1
|
Song W, Xiong X, Ge W, Zhu H. Prognostic value of protein biomarkers in liver transplantation: A systematic review. Proteomics Clin Appl 2022; 16:e2100038. [PMID: 35344271 DOI: 10.1002/prca.202100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/30/2022] [Accepted: 03/22/2022] [Indexed: 12/30/2022]
Abstract
Liver transplantation is currently the preferred method for the treatment of advanced liver disease and early-stage hepatocellular carcinoma (HCC). Although advances in surgical techniques, immunosuppressive drugs and postoperative management have reduced the incidence of postoperative complications, how to effectively predict or diagnose postoperative complications earlier and reduce their incidence is still a clinical concern. We performed a comprehensive proteomics literature research to identified protein biomarkers in complications after liver transplantation. Seventeen studies met the inclusion criteria including ischemia reperfusion injury (IRI) (n = 4), acute rejection (AR) (n = 4), renal dysfunction (n = 4), HCC recurrence (n = 2), primary graft dysfunction (PGD) (n = 1), infection (n = 1), and liver fibrosis (n = 1). A total of 625 differentially expressed proteins (DEPs) have been reported between postoperative complications and controls, of which 63 have been validated by quantitative protein expression and 26 have been reported by at least two studies and showed consistently changes. The results of the bioinformation analysis show that the immune system, especially the innate immune system and cytokine signaling in immune system, is an important protein-mediated pathway that affects the prognosis of liver transplantation.
Collapse
Affiliation(s)
- Wei Song
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Xiaofu Xiong
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China.,Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weihong Ge
- Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Huaijun Zhu
- Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.,Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| |
Collapse
|
2
|
Jia J, Nie Y, Geng L, Li J, Liu J, Peng Y, Huang J, Xie H, Zhou L, Zheng SS. Identification of HO-1 as a novel biomarker for graft acute cellular rejection and prognosis prediction after liver transplantation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:221. [PMID: 32309368 PMCID: PMC7154463 DOI: 10.21037/atm.2020.01.59] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Liver transplantation (LT) is the most effective treatment for patients with end-stage liver diseases, but acute rejection is still a major concern. However, the mechanisms underlying rejection remain unclear. Biomarkers are lacking for predicting rejection and long-term survival after LT. Methods Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics was performed between acute cellular rejection (ACR) and non-rejection recipients. The molecular signature differences and potential biomarkers were identified by comprehensive bioinformatics. Heme oxygenase-1 (HO-1) expression and its association with clinical outcomes were investigated by tissue microarrays consisted of liver specimens from recipients with (n=80) and without ACR (n=57). Results A total of 287 differentially expressed proteins (DEPs) were identified. Pathway analysis revealed that T/B cell activation, integrin/inflammation signaling pathway, etc. were significantly correlated with ACR. Through comprehensive bioinformatics, HO-1 was identified as a candidate potential biomarker for ACR. In tissue microarray (TMA) analysis, HO-1 expression was significantly higher in ACR group than in non-rejection group (P<0.01). Preoperative Child-Pugh and Meld scores were significantly higher in recipients with high HO-1 expression (P<0.01). In a mean 5-year follow-up, recipients with high HO-1 expression were associated with a shorter overall survival (P<0.05). Further multivariate analyses indicated that HO-1 could be an independent adverse prognostic factor for post-transplant survival (P=0.005). Conclusions A total of 287 DEPs were identified, providing a set of targets for further research. Recipients with high preoperative HO-1 expression were associated with ACR. HO-1 may be used as a potential biomarker for predicting the development of post-transplant allograft ACR and recipient's survival.
Collapse
Affiliation(s)
- Junjun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, College of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Collaborative Innovation Centers for Diagnosis Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yu Nie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, College of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Collaborative Innovation Centers for Diagnosis Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lei Geng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, College of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Collaborative Innovation Centers for Diagnosis Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jianhui Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, College of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Collaborative Innovation Centers for Diagnosis Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jimin Liu
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Yifan Peng
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Collaborative Innovation Centers for Diagnosis Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Junjie Huang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Collaborative Innovation Centers for Diagnosis Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, College of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Collaborative Innovation Centers for Diagnosis Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, College of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Collaborative Innovation Centers for Diagnosis Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Shu-Sen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, College of Medicine, Hangzhou 310003, China.,Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.,Collaborative Innovation Centers for Diagnosis Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
3
|
Gauthier JM, Harrison MS, Krupnick AS, Gelman AE, Kreisel D. The emerging role of regulatory T cells following lung transplantation. Immunol Rev 2019; 292:194-208. [PMID: 31536165 DOI: 10.1111/imr.12801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022]
Abstract
Regulatory T cells (Treg) have proven to be a powerful immunologic force in nearly every organ system and hold therapeutic potential for a wide range of diseases. Insights gained from non-transplant pathologies, such as infection, cancer, and autoimmunity, are now being translated to the field of solid organ transplantation, particularly for livers and kidneys. Recent insights from animal models of lung transplantation have established that Tregs play a vital role in suppressing rejection and facilitating tolerance of lung allografts, and such discoveries are being validated in human studies and preclinical trials. Given that long-term outcomes following lung transplantation remain profoundly limited by chronic rejection, Treg therapy holds the potential to significantly improve patient outcomes and should be aggressively investigated.
Collapse
Affiliation(s)
- Jason M Gauthier
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University, Saint Louis, MO, USA
| | - M Shea Harrison
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University, Saint Louis, MO, USA
| | - Alexander S Krupnick
- Division of Thoracic Surgery, Department of Surgery, University of Virginia, Charlottesville, VA, USA.,Carter Immunology Center, University of Virginia, Charlottesville, VA, USA
| | - Andrew E Gelman
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University, Saint Louis, MO, USA.,Department of Pathology & Immunology, Washington University, Saint Louis, MO, USA
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University, Saint Louis, MO, USA.,Department of Pathology & Immunology, Washington University, Saint Louis, MO, USA
| |
Collapse
|