1
|
Liu J, Zhang T, Gao Y, Ji D, Chen L. Causal role of immune cells in primary liver cancer: a mendelian randomization study. BMC Cancer 2025; 25:928. [PMID: 40410708 PMCID: PMC12100895 DOI: 10.1186/s12885-025-14327-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/13/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND Primary liver cancer is one of the most common fatal malignancies worldwide. Observational studies have shown that immune cells are closely linked to primary liver cancer, however, due to issues like reverse causality and confounding variables, the causal direction and extent of this association remain unclear. Thus, this study aimed to explore the potential causal association between immune cells and primary liver cancer, encompassing hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). METHODS A two-sample mendelian randomization (MR) analysis was performed using summary statistics from genome-wide association studies (GWAS) of the 731 immune traits and primary liver cancer. The primary liver cancer dataset consisted of a total of 456,348 subjects, with 123 cases of HCC and 456,225 controls, as well as 104 cases of ICC and 456,244 controls, all of European ancestry. The primary method for assessing causality was inverse variance weighting (IVW), with sensitivity analysis utilized for testing heterogeneity and pleiotropy. RESULTS Two immunophenotypes were significantly associated with HCC risk: CD3 on CD45RA + CD4+ (OR [95% CI]: 1.334 [1.077 to 1.651], p = 0.008), CD80 on monocyte (OR [95% CI]: 0.578 [0.397 to 0.844], p = 0.004). Additionally, six immunophenotypes were identified to be significantly associated with the risk of ICC: SSC-A on NK (OR [95% CI]: 1.685 [1.166 to 2.436], p = 0.006); CD3 on CD28- CD8br: (OR [95% CI]: 1.826 [1.206 to 2.766], p = 0.004); CD45RA on naive CD4+: (OR [95% CI]: 1.391 [1.119 to 1.729], p = 0.003); Resting Treg %CD4: (OR [95% CI]: 1.290 [1.069 to 1.558], p = 0.008); HLA DR on HSC: (OR [95% CI]: 0.539 [0.343 to 0.846], p = 0.007); Plasmacytoid DC %DC: (OR [95% CI]: 0.610 [0.462 to 0.806], p < 0.001). And sensitivity analyses confirmed the robustness of the main findings. CONCLUSIONS MR analysis has revealed the causal relationship between immune cells and primary liver cancer through genetic methods. These findings could assist in clinical decision-making and provide new directions for the treatment and research of primary liver cancer.
Collapse
Affiliation(s)
- Jia Liu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Tongyuan Zhang
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yang Gao
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Dong Ji
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Lijian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
2
|
Jiang T, Jin H, Ji X, Zheng X, Xu CX, Zhang PJ. Drivers of centrosome abnormalities: Senescence progression and tumor immune escape. Semin Cancer Biol 2025; 110:56-64. [PMID: 39929410 DOI: 10.1016/j.semcancer.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/18/2025] [Accepted: 01/26/2025] [Indexed: 02/18/2025]
Abstract
Centrosome abnormalities are a distinguishing feature of cancer and play a role in the aging process. Cancer cells may evade the immune system by activating immune checkpoints, altering their surrounding microenvironment, abnormalities in antigen presentation and recognition, and metabolic reprogramming to inhibit T-cell activity, allowing cancer cells to survive and spread within the host. When the centrosomes are abnormally shaped or numbered, mitotic errors can occur, cellular senescence occurs, cell death occurs, genomic instability occurs, and aneuploidy forms, resulting in diseases such as cancer. The present study is exploring the strategy of research progress in which centrosome abnormalities contribute to the aging process in various different ways as well as fuel immune escape from cancer cells, providing a new direction for cancer immunotherapy.
Collapse
Affiliation(s)
- Tao Jiang
- Medicine Innovation Research Division of Chinese PLA General Hospital, Beijing 100853, China
| | - Hua Jin
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Xintong Ji
- School of Medicine, Chongqing University, Chongqing 400030, China
| | - Xi Zheng
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing 40003, China
| | - Cheng-Xiong Xu
- School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Peng-Jun Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Interventional Therapy Department, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
3
|
Chai J, Li L, Wu Q, Zhang S. CD96: immunoregulation and its role and prospect in immunotherapy of primary hepatocellular carcinoma. Eur J Gastroenterol Hepatol 2025; 37:534-539. [PMID: 39976070 DOI: 10.1097/meg.0000000000002916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Recently, immune checkpoint inhibitors have been widely used in the treatment of advanced liver cancer. Immune checkpoints are a type of molecules that play an important role in the self-regulation of the immune system. In tumor immunity, their activation by immune checkpoints leads to the inhibition of effector lymphocyte activation or the mediation of cytotoxic T cell dysfunction, resulting in immune escape. These immune checkpoints include programmed death receptor 1 (PD-1) and its ligand PD-L1, as well as cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and others. Immune checkpoint inhibitors block the interaction between immune checkpoint receptors and ligands, thereby relieving the immune suppression caused by immune checkpoints, and reactivating immune cells to exert antitumor effects. With the continuous progress of immunotherapy research, drugs targeting PDL-1, PD-1, and CTLA-4 have played an important role in clinical treatment. However, some patients still cannot benefit from immunotherapy; therefore, multitarget immunotherapy is an important way to improve the response rate of immunotherapy. CD96 is one of the members of the immunoglobulin superfamily receptors, which mainly functions by regulating natural killer cells and CD8+ T cells, and is expected to become a new generation of immune checkpoints. This article reviews the molecular structure of CD96, its role in tumor immunity, and its application in hepatocellular carcinoma, hoping to provide reference for related research.
Collapse
Affiliation(s)
- Jiaqi Chai
- Department of Colorectal Surgery, 731 Hospital of China Aerospace Science and Industry Group
| | - Luyang Li
- Department of Hepatobiliary Surgery, Air Force Medical Center, Air Force Medical University Beijing
| | - Qimei Wu
- Graduate School of China Medical University, Shenyang, China
| | - Shuhan Zhang
- Department of Hepatobiliary Surgery, Air Force Medical Center, Air Force Medical University Beijing
| |
Collapse
|
4
|
Liu R, Jiang X, Dong R, Zhang Y, Gai C, Wei P. Revealing the mechanisms and therapeutic potential of immune checkpoint proteins across diverse protein families. Front Immunol 2025; 16:1499663. [PMID: 40356928 PMCID: PMC12066663 DOI: 10.3389/fimmu.2025.1499663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 03/28/2025] [Indexed: 05/15/2025] Open
Abstract
Host immune responses to antigens are tightly regulated through the activation and inhibition of synergistic signaling networks that maintain homeostasis. Stimulatory checkpoint molecules initiate attacks on infected or tumor cells, while inhibitory molecules halt the immune response to prevent overreaction and self-injury. Multiple immune checkpoint proteins are grouped into families based on common structural domains or origins, yet the variability within and between these families remains largely unexplored. In this review, we discuss the current understanding of the mechanisms underlying the co-suppressive functions of CTLA-4, PD-1, and other prominent immune checkpoint pathways. Additionally, we examine the IgSF, PVR, TIM, SIRP, and TNF families, including key members such as TIGIT, LAG-3, VISTA, TIM-3, SIRPα, and OX40. We also highlight the unique dual role of VISTA and SIRPα in modulating immune responses under specific conditions, and explore potential immunotherapeutic pathways tailored to the distinct characteristics of different immune checkpoint proteins. These insights into the unique advantages of checkpoint proteins provide new directions for drug discovery, emphasizing that emerging immune checkpoint molecules could serve as targets for novel therapies in cancer, autoimmune diseases, infectious diseases, and transplant rejection.
Collapse
Affiliation(s)
| | | | | | | | - Cong Gai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Matsudo K, Takada K, Hashinokuchi A, Nagano T, Kinoshita F, Akamine T, Kohno M, Takenaka T, Shimokawa M, Oda Y, Yoshizumi T. CD155 expression and co-expression with PD-L1 are not associated with poor prognosis in patients with stage II and III lung adenocarcinoma undergoing surgical resection. Int J Clin Oncol 2025:10.1007/s10147-025-02771-9. [PMID: 40287900 DOI: 10.1007/s10147-025-02771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND CD155 has been identified as a ligand for T-cell immunoreceptor with Ig and ITIM domains. Herein, we investigated the relationship between the expressions of CD155 and programmed cell death-ligand 1 (PD-L1) and clinical outcomes in patients with surgically resected lung adenocarcinoma. METHODS This study included 426 patients diagnosed with pathological stage (pStage) I-III lung adenocarcinoma who underwent surgery at Kyushu University Hospital. The number of tumor cells expressing CD155 and PD-L1 was assessed by immunohistochemistry, and the clinical significance of CD155 expression and CD155/PD-L1 co-expression in prognosis was investigated. RESULTS Among the enrolled cohort, 320 (75.1%), 60 (14.1%), and 46 (10.8%) patients were diagnosed with pStage I, II, and III, respectively. Tissues from 112 patients (26.3%) were classified as having high CD155 expression. Co-expression of CD155 and PD-L1 was observed in 44 patients (10.3%). The High CD155 and CD155/PD-L1 co-expression groups had significantly poorer prognosis in pStage I-III lung adenocarcinoma. However, subgroup analysis revealed that the clinical significance of both CD155 expression and CD155/PD-L1 co-expression differed widely between patients with pStage I and II-III. Multivariate Cox proportional hazards regression analyses showed that high CD155 expression and CD155/PD-L1 co-expression were not independent poor prognostic factors in pStage II-III lung adenocarcinoma. CONCLUSION Our findings suggest that neither CD155 expression or CD155/PD-L1 co-expression are associated with poor prognosis in pStage II-III lung adenocarcinoma.
Collapse
Affiliation(s)
- Kyoto Matsudo
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuki Takada
- Department of Surgery, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Asato Hashinokuchi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Taichi Nagano
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Fumihiko Kinoshita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takaki Akamine
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mikihiro Kohno
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomoyoshi Takenaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Mototsugu Shimokawa
- Department of Biostatistics, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
6
|
Jia G, He P, Dai T, Goh D, Wang J, Sun M, Wee F, Li F, Lim JCT, Hao S, Liu Y, Lim TKH, Ngo NT, Tao Q, Wang W, Umar A, Nashan B, Zhang Y, Ding C, Yeong J, Liu L, Sun C. Spatial immune scoring system predicts hepatocellular carcinoma recurrence. Nature 2025; 640:1031-1041. [PMID: 40074893 DOI: 10.1038/s41586-025-08668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 01/17/2025] [Indexed: 03/14/2025]
Abstract
Given the high recurrence rates of hepatocellular carcinoma (HCC) post-resection1-3, improved early identification of patients at high risk for post-resection recurrence would help to improve patient outcomes and prioritize healthcare resources4-6. Here we observed a spatial and HCC recurrence-associated distribution of natural killer (NK) cells in the invasive front and tumour centre from 61 patients. Using extreme gradient boosting and inverse-variance weighting, we developed the tumour immune microenvironment spatial (TIMES) score based on the spatial expression patterns of five biomarkers (SPON2, ZFP36L2, ZFP36, VIM and HLA-DRB1) to predict HCC recurrence risk. The TIMES score (hazard ratio = 88.2, P < 0.001) outperformed current standard tools for patient risk stratification including the TNM and BCLC systems. We validated the model in 231 patients from five multicentred cohorts, achieving a real-world accuracy of 82.2% and specificity of 85.7%. The predictive power of these biomarkers emerged through the integration of their spatial distributions, rather than individual marker expression levels alone. In vivo models, including NK cell-specific Spon2-knockout mice, revealed that SPON2 enhances IFNγ secretion and NK cell infiltration at the invasive front. Our study introduces TIMES, a publicly accessible tool for predicting HCC recurrence risk, offering insights into its potential to inform treatment decisions for early-stage HCC.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Middle Aged
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/surgery
- Cohort Studies
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/deficiency
- Extracellular Matrix Proteins/metabolism
- Interferon-gamma/metabolism
- Killer Cells, Natural/immunology
- Killer Cells, Natural/cytology
- Liver Neoplasms/diagnosis
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/surgery
- Mice, Knockout
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/diagnosis
- Neoplasm Recurrence, Local/pathology
- Reproducibility of Results
- Tumor Microenvironment
Collapse
Affiliation(s)
- Gengjie Jia
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, China
- Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, China
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Peiqi He
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, China
- Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, China
| | - Tianli Dai
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, China
- Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, China
| | - Denise Goh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, China
| | - Mengyuan Sun
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, China
- Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, China
| | - Felicia Wee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Fuling Li
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, China
- Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, China
| | - Jeffrey Chun Tatt Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Shuxia Hao
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, China
| | - Tony Kiat Hon Lim
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, China
- Duke-NUS Medical School, Singapore, Singapore
| | | | - Qingping Tao
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, China
- Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, China
- Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, China
| | - Ahitsham Umar
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, China
- Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Björn Nashan
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, China
| | - Yongchang Zhang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Central South University, Changsha, China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institutes of Biomedical Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Joe Yeong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore.
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore.
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Singapore, Singapore.
- Cancer Science Institute, National University of Singapore, Singapore, Singapore.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, China.
| | - Cheng Sun
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, China.
- Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Key Laboratory of Immune Response and Immunotherapy, Institute of Immunology, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
7
|
Lu Z, Yu J, Lu T, Deng S, Zheng X, Ji B, Wu X, Yu Y. CD155 promotes the advancement of hepatocellular carcinoma by suppressing the p53-mediated ferroptosis via interacting with CD96. J Mol Med (Berl) 2025; 103:285-299. [PMID: 39878917 DOI: 10.1007/s00109-025-02515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
This work researched the influence and mechanism of CD155 on hepatocellular carcinoma advancement. CD155 expression and its effect on survival of hepatocellular carcinoma patients were analyzed based on the GEPIA2 database. String software predicted the interacting between CD155 and CD96, which was further verified by co-immunoprecipitation experiment. The function of CD155 and CD96 on the proliferation, migration, and invasion of hepatocellular carcinoma cells (HCC) was explored by colony formation, wound healing, and transwell assays. To research the effect of CD155 and CD96 on ferroptosis, ferroptosis-related factors in HCC were investigated. CD155 and p53 were both silenced in HCC to explore whether CD155 regulates hepatocellular carcinoma progression by acting on p53. Xenograft tumor study was conducted to examine the impact of CD155 on the in vivo growth of HCC. It was discovered that, CD155 up-regulation predicted poor survival of hepatocellular carcinoma patients. CD155 could be interacted with CD96. The proliferation, migration, and invasion of HCC were heightened by CD155. However, ferroptosis was suppressed by CD155, as CD155 decreased p53 and iron but increased SLC7A11, GPX4 and GSH in HCC. In fact, CD96 silencing abolished these effects of CD155. The suppressed malignant behaviors and the enhanced ferroptosis in HCC induced by CD155 silencing were abrogated by p53 silencing. In vivo, CD155 silencing suppressed growth and enhanced ferroptosis of hepatocellular carcinoma, which were counteracted by p53 silencing. Thus, CD155 might facilitate hepatocellular carcinoma advancement through blocking the p53-mediated ferroptosis via interacting with CD96. CD155 might be a promising target for treating hepatocellular carcinoma. KEY MESSAGES: CD155 was up-regulated in hepatocellular carcinoma, predicting poor survival. CD155 protein could be interacted with CD96 protein. Proliferation and invasion of liver cancer cells were facilitated by CD155. Proliferation and invasion of liver cancer cells were decreased by CD96 loss. CD155 promoted liver cancer by suppressing p53-mediated ferroptosis via CD96.
Collapse
Affiliation(s)
- Zhenhui Lu
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Hepatobiliary Pancreatic Surgery, Shenzhen, China
- Hepatic-biliary-pancreatic Surgery, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), Shenzhen City, 518101, China
| | - Jingzhe Yu
- Department of Pediatric Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tuoyu Lu
- School of Pharmacy, Xi'an Jiaotong University Medical Science Center, Xi'an, China
| | - Siyuan Deng
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Hepatobiliary Pancreatic Surgery, Shenzhen, China
| | - Xuzhen Zheng
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Hepatobiliary Pancreatic Surgery, Shenzhen, China
| | - Baiyu Ji
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Hepatobiliary Pancreatic Surgery, Shenzhen, China
| | - Xiangyang Wu
- Baoji Central Hospital, Shaanxi Province, Baoji, China
| | - Yingzi Yu
- Hospital Sensory Department, Shenzhen Qianhai Shekou Free Trade Zone Hospital, 36 Gongye Qi Road, Nanshan District, Shenzhen, 518067, China.
| |
Collapse
|
8
|
Guo P, Zhong L, Wang T, Luo W, Zhou A, Cao D. NK cell-based immunotherapy for hepatocellular carcinoma: Challenges and opportunities. Scand J Immunol 2025; 101:e13433. [PMID: 39934640 DOI: 10.1111/sji.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 02/13/2025]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most challenging malignancies globally, characterized by significant heterogeneity, late-stage diagnosis, and resistance to treatment. In recent years, the advent of immune-checkpoint blockades (ICBs) and targeted immune cell therapies has marked a substantial advancement in HCC treatment. However, the clinical efficacy of these existing therapies is still limited, highlighting the urgent need for new breakthroughs. Natural killer (NK) cells, a subset of the innate lymphoid cell family, have shown unique advantages in the anti-tumour response. With increasing evidence suggesting the crucial role of dysfunctional NK cells in the pathogenesis and progression of HCC, considerable efforts have been directed toward exploring NK cells as a potential therapeutic target for HCC. In this review, we will provide an overview of the role of NK cells in normal liver immunity and in HCC, followed by a detailed discussion of various NK cell-based immunotherapies and their potential applications in HCC treatment.
Collapse
Affiliation(s)
- Pei Guo
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Liyuan Zhong
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tao Wang
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weijia Luo
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Aiqiang Zhou
- Guangzhou Hospital of Integrated Chinese and Western Medicine, Guangzhou, Guangdong, P.R China
| | - Deliang Cao
- Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
9
|
Zhao Y, Zhu W, Dong S, Zhang H, Zhou W. Glucose Metabolism Reprogramming of Immune Cells in the Microenvironment of Pancreatic and Hepatobiliary Cancers. J Gastroenterol Hepatol 2025; 40:355-366. [PMID: 39780341 DOI: 10.1111/jgh.16873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND AND AIM Pancreatic and hepatobiliary cancers are increasing in prevalence and contribute significantly to cancer-related mortality worldwide. Emerging therapeutic approaches, particularly immunotherapy, are gaining attention for their potential to harness the patient's immune system to combat these tumors. Understanding the role of immune cells in the tumor microenvironment (TME) and their metabolic reprogramming is key to developing more effective treatment strategies. This review aims to explore the relationship between immune cell function and glucose metabolism in the TME of pancreatic and hepatobiliary cancers. METHODS This review synthesizes current research on the metabolic adaptations of immune cells, specifically focusing on glucose metabolism within the TME of pancreatic and hepatobiliary cancers. We examine the mechanisms by which immune cells influence tumor progression through metabolic reprogramming and how these interactions can be targeted for therapeutic purposes. RESULTS Immune cells in the TME undergo significant metabolic changes, with glucose metabolism playing a central role in modulating immune responses. These metabolic shifts not only affect immune cell function but also influence tumor behavior and progression. The unique metabolic features of immune cells in pancreatic and hepatobiliary cancers provide new opportunities for targeting immune responses to combat these malignancies more effectively. CONCLUSION Understanding the complex relationship between immune cell glucose metabolism and tumor progression in the TME of pancreatic and hepatobiliary cancers offers promising therapeutic strategies. By modulating immune responses through targeted metabolic interventions, it may be possible to improve the efficacy of immunotherapies and better combat these aggressive cancers.
Collapse
Affiliation(s)
- Yongqing Zhao
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Weixiong Zhu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Shi Dong
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Hui Zhang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Wence Zhou
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Key Laboratory of Environmental Oncology, Lanzhou, China
| |
Collapse
|
10
|
Li Y, Huang H, Xie H, Cao R, Li X, Huang F, Lin L, Chen L. Akkermansia muciniphila activates natural killer cells by suppressing the TGF-β signaling pathway in lung adenocarcinoma cells. Cytokine 2025; 186:156833. [PMID: 39700665 DOI: 10.1016/j.cyto.2024.156833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
Lung adenocarcinoma (LUAD) stands out as a prevalent malignant tumor necessitating innovative strategies to enhance therapeutic outcomes. Akkermansia muciniphila (AKK) has emerged as intricately linked to tumor immunotherapy, yet its impact on natural killer (NK) cells, which play a crucial role in immunotherapy, remains unclear. This study aims to investigate the effects of AKK outer membrane proteins on NK cells in LUAD and elucidate potential associated molecular mechanisms. 16S rRNA sequencing was employed to analyze bacterial genera and their abundance in fecal samples from LUAD patients. Co-culturing of NK-92 cells with LUAD cells, with or without treatment of AKK outer membrane protein Amuc_1100, was conducted to investigate the mechanisms of AKK on LUAD. Additionally, a xenograft mouse model was established to validate the effects of AKK in an in vivo setting. The experimental findings indicated that LUAD patients with elevated AKK levels in their fecal samples demonstrated increased NK cell infiltration and reduced TGF-β levels. Treatment with Amuc_1100 elevated TNF-α and IL-15 cytokine levels, decreased TGF-β levels and proteins associated with TGF-β pathway, enhanced NK cell cytotoxicity, upregulated perforin and granzyme B expression, induced apoptosis and cell cycle arrest, thereby inhibiting cancer cell proliferation. Amuc_1100 also impeded tumor growth in vivo. In summary, these results suggest that AKK activates NK cells to target tumor cells by suppressing the TGF-β signaling pathway in LUAD cells, underscoring the potential of Akk as an effective immunotherapeutic agent in LUAD NK cell-directed therapies.
Collapse
Affiliation(s)
- Yong Li
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
| | - Huiqin Huang
- Fujian Provincial Key Laboratory of Medical Testing, Fujian Academy Of Medical Sciences, Fuzhou, Fujian 350000, China
| | - Hang Xie
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
| | - Rongxiang Cao
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
| | - Xiuling Li
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
| | - Feijian Huang
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
| | - Lu Lin
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China
| | - Limin Chen
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350000, China.
| |
Collapse
|
11
|
Zhang M, Huang K, Yin Q, Wu X, Zhu M, Li M. Spatial heterogeneity of the hepatocellular carcinoma microenvironment determines the efficacy of immunotherapy. Discov Oncol 2025; 16:15. [PMID: 39775241 PMCID: PMC11706828 DOI: 10.1007/s12672-025-01747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge owing to its widespread incidence and high mortality. HCC has a specific immune tolerance function because of its unique physiological structure, which limits the efficacy of chemotherapy, radiotherapy, and molecular targeting. In recent years, new immune approaches, including adoptive cell therapy, tumor vaccines, and oncolytic virus therapy, have shown great potential. As the efficacy of immunotherapy mainly depends on the spatial heterogeneity of the tumor immune microenvironment, it is necessary to elucidate the crosstalk between the composition of the liver cancer immune environment, from which potential therapeutic targets can be selected to provide more appropriate individualized treatment programs. The role of spatial heterogeneity of immune cells in the microenvironment of HCC in the progression and influence of immunotherapy on improving the treatment and prognosis of HCC were comprehensively analyzed, providing new inspiration for the subsequent clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Minni Zhang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
- The First Affiliated Hospital, Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, The Hainan Branch of National Clinical Research Center for Cancer, Hainan Medical University, Haikou, 570102, Hainan, People's Republic of China
| | - Kailin Huang
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Qiushi Yin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Xueqin Wu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
- Department of Medical Oncology, Second Affiliated Hospital, Hainan Medical University, Haikou, 570023, Hainan, People's Republic of China.
- Key Laboratory of Tropical Translational Medicine, Ministry of Education, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China.
| |
Collapse
|
12
|
Tao JH, Zhang J, Li HS, Zhou Y, Guan CX. Nature killer cell for solid tumors: Current obstacles and prospective remedies in NK cell therapy and beyond. Crit Rev Oncol Hematol 2025; 205:104553. [PMID: 39515404 DOI: 10.1016/j.critrevonc.2024.104553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
In recent years, cell therapy has emerged as an innovative treatment method for the management of clinical tumors following immunotherapy. Among them, Natural killer (NK) cell therapy has achieved a significant breakthrough in the treatment of hematological tumors. However, the therapeutic effectiveness of NK cells in the treatment of solid tumors remains challenging. With the progress of gene editing and culture techniques and their application to NK cell engineering, it is expected that NK cell therapy will revolutionize the treatment of solid tumors. In this review, we explore the discovery and biological properties of NK cells, their role in the tumor microenvironment, and the therapeutic strategies, clinical trials, challenges, and prospects of NK cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Jia-Hao Tao
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Jun Zhang
- Ascle Therapeutics, Suzhou, Jiangsu 215000, China
| | - Hua-Shun Li
- Ascle Therapeutics, Suzhou, Jiangsu 215000, China.
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
13
|
Jin Y, Xing J, Dai C, Jin L, Zhang W, Tao Q, Hou M, Li Z, Yang W, Feng Q, Wang H, Yu Q. NK cell exhaustion in Wilson's disease revealed by single-cell RNA sequencing predicts the prognosis of cholecystitis. eLife 2024; 13:RP98867. [PMID: 39854622 PMCID: PMC11684787 DOI: 10.7554/elife.98867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
Metabolic abnormalities associated with liver disease have a significant impact on the risk and prognosis of cholecystitis. However, the underlying mechanism remains to be elucidated. Here, we investigated this issue using Wilson's disease (WD) as a model, which is a genetic disorder characterized by impaired mitochondrial function and copper metabolism. Our retrospective clinical study found that WD patients have a significantly higher incidence of cholecystitis and a poorer prognosis. The hepatic immune cell landscape using single-cell RNA sequencing showed that the tissue immune microenvironment is altered in WD, mainly a major change in the constitution and function of the innate immune system. Exhaustion of natural killer (NK) cells is the fundamental factor, supported by the upregulated expression of inhibitory receptors and the downregulated expression of cytotoxic molecules, which was verified in clinical samples. Further bioinformatic analysis confirmed a positive correlation between NK cell exhaustion and poor prognosis in cholecystitis and other inflammatory diseases. The study demonstrated dysfunction of liver immune cells triggered by specific metabolic abnormalities in WD, with a focus on the correlation between NK cell exhaustion and poor healing of cholecystitis, providing new insights into the improvement of inflammatory diseases by assessing immune cell function.
Collapse
Affiliation(s)
- Yong Jin
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Jiayu Xing
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Chenyu Dai
- Department of Cadre Cardiology, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| | - Lei Jin
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese MedicineHefeiChina
| | - Wanying Zhang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Qianqian Tao
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese MedicineHefeiChina
| | - Mei Hou
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Ziyi Li
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese MedicineHefeiChina
| | - Wen Yang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghaiChina
- National Center for Liver Cancer, Second Military Medical UniversityShanghaiChina
| | - Qiyu Feng
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
| | - Hongyang Wang
- Cancer Research Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiChina
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical UniversityShanghaiChina
- National Center for Liver Cancer, Second Military Medical UniversityShanghaiChina
| | - Qingsheng Yu
- Department of Cadre Cardiology, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese MedicineHefeiChina
| |
Collapse
|
14
|
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143:113365. [PMID: 39447408 DOI: 10.1016/j.intimp.2024.113365] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Immunology-based therapies are emerging as an effective cancer treatment, using the body's immune system to target tumors. Immune checkpoints, which regulate immune responses to prevent tissue damage and autoimmunity, are often exploited by cancer cells to avoid destruction. The discovery of checkpoint proteins like PD-1/PD-L1 and CTLA-4 was pivotal in developing cancer immunotherapy. Immune checkpoint inhibitors (ICIs) have shown great success, with FDA-approved drugs like PD-1 inhibitors (Nivolumab, Pembrolizumab, Cemiplimab), PD-L1 inhibitors (Atezolizumab, Durvalumab, Avelumab), and CTLA-4 inhibitors (Ipilimumab, Tremelimumab), alongside LAG-3 inhibitor Relatlimab. Research continues on new checkpoints like TIM-3, VISTA, B7-H3, BTLA, and TIGIT. Biomarkers like PDL-1 expression, tumor mutation burden, interferon-γ presence, microbiome composition, and extracellular matrix characteristics play a crucial role in predicting responses to immunotherapy with checkpoint inhibitors. Despite their effectiveness, not all patients experience the same level of benefit, and organ-specific immune-related adverse events (irAEs) such as rash or itching, colitis, diarrhea, hyperthyroidism, and hypothyroidism may occur. Given the rapid advancements in this field and the variability in patient outcomes, there is an urgent need for a comprehensive review that consolidates the latest findings on immune checkpoint inhibitors, covering their clinical status, biomarkers, resistance mechanisms, strategies to overcome resistance, and associated adverse effects. This review aims to fill this gap by providing an analysis of the current clinical status of ICIs, emerging biomarkers, mechanisms of resistance, strategies to enhance therapeutic efficacy, and assessment of adverse effects. This review is crucial to furthering our understanding of ICIs and optimizing their application in cancer therapy.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
15
|
Bukhari I, Li M, Li G, Xu J, Zheng P, Chu X. Pinpointing the integration of artificial intelligence in liver cancer immune microenvironment. Front Immunol 2024; 15:1520398. [PMID: 39759506 PMCID: PMC11695355 DOI: 10.3389/fimmu.2024.1520398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Liver cancer remains one of the most formidable challenges in modern medicine, characterized by its high incidence and mortality rate. Emerging evidence underscores the critical roles of the immune microenvironment in tumor initiation, development, prognosis, and therapeutic responsiveness. However, the composition of the immune microenvironment of liver cancer (LC-IME) and its association with clinicopathological significance remain unelucidated. In this review, we present the recent developments related to the use of artificial intelligence (AI) for studying the immune microenvironment of liver cancer, focusing on the deciphering of complex high-throughput data. Additionally, we discussed the current challenges of data harmonization and algorithm interpretability for studying LC-IME.
Collapse
Affiliation(s)
- Ihtisham Bukhari
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengxue Li
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Guangyuan Li
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jixuan Xu
- Department of Gastrointestinal & Thyroid Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyuan Zheng
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiufeng Chu
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Marshall B. J. Medical Research Center, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
16
|
Nath PR, Isakov N. Mechanisms of Cbl-Mediated Ubiquitination of Proteins in T and Natural Killer Cells and Effects on Immune Cell Functions. Life (Basel) 2024; 14:1592. [PMID: 39768300 PMCID: PMC11677474 DOI: 10.3390/life14121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/17/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
Post-translational ubiquitination is an essential mechanism for the regulation of protein stability and function, which contributes to the regulation of the immune system. Cbl, an E3 ubiquitin ligase, is particularly well-characterized in the context of T and NK cell signaling, where it serves as a key regulator of receptor downstream signaling events and as a modulator of cell activation. Cbl promotes the proteasomal degradation of TCR/CD3 subunits as well as the protein kinases Fyn and Lck in T cells. Additionally, the scaffold protein linker for activation of T cells (LAT) is a universal target for Cbl-mediated ubiquitination and degradation in both T and NK cells. Recent findings suggest that CrkII-mediated ubiquitination and degradation of C3G by Cbl during early T cell activation may also be relevant to NK cell signaling. Given its role in modulating immune responses and its manageable impact on autoimmunity, Cbl is being investigated as a target for cancer immunotherapy. This review explores the ubiquitin ligase activity of Cbl and its implications for CAR T and NK cell immunotherapies.
Collapse
Affiliation(s)
- Pulak Ranjan Nath
- Lentigen Technology Inc., A Miltenyi Biotec Company, 910 Clopper Road, Gaithersburg, MD 20878, USA;
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105, Israel
| |
Collapse
|
17
|
Wang X, Yang T, Shi X. NK cell-based immunotherapy in hepatocellular carcinoma: An attractive therapeutic option for the next decade. Cell Signal 2024; 124:111405. [PMID: 39260532 DOI: 10.1016/j.cellsig.2024.111405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Hepatocellular carcinoma (HCC), a major subtype of liver cancer, poses significant therapeutic challenges due to its late diagnosis and rapid progression. The evolving landscape of immunotherapy offers a beacon of hope, with natural killer (NK) cells emerging as pivotal players in combating HCC. NK cells are unique cytotoxic lymphocytes that are essential in the fight against infections and malignancies. Phenotypic and functional NK cell abnormalities have been shown in HCC patients, indicating their significance as a component of the innate immune system against cancer. This review elucidates the critical role of NK cells in combating HCC, focusing on their interaction with the tumor microenvironment, the development of NK cell-based therapies, and the innovative strategies to enhance their efficacy in the immunosuppressive milieu of HCC. The review delves into the various therapeutic strategies, including autologous and allogeneic NK cell therapies, genetic engineering to improve NK cell resilience and targeting, and the integration of NK cells with other immunotherapeutic approaches like checkpoint inhibitors and oncolytic virotherapy. By highlighting recent advancements and the ongoing challenges in the field, this review sets the stage for future research directions that could unlock the full potential of NK cell-based immunotherapy for HCC, offering a beacon of hope for patients battling this formidable cancer.
Collapse
Affiliation(s)
- Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu Province 210009, China
| | - Tianye Yang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu Province 210009, China
| | - Xiaoli Shi
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu Province 210029, China; Department of General Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
18
|
Zhang Q, Huang T, Li X, Liu G, Xian L, Mao X, Lin T, Fu C, Chen X, Liang W, Zheng Y, Zhao Y, Lin Q, Xu X, Lin Y, Bu J, Wu C, Zhou M, Shen E. Prognostic impact of enhanced CD96 expression on NK cells by TGF-β1 in AML. Int Immunopharmacol 2024; 141:112958. [PMID: 39159564 DOI: 10.1016/j.intimp.2024.112958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Acute myeloid leukemia (AML) is one of the most common types of blood cancer in adults and is associated with a poor survival rate. NK cells play a crucial role in combating AML, and alterations in immune checkpoint expression can impair NK cell function against AML. Targeting certain checkpoints may restore this function. CD96, an inhibitory immune checkpoint, has unclear expression and roles on NK cells in AML patients. In this study, we initially evaluated CD96 expression and compared CD96+ NK with the inhibitory receptor and stimulatory receptors on NK cells from AML patients at initial diagnosis. We observed increased CD96 expression on NK cells with dysfunctional phenotype. Further analysis revealed that CD96+ NK cells had lower IFN-γ production than CD96- NK cells. Blocking CD96 enhanced the cytotoxicity of primary NK and cord blood-derived NK (CB-NK) cells against leukemia cells. Notably, patients with a high frequency of CD96+ NK cells at initial diagnosis exhibited poorer clinical outcomes. Additionally, TGF-β1 was found to enhance CD96 expression on NK cells via SMAD3 signaling. These findings suggest that CD96 is invovled in NK dysfunction against AML blast, and might be a potential target for restoring NK cell function in the fight against AML.
Collapse
Affiliation(s)
- Qi Zhang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China; The 903 RD Hospital of PLA, 14 Lingyin Road, Hangzhou 310017,China
| | - Ting Huang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiaomin Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Guanfang Liu
- Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Luhua Xian
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xueying Mao
- Clifford Hospital Clinical Research Center, Guangzhou, Guangdong, China
| | - Ting Lin
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Cheng Fu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Xiangming Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Wenting Liang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Yanling Zheng
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Yuyang Zhao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Qiwen Lin
- Guangzhou Blood Center, Guangzhou, China
| | | | - Yu Lin
- Shenzhen Withsum Technology Limited, Shenzhen, China
| | - Jin Bu
- National Center for STD Control, Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Changyou Wu
- Clifford Hospital Clinical Research Center, Guangzhou, Guangdong, China
| | - Maohua Zhou
- Department of Laboratory Medicine, Guangdong Provincial People's Hospital, (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Department of Clinical Laboratory, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Erxia Shen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, The Second Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
19
|
Chen S, Zhu H, Jounaidi Y. Comprehensive snapshots of natural killer cells functions, signaling, molecular mechanisms and clinical utilization. Signal Transduct Target Ther 2024; 9:302. [PMID: 39511139 PMCID: PMC11544004 DOI: 10.1038/s41392-024-02005-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 11/15/2024] Open
Abstract
Natural killer (NK) cells, initially identified for their rapid virus-infected and leukemia cell killing and tumor destruction, are pivotal in immunity. They exhibit multifaceted roles in cancer, viral infections, autoimmunity, pregnancy, wound healing, and more. Derived from a common lymphoid progenitor, they lack CD3, B-cell, or T-cell receptors but wield high cytotoxicity via perforin and granzymes. NK cells orchestrate immune responses, secreting inflammatory IFNγ or immunosuppressive TGFβ and IL-10. CD56dim and CD56bright NK cells execute cytotoxicity, while CD56bright cells also regulate immunity. However, beyond the CD56 dichotomy, detailed phenotypic diversity reveals many functional subsets that may not be optimal for cancer immunotherapy. In this review, we provide comprehensive and detailed snapshots of NK cells' functions and states of activation and inhibitions in cancer, autoimmunity, angiogenesis, wound healing, pregnancy and fertility, aging, and senescence mediated by complex signaling and ligand-receptor interactions, including the impact of the environment. As the use of engineered NK cells for cancer immunotherapy accelerates, often in the footsteps of T-cell-derived engineering, we examine the interactions of NK cells with other immune effectors and relevant signaling and the limitations in the tumor microenvironment, intending to understand how to enhance their cytolytic activities specifically for cancer immunotherapy.
Collapse
Affiliation(s)
- Sumei Chen
- Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China.
| | - Haitao Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Zhang H, Liu A, Bo W, Zhang M, Wang H, Feng X, Wu Y. Upregulation of HSD11B1 promotes cortisol production and inhibits NK cell activation in pancreatic adenocarcinoma. Mol Immunol 2024; 175:10-19. [PMID: 39276709 DOI: 10.1016/j.molimm.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
Cortisol is a glucocorticoid hormone that has immunosuppressive function. Elevated basal cortisol levels are present in patients with some kinds of cancers, but its role in the microenvironment of pancreatic adenocarcinoma (PAAD) remains unclear. This study analyzed the expression of genes involved in cortisol generation by using high-throughput sequencing data from TCGA portal and found HSD11B1 was significantly upregulated in patients with PAAD. The correlations between HSD11B1 level and the expression of 23 immunosuppressive receptors were analyzed by Spearman's correlation analysis. The function of HSD11B1 was examined in primary NK cells and PAAD cell lines. The levels of cortisol in medium and cell lysates were detected by ELISA. In vitro killing assay was used to evaluate the cytotoxicity of NK cells. Cell surface levels of CD96, Tim-3, PD-1, TIGIT, CTLA-4, NKp46, NKp30, NKD2G and LFA-1A, and intracellular levels of CD107a and IFN-γ were examined by flow cytometry. We observed that patients with higher HSD11B1 level had shorter survival time. HSD11B1 is positively correlated with the mRNA levels of 11 immunosuppressive receptors in PAAD. Higher HSD11B1 level relates to reduced abundance of activated NK cells in the tumors. HSD11B1 overexpressed NK cells exhibit exhausted phenotype with increased cortisol production, reduced viability, and reduced cytotoxicity against cancer cells. Overexpression of HSD11B1 did not change the viability of tumor cells but upregulated cortisol production. Targeting HSD11B1 by a specific inhibitor improved the NK cells responsiveness. In conclusion, HSD11B1 is upregulated in patients with PAAD, and higher HSD11B1 level is related to poor prognosis. Upregulation of HSD11B1 in NK and tumor cells increased the production and secretion of cortisol and induces NK cell exhaustion.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Aixiang Liu
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Wentao Bo
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mingyi Zhang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Haiqing Wang
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xielin Feng
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Wu
- Department of Hepatopancreatobiliary Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China; Department of Medical Oncology, Daytime Medical Treatment Area, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
21
|
Li Y, Li Z, Tang Y, Zhuang X, Feng W, Boor PPC, Buschow S, Sprengers D, Zhou G. Unlocking the therapeutic potential of the NKG2A-HLA-E immune checkpoint pathway in T cells and NK cells for cancer immunotherapy. J Immunother Cancer 2024; 12:e009934. [PMID: 39486805 PMCID: PMC11529472 DOI: 10.1136/jitc-2024-009934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/29/2024] [Indexed: 11/04/2024] Open
Abstract
Immune checkpoint blockade, which enhances the reactivity of T cells to eliminate cancer cells, has emerged as a potent strategy in cancer therapy. Besides T cells, natural killer (NK) cells also play an indispensable role in tumor surveillance and destruction. NK Group 2 family of receptor A (NKG2A), an emerging co-inhibitory immune checkpoint expressed on both NK cells and T cells, mediates inhibitory signal via interaction with its ligand human leukocyte antigen-E (HLA-E), thereby attenuating the effector and cytotoxic functions of NK cells and T cells. Developing antibodies to block NKG2A, holds promise in restoring the antitumor cytotoxicity of NK cells and T cells. In this review, we delve into the expression and functional significance of NKG2A and HLA-E, elucidating how the NKG2A-HLA-E axis contributes to tumor immune escape via signal transduction mechanisms. Furthermore, we provide an overview of clinical trials investigating NKG2A blockade, either as monotherapy or in combination with other therapeutic antibodies, highlighting the responses of the immune system and the clinical benefits for patients. We pay special attention to additional immune co-signaling molecules that serve as potential targets on both NK cells and T cells, aiming to evoke more robust immune responses against cancer. This review offers an in-depth exploration of the NKG2A-HLA-E pathway as a pivotal checkpoint in the anti-tumor responses, paving the way for new immunotherapeutic strategies to improve cancer patient outcomes.
Collapse
Affiliation(s)
- Yan Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhu Li
- Department of Dermatology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yisen Tang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaomei Zhuang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wanhua Feng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sonja Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guoying Zhou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
22
|
Di L, Li M, Lei X, Xie W, Liu G, Wang Y, Zhang W, Zhu WG. Caspase-4 in glioma indicates deterioration and unfavorable prognosis by affecting tumor cell proliferation and immune cell recruitment. Sci Rep 2024; 14:17443. [PMID: 39075190 PMCID: PMC11286837 DOI: 10.1038/s41598-024-65018-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/16/2024] [Indexed: 07/31/2024] Open
Abstract
Gliomas are the most common malignant tumors of the central nervous system, accounting for approximately 80% of all malignant brain tumors. Accumulating evidence suggest that pyroptosis plays an essential role in the progression of cancer. Unfortunately, the effect of the pyroptosis-related factor caspase-4 (CASP4) on immunotherapy and drug therapy for tumors has not been comprehensively investigated. In this study, we systematically screened six hub genes by pooling differential pyroptosis-related genes in The Cancer Genome Atlas (TCGA) glioma data and the degree of centrality of index-related genes in the protein-protein interaction network. We performed functional and pathway enrichment analyses of the six hub genes to explore their biological functions and potential molecular mechanisms. We then investigated the importance of CASP4 using Kaplan-Meier survival analysis of glioma patients. TCGA and the Chinese Glioma Genome Atlas (CGGA) databases showed that reduced CASP4 expression leads to the potent clinical deterioration of glioma patients. Computational analysis of the effect of CASP4 on the infiltration level and recruitment of glioma immune cells revealed that CASP4 expression was closely associated with a series of tumor-suppressive immune checkpoint molecules, chemokines, and chemokine receptors. We also found that aberrant CASP4 expression correlated with chemotherapeutic drug sensitivity. Finally, analysis at the cellular and tissue levels indicated an increase in CASP4 expression in glioma, and that CASP4 inhibition significantly inhibited the proliferation of glioma cells. Thus, CASP4 is implicated as a new prognostic biomarker for gliomas with the potential to further guide immunotherapy and chemotherapy strategies for glioma patients.
Collapse
Affiliation(s)
- Longjiang Di
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Mengyan Li
- Guangdong Key Laboratory of Genomic Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China
| | - Xianli Lei
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Faculty of Medicine, Peking University, Beijing, 100191, China
| | - Wenting Xie
- Department of Clinical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Guoqiang Liu
- Department of Clinical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China
| | - Yongqing Wang
- Division of Rheumatology and Immunology, University of Toledo Medical Center, Toledo, OH, 43614, USA
| | - Wenjing Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, Heilongjiang, China.
| | - Wei-Guo Zhu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Key Laboratory of Genomic Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
- College of Basic Medical Sciences, Wan Nan Medical College, Wuhu, 241006, China.
- International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
23
|
Meng Y, Shu Z, Wang X, Hong L, Wang B, Jiang J, He K, Cao Q, Shi F, Wang H, Gong L, Diao H. Hepatitis B Virus-Mediated m6A Demethylation Increases Hepatocellular Carcinoma Stemness and Immune Escape. Mol Cancer Res 2024; 22:642-655. [PMID: 38546386 PMCID: PMC11217737 DOI: 10.1158/1541-7786.mcr-23-0720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/22/2024] [Accepted: 03/26/2024] [Indexed: 07/03/2024]
Abstract
Hepatitis B viral (HBV) persistent infection plays a significant role in hepatocellular carcinoma (HCC) tumorigenesis. Many studies have revealed the pivotal roles of N6-methyladenosine (m6A) in multiple cancers, while the regulatory mechanism in stemness maintenance of HBV persistent infection-related HCC remains elusive. Here, we demonstrated that the level of m6A modification was downregulated by HBV in HBV-positive HCC, through enhanced stability of ALKBH5 mRNA. More specifically, we also identified that ALKBH5 mRNA was functionally required for the stemness maintenance and self-renewal in the HBV-positive HCC, but dispensable in HBV-negative HCC. Mechanistically, ALKBH5 demethylated the m6A modification in the 3' untranslated region of the oncogenic gene SNAI2 to prevent the recognition of YTHDF2 therewith stabilize SNAI2 transcripts, contributing to cancer stem cell traits in HBV-positive HCC. Moreover, the expression of SNAI2 reversed the suppression of stemness properties by knocking down ALKBH5. In addition, ALKBH5/SNAI2 axis accelerates tumor immune evasion through activated ligand of immune checkpoint CD155. Our study unveiled that the ALKBH5 induces m6A demethylation of the SNAI2 as a key regulator in HBV-related HCC, and identifies the function of ALKBH5/SNAI2/YTHDF2 axis in promoting the stem-like cells phenotype and immune escape during HBV infection. IMPLICATIONS HBV promotes HCC stemness maintenance through elevate m6A modification of SNAI2 in an ALKBH5-YTHDF2-dependent manner and increases the expression of the ligand of immune checkpoint CD155.
Collapse
Affiliation(s)
- Yuting Meng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Zheyue Shu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xueyao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, P.R. China
| | - Liang Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Baohua Wang
- Department of Ultrasound, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Kangxin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Qingyi Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Fan Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Hai Wang
- Department of Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Lan Gong
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
24
|
Wang D, Dou L, Sui L, Xue Y, Xu S. Natural killer cells in cancer immunotherapy. MedComm (Beijing) 2024; 5:e626. [PMID: 38882209 PMCID: PMC11179524 DOI: 10.1002/mco2.626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands-the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.
Collapse
Affiliation(s)
- DanRu Wang
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LingYun Dou
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - LiHao Sui
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Yiquan Xue
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology Naval Medical University Shanghai China
- Shanghai Institute of Stem Cell Research and Clinical Translation Dongfang Hospital Shanghai China
| |
Collapse
|
25
|
Assal RA, Elemam NM, Mekky RY, Attia AA, Soliman AH, Gomaa AI, Efthimiadou EK, Braoudaki M, Fahmy SA, Youness RA. A Novel Epigenetic Strategy to Concurrently Block Immune Checkpoints PD-1/PD-L1 and CD155/TIGIT in Hepatocellular Carcinoma. Transl Oncol 2024; 45:101961. [PMID: 38631259 PMCID: PMC11040172 DOI: 10.1016/j.tranon.2024.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Tumor microenvironment is an intricate web of stromal and immune cells creating an immune suppressive cordon around the tumor. In hepatocellular carcinoma (HCC), Tumor microenvironment is a formidable barrier towards novel immune therapeutic approaches recently evading the oncology field. In this study, the main aim was to identify the intricate immune evasion tactics mediated by HCC cells and to study the epigenetic modulation of the immune checkpoints; Programmed death-1 (PD-1)/ Programmed death-Ligand 1 (PD-L1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT)/Cluster of Differentiation 155 (CD155) at the tumor-immune synapse. Thus, liver tissues, PBMCs and sera were collected from Hepatitis C Virus (HCV), HCC as well as healthy individuals. Screening was performed to PD-L1/PD-1 and CD155/TIGIT axes in HCC patients. PDL1, CD155, PD-1 and TIGIT were found to be significantly upregulated in liver tissues and peripheral blood mononuclear cells (PBMCs) of HCC patients. An array of long non-coding RNAs (lncRNAs) and microRNAs validated to regulate such immune checkpoints were screened. The lncRNAs; CCAT-1, H19, and MALAT-1 were all significantly upregulated in the sera, PBMCs, and tissues of HCC patients as compared to HCV patients and healthy controls. However, miR-944-5p, miR-105-5p, miR-486-5p, miR-506-5p, and miR-30a-5p were downregulated in the sera and liver tissues of HCC patients. On the tumor cell side, knocking down of lncRNAs-CCAT-1, MALAT-1, or H19-markedly repressed the co-expression of PD-L1 and CD155 and accordingly induced the cytotoxicity of co-cultured primary immune cells. On the immune side, ectopic expression of the under-expressed microRNAs; miR-486-5p, miR-506-5p, and miR-30a-5p significantly decreased the transcript levels of PD-1 in PBMCs with no effect on TIGIT. On the other hand, ectopic expression of miR-944-5p and miR-105-5p in PBMCs dramatically reduced the co-expression of PD-1 and TIGIT. Finally, all studied miRNAs enhanced the cytotoxic effects of PBMCs against Huh7 cells. However, miR-105-5p showed the highest augmentation for PBMCs cytotoxicity against HCC cells. In conclusion, this study highlights a novel co-targeting strategy using miR-105-5p mimics, MALAT-1, CCAT-1 and H19 siRNAs to efficiently hampers the immune checkpoints; PD-L1/PD-1 and CD155/TIGIT immune evasion properties in HCC.
Collapse
Affiliation(s)
- Reem A Assal
- Department of Pharmacology and Toxicology, Heliopolis University for Sustainable Development, Cairo-Ismailia Desert Road, 11785, Cairo, Egypt
| | - Noha M Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, 27272, Sharjah, United Arab Emirates; Research Institute for Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Radwa Y Mekky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA University), Cairo, Egypt
| | - Abdelrahman A Attia
- General Surgery Department, Ain Shams University, Demerdash Hospital, Cairo, Egypt
| | - Aya Hesham Soliman
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Asmaa Ibrahim Gomaa
- Department of Hepatology, National Liver Institute, Menoufiya University, Shebin El-Kom, Egypt
| | - Eleni K Efthimiadou
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical, and Biological Science, School of Life and Medical Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Sherif Ashraf Fahmy
- Chemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, 11835, Cairo, Egypt
| | - Rana A Youness
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt; Molecular Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), New Administrative Capital, 11835, Cairo, Egypt.
| |
Collapse
|
26
|
Xiang S, Li J, Zhang M. TGF-β1 inhibitor enhances the therapeutic effect of microwave ablation on hepatocellular carcinoma. Int J Hyperthermia 2024; 41:2359496. [PMID: 38909985 DOI: 10.1080/02656736.2024.2359496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGROUND Microwave ablation (MWA) is a widely adopted treatment technique for hepatocellular carcinoma (HCC). However, MWA alone is of limited use and has a high recurrence rate. Transforming growth factor-β1 (TGF-β1) is recognized as a potential therapeutic target for HCC patients. Therefore, this study was designed to investigate whether the TGF-β1 inhibitor could increase the efficacy of MWA therapy for HCC treatment. METHODS In vitro, HCC cells challenged with TGF-β1 inhibitor (SB-525334), or normal saline were then heated by microwave. Methyl tetrazolium assays were performed to detect cell survival rate and half-maximal drug inhibitory concentration (IC50). Cell viability and apoptosis were detected by cell counting kit-8 assays, flow cytometry and western blotting. In vivo, the mice injected with HepG2 cells received oral gavage of SB-525334 (20 mg/kg) or normal saline and MWA at a power of 15 W. Tumor volume was recorded. Expression of Ki67 and apoptosis-related proteins were detected by immunohistochemistry and western blotting. TUNEL assays were used to detect cell death ratio. Histopathological changes were examined by hematoxylin and eosin staining. The mechanisms associated with the function of MWA combined with TGF-β1 inhibitor in HCC development were explored by western blotting. RESULTS Combination of MWA and SB-525334 decreased the survival rate and promoted the apoptosis of HCC cells compared with MWA alone. SB-525334 enhanced the suppressive effect of MWA on tumor growth and amplified cell apoptosis. Mechanistically, MWA collaborated with SB-525334 inhibitor inactivated the TGF-β1/Smad2/Smad3 pathway. CONCLUSION TGF-β1 inhibitor enhances the therapeutic effect of MWA on HCC.
Collapse
Affiliation(s)
- Shufang Xiang
- Department of Ultrasound, The First Affiliated Hospital of Yangtze University, Jingzhou City, P. R.China
| | - Juan Li
- Department of Ultrasound, The First Affiliated Hospital of Yangtze University, Jingzhou City, P. R.China
| | - Mei Zhang
- Department of Ultrasound, The First Affiliated Hospital of Yangtze University, Jingzhou City, P. R.China
| |
Collapse
|
27
|
Xi F, Sun H, Peng H, Lian Z, Wei H, Tian Z, Sun R, Chen Y. Hepatocyte-derived FGL1 accelerates liver metastasis and tumor growth by inhibiting CD8+ T and NK cells. JCI Insight 2024; 9:e173215. [PMID: 38973608 PMCID: PMC11383586 DOI: 10.1172/jci.insight.173215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/17/2024] [Indexed: 07/09/2024] Open
Abstract
Fibrinogen-like protein 1 (FGL1) contributes to the proliferation and metabolism of hepatocytes; however, as a major ligand of the immune checkpoint, its role in the liver regional immune microenvironment is poorly understood. Hepatocytes specifically and highly expressed FGL1 under normal physiological conditions. Increases in hepatic CD8+ T and NK cell numbers and functions were found in Fgl1-deficient (Fgl1-/-) mice, but not in the spleen or lymph node, similar to findings in anti-FGL1 mAb-treated wild-type mice. Furthermore, Fgl1 deficiency or anti-FGL1 mAb blockade restrained liver metastasis and slowed the growth of orthotopic tumors, with significantly prolonged survival of tumor-bearing mice. Tumor-infiltrating hepatic CD8+ T and NK cells upregulated the expression of lymphocyte activation gene-3 (LAG-3) and exhibited stronger antitumor activities after anti-FGL1 treatment. The antitumor efficacy of FGL1 blockade depended on cytotoxic T lymphocytes and NK cells, demonstrated by using a cell-deficient mouse model and cell transfer in vivo. In vitro, FGL1 directly inhibited hepatic T and NK cells related to the receptor LAG-3. In conclusion, hepatocyte-derived FGL1 played critical immunoregulatory roles in the liver and contributed to liver metastasis and tumor growth by inhibiting CD8+ T and NK cell functions via the receptor LAG-3, providing a new strategy for liver cancer immunotherapy.
Collapse
Affiliation(s)
- Fengjia Xi
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| | - Haoyu Sun
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| | - Hui Peng
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| | - Zhexiong Lian
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| | - Haiming Wei
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| | - Zhigang Tian
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| | - Rui Sun
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| | - Yongyan Chen
- Key Laboratory of Immune Response and Immunotherapy, the Institute of Immunology, Biomedical Sciences and Health Laboratory of Anhui Province, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| |
Collapse
|
28
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
29
|
Gong Y, Zhou M, Zhu Y, Pan J, Zhou X, Jiang Y, Zeng H, Zheng H, Geng X, Huang D. PVALB Was Identified as an Independent Prognostic Factor for HCC Closely Related to Immunity, and Its Absence Accelerates Tumor Progression by Regulating NK Cell Infiltration. J Hepatocell Carcinoma 2024; 11:813-838. [PMID: 38737383 PMCID: PMC11088852 DOI: 10.2147/jhc.s450479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/23/2024] [Indexed: 05/14/2024] Open
Abstract
Purpose Hepatocellular carcinoma is the most common primary liver cancer, with poor prognosis. Complex immune microenvironment of the liver is linked to the development of HCC. PVALB is a calcium-binding protein which has been described as a cancer suppressor gene in thyroid cancer and glioma. Nevertheless, the role of PVALB in HCC is unknown. Materials and Methods We obtained data from TCGA and GSE54236 datasets. MCP-counter, WGCNA and LASSO model were applied to identify PVALB. With UALCAN, MethSurv, and other websites, we probed the expression, methylation and survival of PVALB. LinkedOmics and GSEA were adopted for functional analysis, while TIMER, TISIDB, Kaplan-Meier plotter, TIDE databases were utilized to evaluate the relevance of PVALB to the tumor immune microenvironment and predict immunotherapy efficacy. TargetScan, DIANA, LncRNASNP2 databases and relevant experiments were employed to construct ceRNA network. Finally, molecular docking and drug sensitivity of PVALB were characterized by GeneMANIA, CTD, and so on. Results PVALB was recognized as a gene associated with HCC and NK cell. Its expression was down-regulated in HCC tissue, which lead to adverse prognosis. Besides, the hypomethylation of PVALB was related to its reduced expression. Notably, PVALB was tightly linked to immune, and its reduced expression attenuated the anticancer effect of NK cells via the Fas/FasL pathway, leading to a adverse outcome. The lnc-YY1AP1-3/hsa-miR-6735-5p/PVALB axis may regulate the PVALB expression. Finally, we found immunotherapy might be a viable treatment option. Conclusion In a word, PVALB is a prognostic indicator, whose low expression facilitates HCC progression by impacting NK cell infiltration.
Collapse
Affiliation(s)
- Yiyang Gong
- Department of Thyroid Surgery; Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Yanting Zhu
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Jingying Pan
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Yike Jiang
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Hong Zeng
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Hao Zheng
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Xitong Geng
- Second College of Clinical Medicine, Nanchang University, Nanchang, People’s Republic of China
| | - Da Huang
- Department of Thyroid Surgery; Second Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
30
|
Shen KY, Zhu Y, Xie SZ, Qin LX. Immunosuppressive tumor microenvironment and immunotherapy of hepatocellular carcinoma: current status and prospectives. J Hematol Oncol 2024; 17:25. [PMID: 38679698 PMCID: PMC11057182 DOI: 10.1186/s13045-024-01549-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major health concern worldwide, with limited therapeutic options and poor prognosis. In recent years, immunotherapies such as immune checkpoint inhibitors (ICIs) have made great progress in the systemic treatment of HCC. The combination treatments based on ICIs have been the major trend in this area. Recently, dual immune checkpoint blockade with durvalumab plus tremelimumab has also emerged as an effective treatment for advanced HCC. However, the majority of HCC patients obtain limited benefits. Understanding the immunological rationale and exploring novel ways to improve the efficacy of immunotherapy has drawn much attention. In this review, we summarize the latest progress in this area, the ongoing clinical trials of immune-based combination therapies, as well as novel immunotherapy strategies such as chimeric antigen receptor T cells, personalized neoantigen vaccines, oncolytic viruses, and bispecific antibodies.
Collapse
Affiliation(s)
- Ke-Yu Shen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Zhu
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Sun-Zhe Xie
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lun-Xiu Qin
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
31
|
Deng R, Tian R, Li X, Xu Y, Li Y, Wang X, Li H, Wang L, Xu B, Yang D, Tang S, Xue B, Zuo C, Zhu H. ISG12a promotes immunotherapy of HBV-associated hepatocellular carcinoma through blocking TRIM21/AKT/β-catenin/PD-L1 axis. iScience 2024; 27:109533. [PMID: 38591006 PMCID: PMC11000115 DOI: 10.1016/j.isci.2024.109533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/16/2024] [Accepted: 03/16/2024] [Indexed: 04/10/2024] Open
Abstract
Hepatitis B virus (HBV) infection generally elicits weak type-I interferon (IFN) immune response in hepatocytes, covering the regulatory effect of IFN-stimulated genes. In this study, low level of IFN-stimulated gene 12a (ISG12a) predicted malignant transformation and poor prognosis of HBV-associated hepatocellular carcinoma (HCC), whereas high level of ISG12a indicated active NK cell phenotypes. ISG12a interacts with TRIM21 to inhibit the phosphorylation activation of protein kinase B (PKB, also known as AKT) and β-catenin, suppressing PD-L1 expression to block PD-1/PD-L1 signaling, thereby enhancing the anticancer effect of NK cells. The suppression of PD-1-deficient NK-92 cells on HBV-associated tumors was independent of ISG12a expression, whereas the anticancer effect of PD-1-expressed NK-92 cells on HBV-associated tumors was enhanced by ISG12a and treatments of atezolizumab and nivolumab. Thus, tumor intrinsic ISG12a promotes the anticancer effect of NK cells by regulating PD-1/PD-L1 signaling, presenting the significant role of innate immunity in defending against HBV-associated HCC.
Collapse
Affiliation(s)
- Rilin Deng
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
- Hunan Normal University School of Medicine, Changsha 410013, Hunan, China
| | - Renyun Tian
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
| | - Xinran Li
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Yan Xu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Yongqi Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130031, Jilin, China
| | - Xintao Wang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Huiyi Li
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
| | - Luoling Wang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Biaoming Xu
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Tumor of Pancreaticobiliary Duodenal Junction In Hunan Province, Changsha 410013, Hunan, China
| | - Di Yang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Songqing Tang
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
| | - Binbin Xue
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
| | - Chaohui Zuo
- Department of Gastroduodenal and Pancreatic Surgery, Translational Medicine Joint Research Center of Liver Cancer, Laboratory of Digestive Oncology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Tumor of Pancreaticobiliary Duodenal Junction In Hunan Province, Changsha 410013, Hunan, China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, Hunan, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Department of Pathogen Biology, School of Basic Medicine and Life Science, Department of Clinical Laboratory of the Second Affiliated Hospital, The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, Hainan, China
| |
Collapse
|
32
|
Jou E. Clinical and basic science aspects of innate lymphoid cells as novel immunotherapeutic targets in cancer treatment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:1-60. [PMID: 39461748 DOI: 10.1016/bs.pmbts.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Immunotherapy has revolutionised cancer treatment over the past decade, demonstrating remarkable efficacy across a broad range of cancer types. However, not all patients or cancer types respond to contemporary clinically-utilised immunotherapeutic strategies, which largely focus on harnessing adaptive immune T cells for cancer treatment. Accordingly, it is increasingly recognised that upstream innate immune pathways, which govern and orchestrate the downstream adaptive immune response, may prove critical in overcoming cancer immunotherapeutic resistance. Innate lymphoid cells (ILCs) are the most recently discovered major innate immune cell population. They have overarching roles in homeostasis and orchestrating protective immunity against pathogens. As innate immune counterparts of adaptive immune T cells, ILCs exert effector functions through the secretion of cytokines and direct cell-to-cell contact, with broad influence on the overall immune response. Importantly, dysregulation of ILC subsets have been associated with a range of diseases, including immunodeficiency disorders, allergy, autoimmunity, and more recently, cancer. ILCs may either promote or inhibit cancer initiation and progression depending on the cancer type and the specific ILC subsets involved. Critically, therapeutic targeting of ILCs and their associated cytokines shows promise against a wide range of cancer types in both preclinical models and early phase oncology clinical trials. This chapter provides a comprehensive overview of the current understanding of ILC subsets and the associated cytokines they produce in cancer pathogenesis, with specific focus on how these innate pathways are, or can be targeted, therapeutically to overcome therapeutic resistance and ultimately improve patient care.
Collapse
Affiliation(s)
- Eric Jou
- Department of Oncology, Oxford University Hospitals, University of Oxford, Oxford, United Kingdom; Kellogg College, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
33
|
Wang J, Yang L, Wang HX, Cui SP, Gao Y, Hu B, Zhou L, Lang R. Anti-PD-1 therapy reverses TIGIT +CD226 +NK depletion in immunotherapy resistance of hepatocellular carcinoma through PVR/TIGIT pathway. Int Immunopharmacol 2024; 130:111681. [PMID: 38368771 DOI: 10.1016/j.intimp.2024.111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Immunotherapy resistance conducts the main reason for failure of PD-1-based immune checkpoint inhibitors (ICIs) in patients with hepatocellular carcinoma (HCC). This study aims to clarify the mechanism of nature kill cells (NK) depletion in immunotherapy resistance of HCC. Cancerous /paracancerous tissues and peripheral blood (PB) of 55 HCC patients were collected and grouped according to differentiation degree, FCM, IHC and lymphocyte culture drug intervention experiments were used to determine NK cell depletion degree. Furthermore, a mouse model of HCC in situ was constructed and divided into different groups according to intervention measures of ICIs. Immunofluorescence thermography was used to observe changes in tumor burden. NK cells in cancerous tissues significantly up-regulated TIGIT expression (P < 0.001). Intervention experiments revealed that TIGIT and PD-1 expression decreased gradually with increased PD-1 inhibitor dose in moderately-highly differentiated patients (P < 0.05). Animal experiment showed that tumors proliferation in experimental group was inhibited after PD-1 blockage, WB indicated that ICIs decreased TIGIT and PVRL1 protein expression while increased CD226 and PVRL3 protein expression. We concluded that TIGIT+NK cells competitively bind to PVR with CD226 and promote NK cell depletion. Anti-PD-1 decreases PVRL1 expression through PD-1/PD-L1 pathway, reducing the PVR/TIGIT inhibitory signal pathway, and enhancing function of PVR/CD226 activation signal.
Collapse
Affiliation(s)
- Jing Wang
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lin Yang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Han-Xuan Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China
| | - Song-Ping Cui
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China
| | - Ya Gao
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Bin Hu
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lin Zhou
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China.
| | - Ren Lang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
34
|
Chen J, Sun S, Li H, Cai X, Wan C. IL-22 signaling promotes sorafenib resistance in hepatocellular carcinoma via STAT3/CD155 signaling axis. Front Immunol 2024; 15:1373321. [PMID: 38596684 PMCID: PMC11003268 DOI: 10.3389/fimmu.2024.1373321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Sorafenib is currently the first-line treatment for patients with advanced hepatocellular carcinoma (HCC). Nevertheless, sorafenib resistance remains a huge challenge in the clinic. Therefore, it is urgent to elucidate the mechanisms underlying sorafenib resistance for developing novel treatment strategies for advanced HCC. In this study, we aimed to investigate the role and mechanisms of interleukin-22 (IL-22) in sorafenib resistance in HCC. Methods The in vitro experiments using HCC cell lines and in vivo studies with a nude mouse model were used. Calcium staining, chromatin immunoprecipitation, lactate dehydrogenase release and luciferase reporter assays were employed to explore the expression and roles of IL-22, STAT3 and CD155 in sorafenib resistance. Results Our clinical results demonstrated a significant correlation between elevated IL-22 expression and poor prognosis in HCC. Analysis of transcriptomic data from the phase-3 STORM-trial (BIOSTORM) suggested that STAT3 signaling activation and natural killer (NK) cell infiltration may associate sorafenib responses. STAT3 signaling could be activated by IL-22 administration in HCC cells, and then enhanced sorafenib resistance in HCC cells by promoting cell proliferation and reducing apoptosis in vitro and in vivo. Further, we found IL-22/STAT3 axis can transcriptionally upregulate CD155 expression in HCC cells, which could significantly reduce NK cell-mediated HCC cell lysis in a co-culture system. Conclusions Collectively, IL-22 could contribute to sorafenib resistance in HCC by activating STAT3/CD155 signaling axis to decrease the sensitivities of tumor cells to sorafenib-mediated direct cytotoxicity and NK cell-mediated lysis. These findings deepen the understanding of how sorafenib resistance develops in HCC in terms of IL-22/STAT3 signaling pathway, and provide potential targets to overcome sorafenib resistance in patients with advanced HCC.
Collapse
Affiliation(s)
- Junzhang Chen
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiran Sun
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Li
- Department of Hepatobiliary Pancreatic Tumor Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiong Cai
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chidan Wan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Pu L, Sun Y, Pu C, Zhang X, Wang D, Liu X, Guo P, Wang B, Xue L, Sun P. Machine learning-based disulfidptosis-related lncRNA signature predicts prognosis, immune infiltration and drug sensitivity in hepatocellular carcinoma. Sci Rep 2024; 14:4354. [PMID: 38388539 PMCID: PMC10883983 DOI: 10.1038/s41598-024-54115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Disulfidptosis a new cell death mode, which can cause the death of Hepatocellular Carcinoma (HCC) cells. However, the significance of disulfidptosis-related Long non-coding RNAs (DRLs) in the prognosis and immunotherapy of HCC remains unclear. Based on The Cancer Genome Atlas (TCGA) database, we used Least Absolute Shrinkage and Selection Operator (LASSO) and Cox regression model to construct DRL Prognostic Signature (DRLPS)-based risk scores and performed Gene Expression Omnibus outside validation. Survival analysis was performed and a nomogram was constructed. Moreover, we performed functional enrichment annotation, immune infiltration and drug sensitivity analyses. Five DRLs (AL590705.3, AC072054.1, AC069307.1, AC107959.3 and ZNF232-AS1) were identified to construct prognostic signature. DRLPS-based risk scores exhibited better predictive efficacy of survival than conventional clinical features. The nomogram showed high congruence between the predicted survival and observed survival. Gene set were mainly enriched in cell proliferation, differentiation and growth function related pathways. Immune cell infiltration in the low-risk group was significantly higher than that in the high-risk group. Additionally, the high-risk group exhibited higher sensitivity to Afatinib, Fulvestrant, Gefitinib, Osimertinib, Sapitinib, and Taselisib. In conclusion, our study highlighted the potential utility of the constructed DRLPS in the prognosis prediction of HCC patients, which demonstrated promising clinical application value.
Collapse
Affiliation(s)
- Lei Pu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Yan Sun
- Department of Veterinary Medicine, Shandong Vocational Animal Science and Veterinary College, Weifang, 261071, Shandong, People's Republic of China
| | - Cheng Pu
- School of Martial Arts, Shanghai University of Sport, Shanghai, 200438, People's Republic of China
| | - Xiaoyan Zhang
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Dong Wang
- Jiangsu Vocational Institute of Architectural Technology, Xuzhou, 221116, Jiangsu, People's Republic of China
| | - Xingning Liu
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Pin Guo
- Department of Veterinary Medicine, Shandong Vocational Animal Science and Veterinary College, Weifang, 261071, Shandong, People's Republic of China
| | - Bing Wang
- Department of Oncological Surgery, Minhang Branch of Shanghai Cancer Center, Fudan University, Shanghai, 200240, People's Republic of China.
| | - Liang Xue
- Zhejiang Institute of Sports Science, Hangzhou, 310004, Zhejiang, People's Republic of China.
| | - Peng Sun
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
36
|
Lu Z, Chai X, Pan Y, Li S. The causality between CD8 +NKT cells and CD16 -CD56 on NK cells with hepatocellular carcinoma: a Mendelian randomization study. Infect Agent Cancer 2024; 19:3. [PMID: 38245747 PMCID: PMC10799464 DOI: 10.1186/s13027-024-00565-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), which is featured with high morbidity and mortality worldwide, is a primary malignant tumor of the liver. Recently, there is a wealth of supporting evidence revealing that NK cell-related immune traits are strongly associated with the development of HCC, but the causality between them has not been proven. METHODS Two-sample Mendelian randomization (MR) study was performed to probe the causal correlation between NK cell-related immune traits and HCC. Genetic variations in NK cell-related immune traits were extracted from recent genome-wide association studies (GWAS) of individuals with European blood lineage. HCC data were derived from the UK Biobank Consortium's GWAS summary count data, including a total of 372,184 female and male subjects, with 168 cases and 372,016 controls, all of whom are of European ancestry. Sensitivity analysis was mainly used for heterogeneity and pleiotropy testing. RESULTS Our research indicated the causality between NK cell-related immune traits and HCC. Importantly, CD8+NKT cells had protective causal effects on HCC (OR = 0.9996;95%CI,0.9993-0.9999; P = 0.0489). CD16-CD56 caused similar effects on NK cells (OR = 0.9997;95%CI,0.9996-0.9999; P = 0.0117) as CD8+NKT cells. Intercepts from Egger showed no pleiotropy and confounding factors. Furthermore, insufficient evidence was found to support the existence of heterogeneity by Cochran's Q test. CONCLUSION MR analysis suggested that low CD8+NKT cells and CD16-CD56 expression on NK cells were linked with a higher risk of HCC.
Collapse
Affiliation(s)
- Zhengmei Lu
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316021, China
| | - Xiaowei Chai
- Tongji Hospital Affiliated to Tongji University, Shanghai, 200040, China
| | - Yong Pan
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316021, China
| | - Shibo Li
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, 316021, China.
| |
Collapse
|
37
|
Zhang P, Liu X, Gu Z, Jiang Z, Zhao S, Song Y, Yu J. Targeting TIGIT for cancer immunotherapy: recent advances and future directions. Biomark Res 2024; 12:7. [PMID: 38229100 PMCID: PMC10790541 DOI: 10.1186/s40364-023-00543-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/08/2023] [Indexed: 01/18/2024] Open
Abstract
As a newly identified checkpoint, T cell immunoreceptor with immunoglobulin and tyrosine-based inhibitory motif (ITIM) domain (TIGIT) is highly expressed on CD4+ T cells, CD8+ T cells, natural killer (NK) cells, regulatory T cells (Tregs), and tumor-infiltrating lymphocytes (TILs). TIGIT has been associated with NK cell exhaustion in vivo and in individuals with various cancers. It not only modulates NK cell survival but also mediates T cell exhaustion. As the primary ligand of TIGIT in humans, CD155 may be the main target for immunotherapy due to its interaction with TIGIT. It has been found that the anti-programmed cell death protein 1 (PD-1) treatment response in cancer immunotherapy is correlated with CD155 but not TIGIT. Anti-TIGIT alone and in combination with anti-PD-1 agents have been tested for cancer immunotherapy. Although two clinical studies on advanced lung cancer had positive results, the TIGIT-targeted antibody, tiragolumab, recently failed in two new trials. In this review, we highlight the current developments on TIGIT for cancer immunotherapy and discuss the characteristics and functions of TIGIT.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Thoracic Oncology, Zhengzhou, 450052, Henan, China
| | - Xinyuan Liu
- Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Zhuoyu Gu
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Medical Key Laboratory of Thoracic Oncology, Zhengzhou, 450052, Henan, China
| | - Zhongxing Jiang
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Song Zhao
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yongping Song
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Jifeng Yu
- Department of Hematology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004, Henan, China.
| |
Collapse
|
38
|
Ma X, Wei X, Yang G, Li S, Liu R. A Novel Natural Killer Cell-related Gene Signature for Improving the Prediction of Prognosis and Immunotherapy Response in Bladder Cancer. Comb Chem High Throughput Screen 2024; 27:1205-1221. [PMID: 37653625 DOI: 10.2174/1386207326666230831164358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Bladder cancer (BLCA) is a commonly diagnosed cancer worldwide that exhibits high rates of recurrence and metastasis. Immunotherapy is increasingly being recognised in the clinical management of bladder cancer. In addition, the prospect of developing Natural Killer (NK) cell-related immunotherapy is promising in BLCA. METHODS We established and verified a prognostic signature based on NK cell-related gene expression. We then calculated the NKscore of BLCA samples and correlated it with the clinical outcomes, molecular subtypes of BLCA, tumour microenvironment (TME), and predicted efficacy of immune checkpoint inhibitors (ICI) and chemotherapy drugs to thoroughly explore the implications of the NKscore. Finally, the role of the NK signature gene HECTD1 in BLCA was verified by Quantitative Real-time PCR, Cell Counting Kit-8 Assay (CCK-8), Transwell Assay and Colony Formation Experiment. RESULTS We analysed NK cell-associated genes and identified six genes with significant prognostic relevance. A high NK score significantly represents a worse prognosis. NKscore was significantly correlated with seven types of classical molecular subtype classifications of BLCA. In addition, NKscore positively correlates with NK-related immune checkpoints, suggesting that emerging NK cell immune checkpoint inhibitors, such as monalizumab, may have potential therapeutic promise for patients with high NKscore. The results of the T cell inflamed score (TIS) and tumour immune dysfunction exclusion (TIDE) score confirmed the suitability of immunotherapy for patients with a high NK score. Likewise, patients with a high NK score may be more suitable for several significant chemotherapeutic drugs. Functional experiments showed that the knockdown of HECTD1 significantly attenuated the proliferation, migration, and invasion ability of tumour cells. CONCLUSION To sum up, the capability of our signature to predict prognosis and immunotherapy response was robust. Hopefully, these results will provide new insights for BLCA research and patient immunotherapy.
Collapse
Affiliation(s)
- Xudong Ma
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, Baotou Central Hospital, Inner Mongolia Medical University, Baotou, China
| | - Xifeng Wei
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Guanghua Yang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shuai Li
- Department of Urology, Baotou Central Hospital, Inner Mongolia Medical University, Baotou, China
| | - Ranlu Liu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
39
|
Pan W, Tao T, Qiu Y, Zhu X, Zhou X. Natural killer cells at the forefront of cancer immunotherapy with immune potency, genetic engineering, and nanotechnology. Crit Rev Oncol Hematol 2024; 193:104231. [PMID: 38070841 DOI: 10.1016/j.critrevonc.2023.104231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/22/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2024] Open
Abstract
Natural killer (NK) cells are vital components of the human immune system, acting as innate lymphocytes and playing a crucial role in immune surveillance. Their unique ability to independently eliminate target cells without antigen contact or antibodies has sparked interest in immunological research. This review examines recent NK cell developments and applications, encompassing immune functions, interactions with target cells, genetic engineering techniques, pharmaceutical interventions, and implications in cancers. Insights into NK cell regulation emerge, with a focus on promising genetic engineering like CAR-engineered NK cells, enhancing specificity against tumors. Immune checkpoint inhibitors also enhance NK cells' potential in cancer therapy. Nanotechnology's emergence as a tool for targeted drug delivery to improve NK cell therapies is explored. In conclusion, NK cells are pivotal in immunity, holding exciting potential in cancer immunotherapy. Ongoing research promises novel therapeutic strategies, advancing immunotherapy and medical interventions.
Collapse
Affiliation(s)
- Weiyi Pan
- Department of Immunology, School of Medicine, Nantong University, Nantong, China; School of Public Health, Southern Medical University, Guangzhou, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Yishu Qiu
- Department of Biology, College of Arts and Science, New York University, New York, USA
| | - Xiao Zhu
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.
| |
Collapse
|
40
|
Li L, Li A, Jin H, Li M, Jia Q. Inhibitory receptors and checkpoints on NK cells: Implications for cancer immunotherapy. Pathol Res Pract 2024; 253:155003. [PMID: 38042093 DOI: 10.1016/j.prp.2023.155003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
With the success of immunosuppressive checkpoint in tumor therapy, the corresponding adverse response and drug resistance defects have been exposed. T cells and NK cells are the body's immune system of the two substantial main forces. in recent years, study of T cell checkpoints appeared a certain block, such as PD-1 the effect not benign, on the distribution of NK cell surface excitatory and inhibitory receptors under normal conditions to maintain steady, could be targeted in the tumor treatment blockade have therapeutic effect. This paper reviews the function of NK cells and the effects of corresponding receptors in various types of tumors, providing a direction for the selection of appropriate gate control sites for future treatment.
Collapse
Affiliation(s)
- Lingfei Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Ang Li
- Department of Cardiology, 2nd Medical Center of PLA General Hospital, Beijing, China
| | - Hai Jin
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China.
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| |
Collapse
|
41
|
Kim HR, Seo CW, Kim J. The value of CDC42 effector protein 2 as a novel prognostic biomarker in liver hepatocellular carcinoma: a comprehensive data analysis. Osong Public Health Res Perspect 2023; 14:451-467. [PMID: 38204425 PMCID: PMC10788419 DOI: 10.24171/j.phrp.2023.0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/18/2023] [Accepted: 11/14/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The prognostic significance of CDC42 effector protein 2 (CDC42EP2) and its association with tumor-infiltrating immune cells (TIICs) have not been explored in liver hepatocellular carcinoma (LIHC). This study aims to assess the potential prognostic value of CDC42EP2 by conducting a comprehensive analysis of online databases pertaining to LIHC. METHODS We evaluated the potential of CDC42EP2 as a prognostic biomarker by utilizing online databases such as TIMER, GEPIA2, KM, OSlihc, HPA, and LinkedOmics. RESULTS In LIHC, we observed that the mRNA and protein expression of CDC42EP2 were upregulated compared to normal tissues. Upregulated CDC42EP2 expression was associated with a worse prognosis based on the clinicopathological characteristics of patients with LIHC. Furthermore, CDC42EP2 was positively associated with TIICs. In the co-expression and functional enrichment analyses of CDC42EP2, 11,416 genes showed positive associations with CDC42EP2 while 8,008 genes showed negative associations. CDC42EP2-related co-expression genes were involved in protein localization to the endoplasmic reticulum, translational initiation, and RNA catabolic processes in gene set enrichment analysis-Gene Ontology (GSEAGO), and regulated the ribosome, spliceosome, and primary immune deficiency in the GSEAKyoto Encyclopedia of Genes and Genomes (KEGG) pathway. In a survival map, 23 and 17 genes that exhibited positive associations with CDC42EP2 showed a significant hazard ratio (HR) for overall survival and disease-free survival, respectively. CONCLUSION Our findings demonstrated that CDC42EP2 is a novel prognostic biomarker and a potential tumor immune therapeutic target in patients with LIHC.
Collapse
Affiliation(s)
- Hye-Ran Kim
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| | - Choong Won Seo
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| | - Jongwan Kim
- Department of Biomedical Laboratory Science, Dong-Eui Institute of Technology, Busan, Republic of Korea
| |
Collapse
|
42
|
Li S, Weng J, Xiao C, Lu J, Cao W, Song F, He Z, Zhang P, Zhu Z, Xu J. Cuproptosis-related molecular patterns and gene (ATP7A) in hepatocellular carcinoma and their relationships with tumor immune microenvironment and clinical features. Cancer Rep (Hoboken) 2023; 6:e1904. [PMID: 37885090 PMCID: PMC10728522 DOI: 10.1002/cnr2.1904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/14/2023] [Accepted: 09/14/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Cuproptosis has been studied in various aspects as a new form of cell death. AIMS We hope to explore the molecular patterns and genes related to cuproptosis in evaluating and predicting the prognosis of hepatocellular carcinoma (HCC), as well as the impact of tumor immune microenvironment. METHODS AND RESULTS Sixteen cuproptosis related gene (CRGs) and cuproptosis related molecular and gene characteristics were comprehensively analyzed from 492 HCC samples. Cuproptosis related molecular patterns were generated by consensus clustering algorithm, including cuproptosis clusters, cuproptosis gene clusters (CGC) and cuproptosis score (CS). The characteristics of tumor microenvironment (TME) and tumor immune cells were described by the ssGSEA and ESTIMATE algorithms. Cuproptosis score was established to assess the clinical characteristics, prognostic and immunotherapy. The role and mechanism of CRG (ATP7A) in HCC, as well as its relationship with TME and immune checkpoints, have been further explored. The results of somatic mutation, copy number variations (CNV), and CRGs expression in HCC suggested the CRGs might participate in the HCC oncogenesis. The cuproptosis clusters were closely related to the clinical pathological characteristics, biological processes, and prognosis of HCC. The three CGC was revealed to be consistent with the three immune infiltration characterizations, including immune-high, immune-mid, and immune-low subtypes. Higher CS was characterized by decreased TMB, activated immunity, higher immune cell proportion score (IPS) and better overall survival (OS), which indicated higher CS was immune-high type and with better treatment effect and prognosis. The ATP7A had the highest hazard ratio (HR = 1.465, p < .001), was high expression in HCC tissues and with a shorter 5-year OS. Knocking down ATP7A could enhance intracellular copper concentration, cause a decrease in DLAT expression, and induce cuproptosis and inhibit cell proliferation and migration. ATP7A was also positively correlated with most cancer immune cells and immune checkpoints. CONCLUSION Taken together, this research revealed the cuproptosis related molecular patterns and genes associated with the clinical pathological characteristics, TME phenotype and prognosis of HCC. The CS will further deepen our understanding of the TME characteristics of HCC, and the involvement of ATP7A in cuproptosis will provide new ideas for predicting HCC prognosis and immunotherapy.
Collapse
Affiliation(s)
- Shanbao Li
- Department of General Surgery, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Junyong Weng
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
| | - Chao Xiao
- Department of General SurgeryFudan University Huashan HospitalShanghaiChina
| | - Jing Lu
- Department of General Surgery, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wanyue Cao
- Department of General Surgery, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fangbin Song
- Department of General Surgery, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zeping He
- Department of General Surgery, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Peng Zhang
- Department of General SurgeryFudan University Huashan HospitalShanghaiChina
| | - Zhonglin Zhu
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
| | - Junming Xu
- Department of General Surgery, Shanghai General HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
43
|
Bicer F, Kure C, Ozluk AA, El-Rayes BF, Akce M. Advances in Immunotherapy for Hepatocellular Carcinoma (HCC). Curr Oncol 2023; 30:9789-9812. [PMID: 37999131 PMCID: PMC10670350 DOI: 10.3390/curroncol30110711] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related deaths in the world. More than half of patients with HCC present with advanced stage, and highly active systemic therapies are crucial for improving outcomes. Immune checkpoint inhibitor (ICI)-based therapies have emerged as novel therapy options for advanced HCC. Only one third of patients achieve an objective response with ICI-based therapies due to primary resistance or acquired resistance. The liver tumor microenvironment is naturally immunosuppressive, and specific mutations in cell signaling pathways allow the tumor to evade the immune response. Next, gene sequencing of the tumor tissue or circulating tumor DNA may delineate resistance mechanisms to ICI-based therapy and provide a rationale for novel combination therapies. In this review, we discuss the results of key clinical trials that have led to approval of ICI-based therapy options in advanced HCC and summarize the ongoing clinical trials. We review resistance mechanisms to ICIs and discuss how immunotherapies may be optimized based on the emerging research of tumor biomarkers and genomic alterations.
Collapse
Affiliation(s)
- Fuat Bicer
- Division of Hematology Oncology, Department of Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA;
| | - Catrina Kure
- Department of Medicine, Northside Hospital-Gwinnett, Lawrenceville, GA 30046, USA;
| | - Anil A. Ozluk
- Division of Hematology Oncology, Department of Medicine, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA; (A.A.O.); (B.F.E.-R.)
| | - Bassel F. El-Rayes
- Division of Hematology Oncology, Department of Medicine, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA; (A.A.O.); (B.F.E.-R.)
| | - Mehmet Akce
- Division of Hematology Oncology, Department of Medicine, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA; (A.A.O.); (B.F.E.-R.)
| |
Collapse
|
44
|
Tao Q, Lang Z, Li Y, Gao Y, Lin L, Yu Z, Zheng J, Yu S. Exploration and validation of a novel signature of seven necroptosis-related genes to improve the clinical outcome of hepatocellular carcinoma. BMC Cancer 2023; 23:1029. [PMID: 37875823 PMCID: PMC10594920 DOI: 10.1186/s12885-023-11521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
Necroptosis has been reported to be involved in cancer progression and associated with cancer prognosis. However, the prognostic values of necroptosis-related genes (NRGs) in hepatocellular carcinoma (HCC) remain largely unknown. This study aimed to build a signature on the basis of NRGs to evaluate the prognosis of HCC patients. In this study, using bioinformatic analyses of transcriptome sequencing data of HCC (n = 370) from The Cancer Genome Atlas (TCGA) database, 63 differentially expressed NRGs between HCC and adjacent normal tissues were determined. 24 differentially expressed NRGs were found to be related with overall survival (OS). Seven optimum NRGs, determined using Lasso regression and multivariate Cox regression analysis, were used to construct a new prognostic risk signature for predicting the prognosis of HCC patients. Then survival status scatter plots and survival curves demonstrated that the prognosis of patients with high-Riskscore was worse. The prognostic value of this 7-NRG signature was validated by the International Cancer Genome Consortium (ICGC) cohort and a local cohort (Wenzhou, China). Notably, Riskscore was defined as an independent risk factor for HCC prognosis using multivariate cox regression analysis. Immune infiltration analysis suggested that higher macrophage infiltration was found in patients in the high-risk group. Finally, enhanced 7 NRGs were found in HCC tissues by immunohistochemistry. In conclusion, a novel 7-NRG prognostic risk signature is generated, which contributes to the prediction in the prognosis of HCC patients for the clinicians.
Collapse
Affiliation(s)
- Qiqi Tao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhichao Lang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yifei Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuxiang Gao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lifan Lin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhengping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, No.2 fuxue lane, Wenzhou, Zhejiang, P.R. China
| | - Jianjian Zheng
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, No.2 fuxue lane, Wenzhou, Zhejiang, P.R. China.
| | - Suhui Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, No.2 fuxue lane, Wenzhou, Zhejiang, P.R. China.
| |
Collapse
|
45
|
Carreira-Santos S, López-Sejas N, González-Sánchez M, Sánchez-Hernández E, Pera A, Hassouneh F, Durán E, Solana R, Casado JG, Tarazona R. Enhanced expression of natural cytotoxicity receptors on cytokine-induced memory-like natural killer cells correlates with effector function. Front Immunol 2023; 14:1256404. [PMID: 37908353 PMCID: PMC10613704 DOI: 10.3389/fimmu.2023.1256404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/02/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Natural killer (NK) cells are a key component of the innate immune system, involved in defending the host against virus-infected cells and tumor immunosurveillance. Under in vitro culture conditions, IL-12/15/18 can induce a memory-like phenotype in NK cells. These cytokine-induced memory-like (CIML) NK cells possess desirable characteristics for immunotherapies, including a longer lifespan and increased cytotoxicity. Methods In this study, NK cells were isolated from peripheral blood of healthy donors and stimulated with IL-12/15/18 to induce a memory-like phenotype or with IL-15 alone as a control. After seven days of culture, multiparametric flow cytometry analysis was performed to evaluate the phenotypic and functional profiles of CIML and control NK cells. Results Our results showed a significantly higher expression of CD25, CD69, NKG2D, NKp30, NKp44, NKp46, TACTILE, and Granzyme B in CIML NK cells compared to control NK cells. In contrast, KIR2D expression was significantly lower in CIML NK cells than in control NK cells. Moreover, functional experiments demonstrated that CIML NK cells displayed enhanced degranulation capacity and increased intracellular IFN-γ production against the target cell line K562. Interestingly, the degranulation capacity of CIML NK cells was positively correlated with the expression of the activating receptors NKp46 and NKp30, as well as with the inhibitory receptor TACTILE. Discussion In conclusion, this study provides a deep phenotypic characterization of in vitro-expanded CIML NK cells. Moreover, the correlations found between NK cell receptors and degranulation capacity of CIML NK cells allowed the identification of several biomarkers that could be useful in clinical settings.
Collapse
Affiliation(s)
- Sofía Carreira-Santos
- Immunology Unit, Department of Physiology, Universidad de Extremadura, Cáceres, Spain
| | - Nelson López-Sejas
- Immunology Unit, Department of Physiology, Universidad de Extremadura, Cáceres, Spain
| | | | - Eva Sánchez-Hernández
- Immunology Unit, Department of Physiology, Universidad de Extremadura, Cáceres, Spain
| | - Alejandra Pera
- Immunology and Allergy Group (GC01), Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain
| | - Fakhri Hassouneh
- Immunology and Allergy Group (GC01), Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
| | - Esther Durán
- Anatomy and Comparative Pathological Anatomy Unit, Department of Animal Medicine, Faculty of Veterinary Medicine, Universidad de Extremadura, Cáceres, Spain
| | - Rafael Solana
- Immunology and Allergy Group (GC01), Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, Universidad de Córdoba, Córdoba, Spain
- Immunology and Allergy Service, Reina Sofia University Hospital, Cordoba, Spain
| | - Javier G. Casado
- Immunology Unit, Department of Physiology, Universidad de Extremadura, Cáceres, Spain
- Centro de Investigación Biomédica En Red (CIBER) de Enfermedades Cardiovasculares, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- RICORS-TERAV Network, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, Cáceres, Spain
| | - Raquel Tarazona
- Immunology Unit, Department of Physiology, Universidad de Extremadura, Cáceres, Spain
- Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, Cáceres, Spain
| |
Collapse
|
46
|
Ma S, Caligiuri MA, Yu J. Harnessing Natural Killer Cells for Lung Cancer Therapy. Cancer Res 2023; 83:3327-3339. [PMID: 37531223 DOI: 10.1158/0008-5472.can-23-1097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/13/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Although natural killer (NK) cells are garnering interest as a potential anticancer therapy because they selectively recognize and eliminate cancer cells, their use in treating solid tumors, including lung cancer, has been limited due to impediments to their efficacy, such as their limited ability to reach tumor tissues, the reduced antitumor activity of tumor-infiltrating NK cells, and the suppressive tumor microenvironment (TME). This comprehensive review provides an in-depth analysis of the cross-talk between the lung cancer TME and NK cells. We highlight the various mechanisms used by the TME to modulate NK-cell phenotypes and limit infiltration, explore the role of the TME in limiting the antitumor activity of NK cells, and discuss the current challenges and obstacles that hinder the success of NK-cell-based immunotherapy for lung cancer. Potential opportunities and promising strategies to address these challenges have been implemented or are being developed to optimize NK-cell-based immunotherapy for lung cancer. Through critical evaluation of existing literature and emerging trends, this review provides a comprehensive outlook on the future of NK-cell-based immunotherapy for treating lung cancer.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, California
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, California
- Comprehensive Cancer Center, City of Hope, Los Angeles, California
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, California
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Los Angeles, California
- Comprehensive Cancer Center, City of Hope, Los Angeles, California
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, California
| |
Collapse
|
47
|
Zhang Z, Deng C, Zhu P, Yao D, Shi J, Zeng T, Huang W, Huang Z, Wu Z, Li J, Xiao M, Fu L. Single-cell RNA-seq reveals a microenvironment and an exhaustion state of T/NK cells in acute myeloid leukemia. Cancer Sci 2023; 114:3873-3883. [PMID: 37591615 PMCID: PMC10551605 DOI: 10.1111/cas.15932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 07/03/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous blood cancer. Effective immunotherapies for AML are hindered by a lack of understanding of the tumor microenvironment (TME). Here, we retrieved published single-cell RNA sequencing data for 128,688 cells derived from 29 bone marrow aspirates, including 21 AML patients and eight healthy donors. We established a global tumor ecosystem including nine main cell types. Myeloid, T, and NK cells were further re-clustered and annotated. Developmental trajectory analysis indicated that exhausted CD8+ T cells might develop via tissue residual memory T cells (TRM) in the AML TME. Significantly higher expression levels of exhaustion molecules in AML TRM cells suggested that these cells were influenced by the TME and entered an exhausted state. Meanwhile, the upregulation of checkpoint molecules and downregulation of granzyme were also observed in AML NK cells, suggesting an exhaustion state. In conclusion, our comprehensive profiling of T/NK subpopulations provides deeper insights into the AML immunosuppressive ecosystem, which is critical for immunotherapies.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General HospitalBeijingPeople's Republic of China
| | - Cong Deng
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
- Department of Clinical LaboratoryThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Pei Zhu
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Danlin Yao
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Jinlong Shi
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Medical Innovation Research Division of Chinese PLA General HospitalBeijingPeople's Republic of China
| | - Tiansheng Zeng
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Wenhui Huang
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Zeyong Huang
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Zhihua Wu
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Junyi Li
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Min Xiao
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| | - Lin Fu
- Department of HematologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouPeople's Republic of China
- Central Laboratory, The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
48
|
Paolini R, Molfetta R. Dysregulation of DNAM-1-Mediated NK Cell Anti-Cancer Responses in the Tumor Microenvironment. Cancers (Basel) 2023; 15:4616. [PMID: 37760586 PMCID: PMC10527063 DOI: 10.3390/cancers15184616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
NK cells play a pivotal role in anti-cancer immune responses, thanks to the expression of a wide array of inhibitory and activating receptors that regulate their cytotoxicity against transformed cells while preserving healthy cells from lysis. However, NK cells exhibit severe dysfunction in the tumor microenvironment, mainly due to the reduction of activating receptors and the induction or increased expression of inhibitory checkpoint receptors. An activating receptor that plays a central role in tumor recognition is the DNAM-1 receptor. It recognizes PVR and Nectin2 adhesion molecules, which are frequently overexpressed on the surface of cancerous cells. These ligands are also able to trigger inhibitory signals via immune checkpoint receptors that are upregulated in the tumor microenvironment and can counteract DNAM-1 activation. Among them, TIGIT has recently gained significant attention, since its targeting results in improved anti-tumor immune responses. This review aims to summarize how the recognition of PVR and Nectin2 by paired co-stimulatory/inhibitory receptors regulates NK cell-mediated clearance of transformed cells. Therapeutic approaches with the potential to reverse DNAM-1 dysfunction in the tumor microenvironment will be also discussed.
Collapse
Affiliation(s)
| | - Rosa Molfetta
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy;
| |
Collapse
|
49
|
Jiang D, Zhang J, Mao Z, Shi J, Ma P. Driving natural killer cell-based cancer immunotherapy for cancer treatment: An arduous journey to promising ground. Biomed Pharmacother 2023; 165:115004. [PMID: 37352703 DOI: 10.1016/j.biopha.2023.115004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/25/2023] Open
Abstract
Immunotherapy represents one of the most effective strategies for cancer treatment. Recently, progress has been made in using natural killer (NK) cells for cancer therapy. NK cells can directly kill tumor cells without pre-sensitization and thus show promise in clinical applications, distinct from the use of T cells. Whereas, research and development on NK cell-based immunotherapy is still in its infancy, and enhancing the therapeutic effects of NK cells remains a key problem to be solved. An incompletely understanding of the mechanisms of action of NK cells, immune resistance in the tumor microenvironment, and obstacles associated with the delivery of therapeutic agents in vivo, represent three mountains that need to be scaled. Here, we firstly describe the mechanisms underlying the development, activity, and maturation of NK cells, and the formation of NK‑cell immunological synapses. Secondly, we discuss strategies for NK cell-based immunotherapy strategies, including adoptive transfer of NK cell therapy and treatment with cytokines, monoclonal antibodies, and immune checkpoint inhibitors targeting NK cells. Finally, we review the use of nanotechnology to overcome immune resistance, including enhancing the anti-tumor efficiency of chimeric antigen receptor-NK, cytokines and immunosuppressive-pathways inhibitors, promoting NK cell homing and developing NK cell-based nano-engagers.
Collapse
Affiliation(s)
- Dandan Jiang
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jingya Zhang
- Patent Examination Cooperation (Henan) Center of the Patent office, China National Intellectual Property Administration, Henan 450046, China
| | - Zhenkun Mao
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China.
| | - Peizhi Ma
- Department of Pharmacy, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450003, China.
| |
Collapse
|
50
|
Feng Q, Huang Z, Song L, Wang L, Lu H, Wu L. Combining bulk and single-cell RNA-sequencing data to develop an NK cell-related prognostic signature for hepatocellular carcinoma based on an integrated machine learning framework. Eur J Med Res 2023; 28:306. [PMID: 37649103 PMCID: PMC10466881 DOI: 10.1186/s40001-023-01300-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND The application of molecular targeting therapy and immunotherapy has notably prolonged the survival of patients with hepatocellular carcinoma (HCC). However, multidrug resistance and high molecular heterogeneity of HCC still prevent the further improvement of clinical benefits. Dysfunction of tumor-infiltrating natural killer (NK) cells was strongly related to HCC progression and survival benefits of HCC patients. Hence, an NK cell-related prognostic signature was built up to predict HCC patients' prognosis and immunotherapeutic response. METHODS NK cell markers were selected from scRNA-Seq data obtained from GSE162616 data set. A consensus machine learning framework including a total of 77 algorithms was developed to establish the gene signature in TCGA-LIHC data set, GSE14520 data set, GSE76427 data set and ICGC-LIRI-JP data set. Moreover, the predictive efficacy on ICI response was externally validated by GSE91061 data set and PRJEB23709 data set. RESULTS With the highest C-index among 77 algorithms, a 11-gene signature was established by the combination of LASSO and CoxBoost algorithm, which classified patients into high- and low-risk group. The prognostic signature displayed a good predictive performance for overall survival rate, moderate to high predictive accuracy and was an independent risk factor for HCC patients' prognosis in TCGA, GEO and ICGC cohorts. Compared with high-risk group, low-risk patients showed higher IPS-PD1 blocker, IPS-CTLA4 blocker, common immune checkpoints expression but lower TIDE score, which indicated low-risk patients might be prone to benefiting from ICI treatment. Moreover, a real-world cohort, PRJEB23709, also revealed better immunotherapeutic response in low-risk group. CONCLUSIONS Overall, the present study developed a gene signature based on NK cell-related genes, which offered a novel platform for prognosis and immunotherapeutic response evaluation of HCC patients.
Collapse
Affiliation(s)
- Qian Feng
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Zhihao Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1st min de Road, Nanchang, 330000, China
| | - Lei Song
- Department of General Practice, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Le Wang
- Department of Blood Transfusion, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Hongcheng Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1st min de Road, Nanchang, 330000, China.
| | - Linquan Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1st min de Road, Nanchang, 330000, China.
| |
Collapse
|