1
|
Chen Y, Liang R, Li Y, Jiang L, Ma D, Luo Q, Song G. Chromatin accessibility: biological functions, molecular mechanisms and therapeutic application. Signal Transduct Target Ther 2024; 9:340. [PMID: 39627201 PMCID: PMC11615378 DOI: 10.1038/s41392-024-02030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/04/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024] Open
Abstract
The dynamic regulation of chromatin accessibility is one of the prominent characteristics of eukaryotic genome. The inaccessible regions are mainly located in heterochromatin, which is multilevel compressed and access restricted. The remaining accessible loci are generally located in the euchromatin, which have less nucleosome occupancy and higher regulatory activity. The opening of chromatin is the most important prerequisite for DNA transcription, replication, and damage repair, which is regulated by genetic, epigenetic, environmental, and other factors, playing a vital role in multiple biological progresses. Currently, based on the susceptibility difference of occupied or free DNA to enzymatic cleavage, solubility, methylation, and transposition, there are many methods to detect chromatin accessibility both in bulk and single-cell level. Through combining with high-throughput sequencing, the genome-wide chromatin accessibility landscape of many tissues and cells types also have been constructed. The chromatin accessibility feature is distinct in different tissues and biological states. Research on the regulation network of chromatin accessibility is crucial for uncovering the secret of various biological processes. In this review, we comprehensively introduced the major functions and mechanisms of chromatin accessibility variation in different physiological and pathological processes, meanwhile, the targeted therapies based on chromatin dynamics regulation are also summarized.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Rui Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Yong Li
- Hepatobiliary Pancreatic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lingli Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Di Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China.
| |
Collapse
|
2
|
Zhou C, Sun C, Zhou W, Tian T, Schultz DC, Wu T, Yu M, Wu L, Pi L, Li C. Development of Novel Indole-Based Covalent Inhibitors of TEAD as Potential Antiliver Cancer Agents. J Med Chem 2024; 67:16270-16295. [PMID: 39270302 DOI: 10.1021/acs.jmedchem.4c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Abnormal activation of the YAP transcriptional signaling pathway drives proliferation in many hepatocellular carcinoma (HCC) and hepatoblastoma (HB) cases. Current treatment options often face resistance and toxicity, highlighting the need for alternative therapies. This article reports the discovery of a hit compound C-3 from docking-based virtual screening targeting TEAD lipid binding pocket, which inhibited TEAD-mediated transcription. Optimization led to the identification of a potent and covalent inhibitor CV-4-26 that exhibited great antitumor activity in HCC and HB cell lines in vitro, xenografted human HCC, and murine HB in vivo. These outcomes signify the potential of a highly promising therapeutic candidate for addressing a subset of HCC and HB cancers. In the cases of current treatment challenges due to high upregulation of YAP-TEAD activity, these findings offer a targeted alternative for more effective interventions against liver cancer.
Collapse
Affiliation(s)
- Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Chunbao Sun
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Wei Zhou
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
| | - Tian Tian
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Daniel C Schultz
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Mu Yu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, United States
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
| | - Lizi Wu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, United States
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, United States
- UF Institute of Genetics, University of Florida, Gainesville, Florida 32610, United States
| | - Liya Pi
- Department of Pathology and Laboratory Medicine, School of Medicine, Tulane University, New Orleans, Louisiana 70112, United States
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
3
|
Li S, Hao L, Li N, Hu X, Yan H, Dai E, Shi X. Targeting the Hippo/YAP1 signaling pathway in hepatocellular carcinoma: From mechanisms to therapeutic drugs (Review). Int J Oncol 2024; 65:88. [PMID: 39092548 DOI: 10.3892/ijo.2024.5676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
The Hippo signaling pathway plays a pivotal role in regulating cell growth and organ size. Its regulatory effects on hepatocellular carcinoma (HCC) encompass diverse aspects, including cell proliferation, invasion and metastasis, tumor drug resistance, metabolic reprogramming, immunomodulatory effects and autophagy. Yes‑associated protein 1 (YAP1), a potent transcriptional coactivator and a major downstream target tightly controlled by the Hippo pathway, is influenced by various molecules and pathways. The expression of YAP1 in different cell types within the liver tumor microenvironment exerts varying effects on tumor outcomes, warranting careful consideration. Therefore, research on YAP1‑targeted therapies merits attention. This review discusses the composition and regulation mechanism of the Hippo/YAP1 signaling pathway and its relationship with HCC, offering insights for future research and cancer prevention strategies.
Collapse
Affiliation(s)
- Shenghao Li
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Liyuan Hao
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Na Li
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Huimin Yan
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050024, P.R. China
| | - Erhei Dai
- Clinical Research Center, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei 050024, P.R. China
| | - Xinli Shi
- Center of Experimental Management, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| |
Collapse
|
4
|
Kotulkar M, Paine-Cabrera D, Apte U. Role of Hepatocyte Nuclear Factor 4 Alpha in Liver Cancer. Semin Liver Dis 2024; 44:383-393. [PMID: 38901435 DOI: 10.1055/a-2349-7236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Liver cancer is the sixth most common cancer and the fourth leading cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and the incidence of HCC is on the rise. Liver cancers in general and HCC in particular do not respond to chemotherapy. Radiological ablation, surgical resection, and liver transplantation are the only medical therapies currently available. Hepatocyte nuclear factor 4 α (HNF4α) is an orphan nuclear receptor expressed only in hepatocytes in the liver. HNF4α is considered the master regulator of hepatic differentiation because it regulates a significant number of genes involved in various liver-specific functions. In addition to maintaining hepatic differentiation, HNF4α also acts as a tumor suppressor by inhibiting hepatocyte proliferation by suppressing the expression of promitogenic genes and inhibiting epithelial to mesenchymal transition in hepatocytes. Loss of HNF4α expression and function is associated with rapid progression of chronic liver diseases that ultimately lead to liver cirrhosis and HCC, including metabolism-associated steatohepatitis, alcohol-associated liver disease, and hepatitis virus infection. This review summarizes the role of HNF4α in liver cancer pathogenesis and highlights its potential as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Manasi Kotulkar
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Diego Paine-Cabrera
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
5
|
Shi H, Zou Y, Zhong W, Li Z, Wang X, Yin Y, Li D, Liu Y, Li M. Complex roles of Hippo-YAP/TAZ signaling in hepatocellular carcinoma. J Cancer Res Clin Oncol 2023; 149:15311-15322. [PMID: 37608027 DOI: 10.1007/s00432-023-05272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND The Hippo signaling pathway is an evolutionarily conserved signaling module that controls organ size in different species, and the disorder of the Hippo pathway can induce liver cancer in organisms, especially hepatocellular carcinoma (HCC). The exact mechanism that causes cancer is still unknown. Recent studies have shown that it is a classical kinase cascade that phosphorylates the Mst1/2-sav1 complex and activates the phosphorylation of the Lats1/2-mob1A/B complex for inactivating Yap and Taz. These kinases and scaffolds are regarded as primary regulators of the Hippo pathway, and help in activating a variety of carcinogenic processes. Among them, Yap/Taz is seen to be the main effector molecule, which is downstream of the Hippo pathway, and its abnormal activation is related to a variety of human cancers including liver cancer. Currently, since Yap/Taz plays a variety of roles in cancer promotion and tumor regeneration, the Hippo pathway has emerged as an attractive target in recent drug development research. METHODS We collect and review relevant literature in web of Science and Pubmed. CONCLUSION This review highlights the important roles of Yap/Taz in activating Hippo pathway in liver cancer. The recent findings on the crosstalks between the Hippo and other cancer associated pathways and moleculars are also discussed. In this review, we summarized and discussed recent breakthroughs in our understanding of how key components of the Hippo-YAP/TAZ pathway influence the hepatocellular carcinoma, including their effects on tumor occurrence and development, their roles in regulating metastasis, and their function in chemotherapy resistance. Further, the molecular mechanism and roles in regulating cross talk between Hippo-YAP/TAZ pathway and other cancer-associated pathways or oncogenes/cancer suppressor genes were summarized and discussed. More, many other inducers and inhibitors of this signaling cascade and available experimental therapies against the YAP/TAZ/TEAD axis were discussed. Targeting this pathway for cancer therapy may have great significance in the treatment of hepatocellular carcinoma. Graphical summary of the complex role of Hippo-YAP/TAZ signaling in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hewen Shi
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Ying Zou
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Weiwei Zhong
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Zhaoying Li
- Traditional Chinese Medicine Research Center, Shandong Public Health Clinical Center, Jinan, 250102, People's Republic of China
| | - Xiaoxue Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Yancun Yin
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Ying Liu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| | - Minjing Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| |
Collapse
|
6
|
Fang J, Singh S, Cheng C, Natarajan S, Sheppard H, Abu-Zaid A, Durbin AD, Lee HW, Wu Q, Steele J, Connelly JP, Jin H, Chen W, Fan Y, Pruett-Miller SM, Rehg JE, Koo SC, Santiago T, Emmons J, Cairo S, Wang R, Glazer ES, Murphy AJ, Chen T, Davidoff AM, Armengol C, Easton J, Chen X, Yang J. Genome-wide mapping of cancer dependency genes and genetic modifiers of chemotherapy in high-risk hepatoblastoma. Nat Commun 2023; 14:4003. [PMID: 37414763 PMCID: PMC10326052 DOI: 10.1038/s41467-023-39717-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
A lack of relevant genetic models and cell lines hampers our understanding of hepatoblastoma pathogenesis and the development of new therapies for this neoplasm. Here, we report an improved MYC-driven hepatoblastoma-like murine model that recapitulates the pathological features of embryonal type of hepatoblastoma, with transcriptomics resembling the high-risk gene signatures of the human disease. Single-cell RNA-sequencing and spatial transcriptomics identify distinct subpopulations of hepatoblastoma cells. After deriving cell lines from the mouse model, we map cancer dependency genes using CRISPR-Cas9 screening and identify druggable targets shared with human hepatoblastoma (e.g., CDK7, CDK9, PRMT1, PRMT5). Our screen also reveals oncogenes and tumor suppressor genes in hepatoblastoma that engage multiple, druggable cancer signaling pathways. Chemotherapy is critical for human hepatoblastoma treatment. A genetic mapping of doxorubicin response by CRISPR-Cas9 screening identifies modifiers whose loss-of-function synergizes with (e.g., PRKDC) or antagonizes (e.g., apoptosis genes) the effect of chemotherapy. The combination of PRKDC inhibition and doxorubicin-based chemotherapy greatly enhances therapeutic efficacy. These studies provide a set of resources including disease models suitable for identifying and validating potential therapeutic targets in human high-risk hepatoblastoma.
Collapse
Affiliation(s)
- Jie Fang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shivendra Singh
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sivaraman Natarajan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Heather Sheppard
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ahmed Abu-Zaid
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Adam D Durbin
- Division of Molecular Oncology, Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ha Won Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qiong Wu
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jacob Steele
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jon P Connelly
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering (CAGE), St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jerold E Rehg
- Comparative Pathology Core, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Teresa Santiago
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joseph Emmons
- VPC Diagnostic Laboratory, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stefano Cairo
- Champions Oncology, 1330 Piccard dr, Rockville, MD, USA
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Disease, Hematology/Oncology & BMT, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA
| | - Evan S Glazer
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, 910 Madison Ave., Suite 325, Memphis, TN, USA
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Carolina Armengol
- Childhood Liver Oncology Group, Germans Trias i Pujol Research Institute (IGTP), Translational Program in Cancer Research (CARE), Badalona, Spain
- CIBER, Hepatic and Digestive Diseases, Barcelona, Spain
- CIBERehd, Madrid, Spain
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA.
- St Jude Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pathology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
7
|
Rodríguez TC, Kwan S, Smith JL, Dadafarin S, Wu CH, Sontheimer EJ, Xue W. Multiomics characterization of mouse hepatoblastoma identifies yes-associated protein 1 target genes. Hepatology 2023; 78:58-71. [PMID: 35932276 PMCID: PMC10205091 DOI: 10.1002/hep.32713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Hepatoblastoma (HB) is the most common primary liver malignancy in childhood and lacks targeted therapeutic options. We previously engineered, to our knowledge, the first yes-associated protein 1 (YAP1) S127A -inducible mouse model of HB, demonstrating tumor regression and redifferentiation after YAP1 withdrawal through genome-wide enhancer modulation. Probing accessibility, transcription, and YAP1 binding at regulatory elements in HB tumors may provide more insight into YAP1-driven tumorigenesis and expose exploitable vulnerabilities in HB. APPROACH AND RESULTS Using a multiomics approach, we integrated high-throughput transcriptome and chromatin profiling of our murine HB model to identify dynamic activity at candidate cis -regulatory elements (cCREs). We observed that 1301 of 305,596 cCREs exhibit "tumor-modified" (TM) accessibility in HB. We mapped 241 TM enhancers to corresponding genes using accessibility and histone H3K27Ac profiles. Anti-YAP1 cleavage under targets and tagmentation in tumors revealed 66 YAP1-bound TM cCRE/gene pairs, 31 of which decrease expression after YAP1 withdrawal. We validated the YAP1-dependent expression of a putative YAP1 target, Jun dimerization protein 2 (JDP2), in human HB cell lines using YAP1 and LATS1/2 small interfering RNA knockdown. We also confirmed YAP1-induced activity of the Jdp2 TM enhancer in vitro and discovered an analogous human enhancer in silico. Finally, we used transcription factor (TF) footprinting to identify putative YAP1 cofactors and characterize HB-specific TF activity genome wide. CONCLUSIONS Our chromatin-profiling techniques define the regulatory frameworks underlying HB and identify YAP1-regulated gene/enhancer pairs. JDP2 is an extensively validated target with YAP1-dependent expression in human HB cell lines and hepatic malignancies.
Collapse
Affiliation(s)
- Tomás C. Rodríguez
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | - SuetYan Kwan
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | - Jordan L. Smith
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | | | - Chern-Horng Wu
- Division of Internal Medicine and Primary Care, Tufts Medical Center, 800 Washington, Boston, MA, 02111
| | - Erik J. Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| | - Wen Xue
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
8
|
Shi H, Zou Y, Wang X, Wang G, Gao Y, Yi F, Xu J, Yin Y, Li D, Li M. Activating the Hippo pathway by nevadensin overcomes Yap-drived resistance to sorafenib in hepatocellular carcinoma. Discov Oncol 2023; 14:83. [PMID: 37243813 DOI: 10.1007/s12672-023-00699-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly malignant type of tumor that is insensitive to cytotoxic chemotherapy and often develops drug resistance. Nevadensin, a bioflavonoid, exhibits anti-cancer properties in some cancers. However, the precise underlying mechanism of nevadensin against liver cancer are poorly understood. We aim to evaluate the efficacy as well as the molecular mechanism of nevadensin in the treatment of liver cancer. METHODS Effects of nevadensin on HCC cell proliferation and apoptosis were detected using EdU labeling and flow cytometry assays. The molecular mechanism of nevadensin on HCC was determined using RNAseq. The effects of nevadensin on hippo-Yap signaling were verified using western blot and RT-PCR. RESULTS In this study, we show that nevadensin significantly inhibits growth of HCC cells via inducing cell cycle arrest and apoptosis. RNAseq analysis showed that nevadensin regulates multiple functional signaling pathways associated with cancer including Hippo signaling. Western Blot analysis revealed that nevadensin notably induces activation of the MST1/2- LATS1/2 kinase in HCC cells, further resulting in the primary effector molecule YAP phosphorylation and subsequent degradation. These results indicated that nevadensin might exert its anti-HCC activity through the Hippo-ON mechanism. Moreover, nevadensin could increase the sensitivity of HCC cells to sorafenib by down-regulating YAP and its downstream targets. CONCLUSIONS The present study indicates that nevadensin could be a potential effective approach to treating HCC, and overcoming sorafeni resistance via inducing activation of Hippo signaling.
Collapse
Affiliation(s)
- Hewen Shi
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Ying Zou
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Xiaoxue Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Yijia Gao
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Fan Yi
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Junqing Xu
- Department of Hematology, Qingdao University Medical College, Affiliated Yantai Yuhuangding Hoepital, Yantai, Shandong, People's Republic of China
| | - Yancun Yin
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, People's Republic of China.
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China.
| | - Minjing Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, Shandong, People's Republic of China.
| |
Collapse
|
9
|
Suda T, Yokoo T, Kanefuji T, Kamimura K, Zhang G, Liu D. Hydrodynamic Delivery: Characteristics, Applications, and Technological Advances. Pharmaceutics 2023; 15:pharmaceutics15041111. [PMID: 37111597 PMCID: PMC10141091 DOI: 10.3390/pharmaceutics15041111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
The principle of hydrodynamic delivery was initially used to develop a method for the delivery of plasmids into mouse hepatocytes through tail vein injection and has been expanded for use in the delivery of various biologically active materials to cells in various organs in a variety of animal species through systemic or local injection, resulting in significant advances in new applications and technological development. The development of regional hydrodynamic delivery directly supports successful gene delivery in large animals, including humans. This review summarizes the fundamentals of hydrodynamic delivery and the progress that has been made in its application. Recent progress in this field offers tantalizing prospects for the development of a new generation of technologies for broader application of hydrodynamic delivery.
Collapse
|
10
|
Russell JO, Camargo FD. Hippo signalling in the liver: role in development, regeneration and disease. Nat Rev Gastroenterol Hepatol 2022; 19:297-312. [PMID: 35064256 PMCID: PMC9199961 DOI: 10.1038/s41575-021-00571-w] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
Abstract
The Hippo signalling pathway has emerged as a major player in many aspects of liver biology, such as development, cell fate determination, homeostatic function and regeneration from injury. The regulation of Hippo signalling is complex, with activation of the pathway by diverse upstream inputs including signals from cellular adhesion, mechanotransduction and crosstalk with other signalling pathways. Pathological activation of the downstream transcriptional co-activators yes-associated protein 1 (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ, encoded by WWTR1), which are negatively regulated by Hippo signalling, has been implicated in multiple aspects of chronic liver disease, such as the development of liver fibrosis and tumorigenesis. Thus, development of pharmacological inhibitors of YAP-TAZ signalling has been an area of great interest. In this Review, we summarize the diverse roles of Hippo signalling in liver biology and highlight areas where outstanding questions remain to be investigated. Greater understanding of the mechanisms of Hippo signalling in liver function should help facilitate the development of novel therapies for the treatment of liver disease.
Collapse
Affiliation(s)
- Jacquelyn O Russell
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Fernando D Camargo
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
11
|
He Z, Li R, Jiang H. Mutations and Copy Number Abnormalities of Hippo Pathway Components in Human Cancers. Front Cell Dev Biol 2021; 9:661718. [PMID: 34150758 PMCID: PMC8209335 DOI: 10.3389/fcell.2021.661718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
The Hippo pathway is highly conserved from Drosophila to mammals. As a key regulator of cell proliferation, the Hippo pathway controls tissue homeostasis and has a major impact on tumorigenesis. The originally defined core components of the Hippo pathway in mammals include STK3/4, LATS1/2, YAP1/TAZ, TEAD, VGLL4, and NF2. However, for most of these genes, mutations and copy number variations are relatively uncommon in human cancer. Several other recently identified upstream and downstream regulators of Hippo signaling, including FAT1, SHANK2, Gq/11, and SWI/SNF complex, are more commonly dysregulated in human cancer at the genomic level. This review will discuss major genomic events in human cancer that enable cancer cells to escape the tumor-suppressive effects of Hippo signaling.
Collapse
Affiliation(s)
- Zhengjin He
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ruihan Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hai Jiang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
12
|
Wang H, Wang P, Xu M, Song X, Wu H, Evert M, Calvisi DF, Zeng Y, Chen X. Distinct functions of transforming growth factor-β signaling in c-MYC driven hepatocellular carcinoma initiation and progression. Cell Death Dis 2021; 12:200. [PMID: 33608500 PMCID: PMC7895828 DOI: 10.1038/s41419-021-03488-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 02/05/2023]
Abstract
Dysregulation of transforming growth factor-beta (TGFβ) signaling has been implicated in liver carcinogenesis with both tumor promoting and inhibiting activities. Activation of the c-MYC protooncogene is another critical genetic event in hepatocellular carcinoma (HCC). However, the precise functional crosstalk between c-MYC and TGFβ signaling pathways remains unclear. In the present investigation, we investigated the expression of TGFβ signaling in c-MYC amplified human HCC samples as well as the mechanisms whereby TGFβ modulates c-Myc driven hepatocarcinogenesis during initiation and progression. We found that several TGFβ target genes are overexpressed in human HCCs with c-MYC amplification. In vivo, activation of TGFβ1 impaired c-Myc murine HCC initiation, whereas inhibition of TGFβ pathway accelerated this process. In contrast, overexpression of TGFβ1 enhanced c-Myc HCC progression by promoting tumor cell metastasis. Mechanistically, activation of TGFβ promoted tumor microenvironment reprogramming rather than inducing epithelial-to-mesenchymal transition during HCC progression. Moreover, we identified PMEPA1 as a potential TGFβ1 target. Altogether, our data underline the divergent roles of TGFβ signaling during c-MYC induced HCC initiation and progression.
Collapse
Affiliation(s)
- Haichuan Wang
- Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Pan Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Meng Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Hong Wu
- Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Yong Zeng
- Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
- Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
13
|
Abstract
Hepatoblastoma (HB) is the predominant primary liver tumor in children. While the prognosis is favorable when the tumor can be resected, the outcome is dismal for patients with progressed HB. Therefore, a better understanding of the molecular mechanisms responsible for HB is imperative for early detection and effective treatment. Sequencing analysis of human HB specimens unraveled the pivotal role of Wnt/β-catenin pathway activation in this disease. Nonetheless, β-catenin activation alone does not suffice to induce HB, implying the need for additional alterations. Perturbations of several pathways, including Hippo, Hedgehog, NRF2/KEAP1, HGF/c-Met, NK-1R/SP, and PI3K/AKT/mTOR cascades and aberrant activation of c-MYC, n-MYC, and EZH2 proto-oncogenes, have been identified in HB, although their role requires additional investigation. Here, we summarize the current knowledge on HB molecular pathogenesis, the relevance of the preclinical findings for the human disease, and the innovative therapeutic strategies that could be beneficial for the treatment of HB patients.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China,Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Antonio Solinas
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Stefano Cairo
- XenTech, Evry, France,Istituto di Ricerca Pediatrica, Padova, Italy
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
14
|
Driskill JH, Pan D. The Hippo Pathway in Liver Homeostasis and Pathophysiology. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2020; 16:299-322. [PMID: 33234023 DOI: 10.1146/annurev-pathol-030420-105050] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Studies of the regenerative capacity of the liver have converged on the Hippo pathway, a serine/threonine kinase cascade discovered in Drosophila and conserved from unicellular organisms to mammals. Genetic studies of mouse and rat livers have revealed that the Hippo pathway is a key regulator of liver size, regeneration, development, metabolism, and homeostasis and that perturbations in the Hippo pathway can lead to the development of common liver diseases, such as fatty liver disease and liver cancer. In turn, pharmacological targeting of the Hippo pathway may be utilized to boost regeneration and to prevent the development and progression of liver diseases. We review current insights provided by the Hippo pathway into liver pathophysiology. Furthermore, we present a path forward for future studies to understand how newly identified components of the Hippo pathway may control liver physiology and how the Hippo pathway is regulated in the liver.
Collapse
Affiliation(s)
- Jordan H Driskill
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; , .,Medical Scientist Training Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; ,
| |
Collapse
|