
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan.
| | - Tomokatsu Omoto
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Takuro Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| | - Bo Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sichuan Medical University, Luzhou, China
| | - Akira Miyazaki
- Department of Biochemistry, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
Fagone P, Mangano K, Mammana S, Pesce A, Pesce A, Caltabiano R, Giorlandino A, Portale TR, Cavalli E, Lombardo GAG, Coco M, Puleo S, Nicoletti F. Identification of novel targets for the diagnosis and treatment of liver fibrosis. Int J Mol Med 2015; 36:747-52. [PMID: 26135677 DOI: 10.3892/ijmm.2015.2264] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/29/2015] [Indexed: 02/07/2023] Open
Abstract
Liver fibrosis is characterized by the excessive deposition of extracellular matrix (ECM) in the hepatic parenchyma and represents an intrinsic response to chronic injury, maintaining organ integrity when extensive necrosis or apoptosis occurs. Hepatic stellate cells (HSCs) are the major cell type responsible for liver fibrosis. Following liver injury, HSCs become activated and transdifferentiate into myofibroblasts (MFBs) that lead to intrahepatic ECM accumulation. In the present study, we performed a meta‑analysis of datasets which included whole-genome transcriptional data on HSCs in the quiescent and activated state from two different rodent species and identified commonly regulated genes. Several of the genes identified, including ECM components, metalloproteinases and growth factors, were found to be well‑known markers for HSC activation. However, other significant genes also appeared to play important roles in hepatic fibrosis. The elucidation of the molecular events underlying HSC activation may be key to the identification of potential novel pharmacological targets for the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Paolo Fagone
- Department of Biomedical Sciences, University of Catania, Catania, Italy
| | - Katia Mangano
- Department of Biomedical Sciences, University of Catania, Catania, Italy
| | - Santa Mammana
- Department of Biomedical Sciences, University of Catania, Catania, Italy
| | - Antonio Pesce
- Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, University of Catania, Catania, Italy
| | - Aurora Pesce
- Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, University of Catania, Catania, Italy
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, University of Catania, Catania, Italy
| | - Alexandra Giorlandino
- Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, University of Catania, Catania, Italy
| | - Teresa Rosanna Portale
- Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, University of Catania, Catania, Italy
| | - Eugenio Cavalli
- Department of Biomedical Sciences, University of Catania, Catania, Italy
| | | | - Marinella Coco
- Department of Biomedical Sciences, University of Catania, Catania, Italy
| | - Stefano Puleo
- Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, University of Catania, Catania, Italy
| | | |
Collapse
|
25
|
Ji J, Eggert T, Budhu A, Forgues M, Takai A, Dang H, Ye Q, Lee JS, Kim JH, Greten TF, Wang XW. Hepatic stellate cell and monocyte interaction contributes to poor prognosis in hepatocellular carcinoma. Hepatology 2015; 62:481-95. [PMID: 25833323 PMCID: PMC4515211 DOI: 10.1002/hep.27822] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/28/2015] [Indexed: 12/14/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) patients suffer from a poor survival rate and a high incidence of postoperative recurrence. The hepatic microenvironment plays a significant role in the initiation, progression, and recurrence of HCC; however, the causal mechanisms of these phenomena are unclear. Given the predominant underlying fibrotic and cirrhotic conditions of the liver prone to HCC and its recurrence, alterations of components of the inflammatory milieu have been suggested as factors that promote HCC development. In particular, activated hepatic stellate cells (A-HSCs), which play a key role in liver fibrosis and cirrhosis, have been suggested as contributors to the HCC-prone microenvironment. Here, we have identified and validated an A-HSC-specific gene expression signature among nontumor tissues of 319 HCC patients that is significantly and independently associated with HCC recurrence and survival. Peritumoral, rather than tumor tissue-related, A-HSC-specific gene expression is associated with recurrence and poor survival. Analyses of A-HSC-specific gene signatures and further immunohistochemical validation in an additional 143 HCC patients have revealed that A-HSCs preferentially affect monocyte populations, shifting their gene expression from an inflammatory to an immunosuppressive signature. In addition, the interaction between A-HSCs and monocytes induces protumorigenic and progressive features of HCC cells by enhancing cell migration and tumor sphere formation. CONCLUSION A-HSCs play a significant role in promoting HCC progression through interaction with and alteration of monocyte activities within the liver microenvironment; thus, disrupting the interactions and signaling events between the inflammatory milieu and components of the microenvironment may be useful therapeutic strategies for preventing HCC tumor relapse.
Collapse
Affiliation(s)
- Juling Ji
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland,Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Tobias Eggert
- Gastrointestinal Malignancy Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Anuradha Budhu
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Marshonna Forgues
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Atsushi Takai
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Hien Dang
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Qinghai Ye
- Liver Cancer Institute, Fudan University, Shanghai, China
| | - Ju-Seog Lee
- Department of Systems Biology, University of Texas, M. D. Anderson Cancer Center, Houston, Texas
| | - Ji Hoon Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Tim F. Greten
- Gastrointestinal Malignancy Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Xin Wei Wang
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland,Corresponding Author: National Cancer Institute, 37 Convent Dr., Bldg. 37, Rm. 3044A, Bethesda, MD 20892;
| |
Collapse
|
26
|
Galler K, Bräutigam K, Große C, Popp J, Neugebauer U. Making a big thing of a small cell--recent advances in single cell analysis. Analyst 2015; 139:1237-73. [PMID: 24495980 DOI: 10.1039/c3an01939j] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Single cell analysis is an emerging field requiring a high level interdisciplinary collaboration to provide detailed insights into the complex organisation, function and heterogeneity of life. This review is addressed to life science researchers as well as researchers developing novel technologies. It covers all aspects of the characterisation of single cells (with a special focus on mammalian cells) from morphology to genetics and different omics-techniques to physiological, mechanical and electrical methods. In recent years, tremendous advances have been achieved in all fields of single cell analysis: (1) improved spatial and temporal resolution of imaging techniques to enable the tracking of single molecule dynamics within single cells; (2) increased throughput to reveal unexpected heterogeneity between different individual cells raising the question what characterizes a cell type and what is just natural biological variation; and (3) emerging multimodal approaches trying to bring together information from complementary techniques paving the way for a deeper understanding of the complexity of biological processes. This review also covers the first successful translations of single cell analysis methods to diagnostic applications in the field of tumour research (especially circulating tumour cells), regenerative medicine, drug discovery and immunology.
Collapse
Affiliation(s)
- Kerstin Galler
- Integrated Research and Treatment Center "Center for Sepsis Control and Care", Jena University Hospital, Erlanger Allee 101, 07747 Jena, Germany
| | | | | | | | | |
Collapse
|
27
|
Vatakuti S, Schoonen WGEJ, Elferink MLG, Groothuis GMM, Olinga P. Acute toxicity of CCl4 but not of paracetamol induces a transcriptomic signature of fibrosis in precision-cut liver slices. Toxicol In Vitro 2015; 29:1012-20. [PMID: 25858767 DOI: 10.1016/j.tiv.2015.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/10/2015] [Accepted: 03/18/2015] [Indexed: 12/20/2022]
Abstract
In rat in vivo, both paracetamol (APAP) and carbon tetrachloride (CCl4) induce liver necrosis, but long-term treatment with CCl4, in contrast to paracetamol, causes liver fibrosis. The aim of this study was to perform transcriptomic analysis to compare the early changes in mRNA expression profiles induced by APAP and CCl4 in the rat precision-cut liver slice model (PCLS) and to identify early markers that could predict fibrosis-inducing potential. Microarray data of rat PCLS exposed to APAP andCCl4was generated using a toxic dose based on decrease in ATP levels. Toxicity pathway analysis using a custom made fibrosis-related gene list showed fibrosis as one of the predominant toxic endpoints in CCl4-treated, but not in APAP-treated PCLS. Moreover, genes which have a role in fibrosis such as alpha-B crystallin, jun proto-oncogene, mitogen-activated protein kinase 6, serpin peptidase inhibitor and also the transcription factor Kruppel-like-factor-6 were up-regulated by CCl4, but not by APAP. Predicted activation or inhibition of several upstream regulators due to CCl4 is in accordance with their role in fibrosis. In conclusion, transcriptomic analysis of PCLS successfully identified the fibrotic potential of CCl4 as opposed to APAP. The application of PCLS as an ex vivo model to identify early biomarkers to predict the fibrogenic potential of toxic compounds should be further explored.
Collapse
Affiliation(s)
- Suresh Vatakuti
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | | | - Marieke L G Elferink
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Geny M M Groothuis
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, Groningen Research Institute for Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
28
|
Ji J, Eggert T, Budhu A, Forgues M, Takai A, Dang H, Ye Q, Lee JS, Kim JH, Greten TF, Wang XW. Hepatic stellate cell and monocyte interaction contributes to poor prognosis in hepatocellular carcinoma. HEPATOLOGY (BALTIMORE, MD.) 2015. [PMID: 25833323 DOI: 10.1002/hep.27822.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) patients suffer from a poor survival rate and a high incidence of postoperative recurrence. The hepatic microenvironment plays a significant role in the initiation, progression, and recurrence of HCC; however, the causal mechanisms of these phenomena are unclear. Given the predominant underlying fibrotic and cirrhotic conditions of the liver prone to HCC and its recurrence, alterations of components of the inflammatory milieu have been suggested as factors that promote HCC development. In particular, activated hepatic stellate cells (A-HSCs), which play a key role in liver fibrosis and cirrhosis, have been suggested as contributors to the HCC-prone microenvironment. Here, we have identified and validated an A-HSC-specific gene expression signature among nontumor tissues of 319 HCC patients that is significantly and independently associated with HCC recurrence and survival. Peritumoral, rather than tumor tissue-related, A-HSC-specific gene expression is associated with recurrence and poor survival. Analyses of A-HSC-specific gene signatures and further immunohistochemical validation in an additional 143 HCC patients have revealed that A-HSCs preferentially affect monocyte populations, shifting their gene expression from an inflammatory to an immunosuppressive signature. In addition, the interaction between A-HSCs and monocytes induces protumorigenic and progressive features of HCC cells by enhancing cell migration and tumor sphere formation. CONCLUSION A-HSCs play a significant role in promoting HCC progression through interaction with and alteration of monocyte activities within the liver microenvironment; thus, disrupting the interactions and signaling events between the inflammatory milieu and components of the microenvironment may be useful therapeutic strategies for preventing HCC tumor relapse.
Collapse
Affiliation(s)
- Juling Ji
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD.,Department of Pathology, Medical School of Nantong University, Nantong, China
| | - Tobias Eggert
- Gastrointestinal Malignancy Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Anuradha Budhu
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Marshonna Forgues
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Atsushi Takai
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Hien Dang
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Qinghai Ye
- Liver Cancer Institute, Fudan University, Shanghai, China
| | - Ju-Seog Lee
- Department of Systems Biology, University of Texas, M.D. Anderson Cancer Center, Houston, TX
| | - Ji Hoon Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Xin Wei Wang
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
29
|
Fausther M, Dranoff JA. Beyond scar formation: portal myofibroblast-mediated angiogenesis in the fibrotic liver. Hepatology 2015; 61:766-8. [PMID: 25502320 PMCID: PMC5115210 DOI: 10.1002/hep.27653] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/10/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Michel Fausther
- University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR
| | | |
Collapse
|
30
|
Periostin suppression induces decorin secretion leading to reduced breast cancer cell motility and invasion. Sci Rep 2014; 4:7069. [PMID: 25400079 PMCID: PMC4233340 DOI: 10.1038/srep07069] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 10/28/2014] [Indexed: 01/23/2023] Open
Abstract
The ability of cancer cells to metastasize is dependent on the interactions between their cell-surface molecules and the microenvironment. However, the tumor microenvironment, especially the cancer-associated stroma, is poorly understood. To identify proteins present in the stroma, we focused on phyllodes tumors, rare breast tumors that contain breast stromal cells. We compared the expression of proteins between phyllodes tumor and normal tissues using an iTRAQ-based quantitative proteomic approach. Decorin was expressed at reduced levels in phyllodes tumor tissues, whereas periostin was upregulated; this result was validated by immunohistochemical analysis of phyllodes tumors from 35 patients. Additionally, by immunoprecipitation and mass spectrometry, we confirmed that decorin forms a complex with periostin in both phyllodes tumors and BT-20 breast cancer cells. Following siRNA-mediated knockdown of periostin in T-47D cells, secreted decorin in the culture medium could be detected by multiple reaction monitoring (MRM). Furthermore, periostin knockdown in BT-20 cells and overexpression of decorin in MDA-MB-231 cells inhibited cell motility and invasion. Our results reveal the molecular details of the periostin–decorin complex in both phyllodes tumor tissues and breast cancer cells; this interaction may represent a novel target for anti-cancer therapy.
Collapse
|
31
|
Abstract
Hepatic stellate cells are resident perisinusoidal cells distributed throughout the liver, with a remarkable range of functions in normal and injured liver. Derived embryologically from septum transversum mesenchyme, their precursors include submesothelial cells that invade the liver parenchyma from the hepatic capsule. In normal adult liver, their most characteristic feature is the presence of cytoplasmic perinuclear droplets that are laden with retinyl (vitamin A) esters. Normal stellate cells display several patterns of intermediate filaments expression (e.g., desmin, vimentin, and/or glial fibrillary acidic protein) suggesting that there are subpopulations within this parental cell type. In the normal liver, stellate cells participate in retinoid storage, vasoregulation through endothelial cell interactions, extracellular matrix homeostasis, drug detoxification, immunotolerance, and possibly the preservation of hepatocyte mass through secretion of mitogens including hepatocyte growth factor. During liver injury, stellate cells activate into alpha smooth muscle actin-expressing contractile myofibroblasts, which contribute to vascular distortion and increased vascular resistance, thereby promoting portal hypertension. Other features of stellate cell activation include mitogen-mediated proliferation, increased fibrogenesis driven by connective tissue growth factor, and transforming growth factor beta 1, amplified inflammation and immunoregulation, and altered matrix degradation. Evolving areas of interest in stellate cell biology seek to understand mechanisms of their clearance during fibrosis resolution by either apoptosis, senescence, or reversion, and their contribution to hepatic stem cell amplification, regeneration, and hepatocellular cancer.
Collapse
Affiliation(s)
- Juan E Puche
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, New York
| | | | | |
Collapse
|
32
|
Ji Y, Zhang J, Wang W, Ji J. Functional study of miR-27a in human hepatic stellate cells by proteomic analysis: comprehensive view and a role in myogenic tans-differentiation. PLoS One 2014; 9:e108351. [PMID: 25265485 PMCID: PMC4180938 DOI: 10.1371/journal.pone.0108351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/19/2014] [Indexed: 12/25/2022] Open
Abstract
We previous reported that miR-27a regulates lipid metabolism and cell proliferation during hepatic stellate cells (HSCs) activation. To further explore the biological function and underlying mechanisms of miR-27a in HSCs, global protein expression affected by overexpression of miR-27a in HSCs was analyzed by a cleavable isotope-coded affinity tags (cICAT) based comparative proteomic approach. In the present study, 1267 non-redundant proteins were identified with unique accession numbers (score ≥1.3, i.e. confidence ≥95%), among which 1171 were quantified and 149 proteins (12.72%) were differentially expressed with a differential expression ratio of 1.5. We found that up-regulated proteins by miR-27a mainly participate in cell proliferation and myogenesis, while down-regulated proteins were the key enzymes involved in de novo lipid synthesis. The expression of a group of six miR-27a regulated proteins was validated and the function of one miR-27a regulated protein was further validated. The results not only delineated the underlying mechanism of miR-27a in modulating fat metabolism and cell proliferation, but also revealed a novel role of miR-27a in promoting myogenic tans-differentiation during HSCs activation. This study also exemplified proteomics strategy as a powerful tool for the functional study of miRNA.
Collapse
Affiliation(s)
- Yuhua Ji
- Key Laboratory of Neuroregeneration, Nantong University, Nanton, China
| | - Jinsheng Zhang
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Wenwen Wang
- Department of Pathology, Medical School of Nantong University, Nantong, PR China
| | - Juling Ji
- Department of Pathology, Medical School of Nantong University, Nantong, PR China
- * E-mail:
| |
Collapse
|
33
|
SILAC-based quantitative proteomic analysis of secretome between activated and reverted hepatic stellate cells. Proteomics 2014; 14:1977-86. [DOI: 10.1002/pmic.201300539] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/14/2014] [Accepted: 06/30/2014] [Indexed: 12/17/2022]
|
34
|
Xu J, Liu X, Koyama Y, Wang P, Lan T, Kim IG, Kim IH, Ma HY, Kisseleva T. The types of hepatic myofibroblasts contributing to liver fibrosis of different etiologies. Front Pharmacol 2014; 5:167. [PMID: 25100997 PMCID: PMC4105921 DOI: 10.3389/fphar.2014.00167] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/25/2014] [Indexed: 01/18/2023] Open
Abstract
Liver fibrosis results from dysregulation of normal wound healing, inflammation, activation of myofibroblasts, and deposition of extracellular matrix (ECM). Chronic liver injury causes death of hepatocytes and formation of apoptotic bodies, which in turn, release factors that recruit inflammatory cells (neutrophils, monocytes, macrophages, and lymphocytes) to the injured liver. Hepatic macrophages (Kupffer cells) produce TGFβ1 and other inflammatory cytokines that activate Collagen Type I producing myofibroblasts, which are not present in the normal liver. Secretion of TGFβ1 and activation of myofibroblasts play a critical role in the pathogenesis of liver fibrosis of different etiologies. Although the composition of fibrogenic myofibroblasts varies dependent on etiology of liver injury, liver resident hepatic stellate cells and portal fibroblasts are the major source of myofibroblasts in fibrotic liver in both experimental models of liver fibrosis and in patients with liver disease. Several studies have demonstrated that hepatic fibrosis can reverse upon cessation of liver injury. Regression of liver fibrosis is accompanied by the disappearance of fibrogenic myofibroblasts followed by resorption of the fibrous scar. Myofibroblasts either apoptose or inactivate into a quiescent-like state (e.g., stop collagen production and partially restore expression of lipogenic genes). Resolution of liver fibrosis is associated with recruitment of macrophages that secrete matrix-degrading enzymes (matrix metalloproteinase, collagenases) and are responsible for fibrosis resolution. However, prolonged/repeated liver injury may cause irreversible crosslinking of ECM and formation of uncleavable collagen fibers. Advanced fibrosis progresses to cirrhosis and hepatocellular carcinoma. The current review will summarize the role and contribution of different cell types to populations of fibrogenic myofibroblasts in fibrotic liver.
Collapse
Affiliation(s)
- Jun Xu
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Xiao Liu
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Yukinori Koyama
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Ping Wang
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Tian Lan
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - In-Gyu Kim
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - In H Kim
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Hsiao-Yen Ma
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| | - Tatiana Kisseleva
- School of Medicine, University of California at San Diego La Jolla, CA, USA
| |
Collapse
|
35
|
Elpek G&O. Cellular and molecular mechanisms in the pathogenesis of liver fibrosis: An update. World J Gastroenterol 2014; 20:7260-7276. [PMID: 24966597 PMCID: PMC4064072 DOI: 10.3748/wjg.v20.i23.7260] [Citation(s) in RCA: 251] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 02/08/2014] [Accepted: 05/26/2014] [Indexed: 02/06/2023] Open
Abstract
There have been considerable recent advances towards a better understanding of the complex cellular and molecular network underlying liver fibrogenesis. Recent data indicate that the termination of fibrogenic processes and the restoration of deficient fibrolytic pathways may allow the reversal of advanced fibrosis and even cirrhosis. Therefore, efforts have been made to better clarify the cellular and molecular mechanisms that are involved in liver fibrosis. Activation of hepatic stellate cells (HSCs) remains a central event in fibrosis, complemented by other sources of matrix-producing cells, including portal fibroblasts, fibrocytes and bone marrow-derived myofibroblasts. These cells converge in a complex interaction with neighboring cells to provoke scarring in response to persistent injury. Defining the interaction of different cell types, revealing the effects of cytokines on these cells and characterizing the regulatory mechanisms that control gene expression in activated HSCs will enable the discovery of new therapeutic targets. Moreover, the characterization of different pathways associated with different etiologies aid in the development of disease-specific therapies. This article outlines recent advances regarding the cellular and molecular mechanisms involved in liver fibrosis that may be translated into future therapies. The pathogenesis of liver fibrosis associated with alcoholic liver disease, non-alcoholic fatty liver disease and viral hepatitis are also discussed to emphasize the various mechanisms involved in liver fibrosis.
Collapse
|
36
|
Galler K, Schleser F, Fröhlich E, Requardt RP, Kortgen A, Bauer M, Popp J, Neugebauer U. Exploitation of the hepatic stellate cell Raman signature for their detection in native tissue samples. Integr Biol (Camb) 2014; 6:946-56. [DOI: 10.1039/c4ib00130c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The unique information concentrated in Raman spectra serves to differentiate hepatic stellate cells from hepatocytes, detect them in living tissue and provide insight in their activation state.
Collapse
Affiliation(s)
- Kerstin Galler
- Leibniz Institute of Photonic Technology
- Jena, Germany
- Center for Sepsis Control and Care
- Jena University Hospital
- Germany
| | - Franziska Schleser
- Center for Sepsis Control and Care
- Jena University Hospital
- Germany
- Department of Anesthesiology and Intensive Care Medicine
- Jena University Hospital
| | - Esther Fröhlich
- Center for Sepsis Control and Care
- Jena University Hospital
- Germany
- Department of Anesthesiology and Intensive Care Medicine
- Jena University Hospital
| | | | - Andreas Kortgen
- Center for Sepsis Control and Care
- Jena University Hospital
- Germany
- Department of Anesthesiology and Intensive Care Medicine
- Jena University Hospital
| | - Michael Bauer
- Center for Sepsis Control and Care
- Jena University Hospital
- Germany
- Department of Anesthesiology and Intensive Care Medicine
- Jena University Hospital
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology
- Jena, Germany
- Center for Sepsis Control and Care
- Jena University Hospital
- Germany
| | - Ute Neugebauer
- Leibniz Institute of Photonic Technology
- Jena, Germany
- Center for Sepsis Control and Care
- Jena University Hospital
- Germany
| |
Collapse
|
37
|
Fausther M, Lavoie EG, Dranoff JA. Contribution of Myofibroblasts of Different Origins to Liver Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2013; 1:225-230. [PMID: 23997993 DOI: 10.1007/s40139-013-0020-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The most common cause of liver failure is cirrhosis, due to progressive liver fibrosis and other architectural changes in the liver. Fibrosis occurs after liver injury or stress and results directly from an imbalance between the processes of extracellular matrix synthesis (fibrogenesis) and degradation (fibrolysis). Although research studies have identified several promising targets at the molecular level, current therapies to prevent and treat hepatic fibrosis in patients have only shown limited success. It is well established that liver myofibroblasts are the primary effector cells responsible for the extensive extracellular matrix accumulation and scar formation observed during hepatic fibrosis, in both clinical and experimental settings. Thus, as the major fibrogenic cells implicated in wound healing and tissue repair response, liver myofibroblasts could represent excellent targets for antifibrotic therapies. Still, the exact natures and identities of liver myofibroblasts precursors have yet to be resolved, and their relative contribution to hepatic fibrosis to be determined. The goal of this review is to examine the relative importance of liver myofibroblast precursors in the pathogenesis of liver fibrosis.
Collapse
Affiliation(s)
- Michel Fausther
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock AR 72205, USA
| | | | | |
Collapse
|
38
|
Escobedo G, Arjona-Román JL, Meléndez-Pérez R, Suárez-Álvarez K, Guzmán C, Aguirre-García J, Gutiérrez-Reyes G, Vivas O, Varela-Fascinetto G, Rodríguez-Romero A, Robles-Díaz G, Kershenobich D. Liver exhibits thermal variations according to the stage of fibrosis progression: A novel use of modulated-differential scanning calorimetry for research in hepatology. Hepatol Res 2013; 43:785-94. [PMID: 23252661 DOI: 10.1111/hepr.12026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 02/08/2023]
Abstract
AIM Liver fibrosis results in a disproportion of the hepatic composition and architecture, characterized by a progressive accumulation of fibrillar proteins at the liver parenchyma. Modulated-differential scanning calorimetry (mDSC) is an experimental methodology able to determine the specific thermal signature from any biological substance, based on the variation in heat flow and heat capacity. As these physicochemical properties are directly influenced by compositional and structural changes, we decided to study the thermal behavior of the liver during fibrosis using mDSC. METHODS Liver fibrosis was induced in rats by bile duct ligation or carbon tetrachloride administration. Degree of liver fibrosis was determined by histological examination using the Masson-trichrome stain, accompanied by hepatic expression of α-smooth muscle actin. The thermal analysis was performed in a modulated-differential scanning calorimeter using 20 mg of fresh liver mass. RESULTS The liver showed a characteristic thermal signature in control animals, which progressively differed among mild (F1), moderate (F2) and advanced (F3-F4) liver fibrosis. For heat flow, the hepatic thermal signature from F3-F4 rats exhibited significant differences when compared with F1, F2 and controls. In terms of heat capacity, liver specimens provided a specific thermal signature for each stage of disease, characterized by a transition temperature onset at 95°C for controls, whereas in F1, F2 and F3-F4 animals this temperature significantly decreased to 93°C, 84°C and 75°C, respectively. CONCLUSION Because the liver shows a differential thermal signature according to the degree of fibrosis, mDSC could be a novel tool in the study of liver fibrosis progression.
Collapse
Affiliation(s)
- Galileo Escobedo
- Unit of Experimental Medicine, General Hospital of Mexico, México D.F., México; Laboratory for Liver, Pancreas and Motility, Department of Experimental Medicine, School of Medicine, General Hospital of Mexico, México D.F., México
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fausther M, Sheung N, Saiman Y, Bansal MB, Dranoff JA. Activated hepatic stellate cells upregulate transcription of ecto-5'-nucleotidase/CD73 via specific SP1 and SMAD promoter elements. Am J Physiol Gastrointest Liver Physiol 2012; 303:G904-14. [PMID: 22899823 PMCID: PMC3469697 DOI: 10.1152/ajpgi.00015.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 08/13/2012] [Indexed: 01/31/2023]
Abstract
Adenosine is a potent modulator of liver fibrosis and inflammation. Adenosine has been shown to regulate such diverse activities as chemotaxis, contraction, and matrix production in hepatic stellate cells (HSC). Ecto-5'-nucleotidase/CD73 [EC 3.1.3.5] is the rate-limiting enzyme in adenosine production. Cd73-deficient mice are resistant to experimental liver fibrosis and have impaired adenosine generation. However, cell-specific expression and regulation of CD73 within the fibrotic liver have not been defined. In particular, prior evidence demonstrating that liver myofibroblasts, the cells believed to be responsible for matrix formation in the liver, express CD73 is lacking. Thus we tested the hypothesis that HSC and portal fibroblasts (PF), cells that undergo differentiation into liver myofibroblasts, express CD73 in a regulated fashion. We found that CD73 is weakly expressed in quiescent HSC and PF but is markedly upregulated at the transcriptional level in myofibroblastic HSC and PF. We furthermore found that CD73 protein and its functional activity are strongly increased in fibrous septa in rats subjected to experimental fibrosis. To determine the mechanism for the upregulation of Cd73 gene, we cloned the rat Cd73 promoter and then used serial truncation and site-directed mutagenesis to identify key regulatory elements. We identified two consensus SP1 motifs and one SMAD binding site, each of which was necessary for Cd73 gene upregulation. In conclusion, activated HSC upregulate Cd73 gene expression, via specific SP1 and SMAD promoter elements, after myofibroblastic differentiation. The ecto-5'-nucleotidase/CD73 enzyme is a novel cellular marker of activated liver myofibroblasts in vivo and in vitro and thus represents a promising molecular target for antifibrotic therapies in liver diseases.
Collapse
Affiliation(s)
- Michel Fausther
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | | | |
Collapse
|