1
|
Su L, Bu J, Yu J, Jin M, Meng G, Zhu X. Comprehensive review and updated analysis of DNA methylation in hepatocellular carcinoma: From basic research to clinical application. Clin Transl Med 2024; 14:e70066. [PMID: 39462685 PMCID: PMC11513202 DOI: 10.1002/ctm2.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary malignant tumour, ranking second in global mortality rates and posing significant health threats. Epigenetic alterations, particularly DNA methylation, have emerged as pivotal factors associated with HCC diagnosis, therapy, prognosis and malignant progression. However, a comprehensive analysis of the DNA methylation mechanism driving HCC progression and its potential as a therapeutic biomarker remains lacking. This review attempts to comprehensively summarise various aspects of DNA methylation, such as its mechanism, detection methods and biomarkers aiding in HCC diagnosis, treatment and prognostic assessment of HCC. It also explores the role of DNA methylation in regulating HCC's malignant progression and sorafenib resistance, alongside elaborating the therapeutic effects of DNA methyltransferase inhibitors on HCC. A detailed examination of these aspects underscores the significant research on DNA methylation in tumour cells to elucidate malignant progression mechanisms, identify diagnostic markers and develop new tumour-specific inhibitors for HCC. KEY POINTS: A comprehensive summary of various aspects of DNA methylation, such as its mechanism, detection methods and biomarkers aiding in diagnosis and treatment. The role of DNA methylation in regulating hepatocellular carcinoma's (HCC) malignant progression and sorafenib resistance, alongside elaborating therapeutic effects of DNA methyltransferase inhibitors. Deep research on DNA methylation is critical for discovering novel tumour-specific inhibitors for HCC.
Collapse
Affiliation(s)
- Lin Su
- Department of Pain ManagementShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jiawen Bu
- Department of Colorectal SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Jiahui Yu
- Department of UltrasoundShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Mila Jin
- Department of Operation RoomThe First Hospital of China Medical UniversityShenyangLiaoningChina
| | - Guanliang Meng
- Department of UrologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xudong Zhu
- Department of OncologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Department of General SurgeryCancer Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
2
|
Zhu Q, Xie J, Mei W, Zeng C. Methylated circulating tumor DNA in hepatocellular carcinoma: A comprehensive analysis of biomarker potential and clinical implications. Cancer Treat Rev 2024; 128:102763. [PMID: 38763055 DOI: 10.1016/j.ctrv.2024.102763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
The intricate epigenetic landscape of hepatocellular carcinoma (HCC) is profoundly influenced by alterations in DNA methylation patterns. Understanding these alterations is crucial for unraveling the molecular mechanisms underlying HCC pathogenesis. Methylated circulating tumor DNA (ctDNA) presents itself as an encouraging avenue for biomarker discovery and holds substantial clinical implications in HCC management. This review comprehensively outlines the studies concerning DNA methylation in HCC and underscores the significance of methylated ctDNA within this context. Moreover, a variety of cfDNA methylation-based methodologies, such as 5hmC profiling, bisulfite-based, restriction enzyme-dependent, and enrichment-based methods, provide in-depth insights into the molecular pathology of HCC. Additionally, the integration of methylated ctDNA analysis into clinical practice represents a significant advancement in personalized HCC management. By facilitating cancer screening, prognosis assessment, and treatment response prediction, the utilization of methylated ctDNA signifies a pivotal stride toward enhancing patient care and outcomes in HCC.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Gastroenterology, Shenzhen Longhua District Central Hospital, Shenzhen 518110, China
| | - Jiaqi Xie
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Wuxuan Mei
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen 518110, China.
| |
Collapse
|
3
|
Arvanitakis K, Papadakos SP, Vakadaris G, Chatzikalil E, Stergiou IE, Kalopitas G, Theocharis S, Germanidis G. Shedding light on the role of LAG-3 in hepatocellular carcinoma: unraveling immunomodulatory pathways. HEPATOMA RESEARCH 2024. [DOI: 10.20517/2394-5079.2024.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Hepatocellular carcinoma (HCC) stands as a primary malignant liver tumor characterized by chronic inflammation and complex alterations within the tumor microenvironment (TME). Lymphocyte activation gene 3 (LAG-3), also known as CD223, has gained prominence as a potential next-generation immune checkpoint, maintaining continuous expression in response to persistent antigen exposure within the TME, warranting our attention. In patients with HCC, LAG-3 expression on T cells, regulatory T cells (Tregs), and natural killer (NK) cells contributes to immune evasion, while high expression of LAG-3 leads to increased angiogenesis and poor prognosis. By interacting with major histocompatibility complex class II molecules, LAG-3 promotes T cell exhaustion and suppresses antitumor responses, often in collaboration with other immune checkpoints like programmed cell death protein 1 (PD-1), while on Tregs and NK cells, LAG-3 modulates their suppressive functions, indirectly facilitating tumor immune escape. LAG-3 expression may offer prognostic insights, correlating with disease progression and outcomes in HCC patients, while various preclinical studies highlight the potential of LAG-3-targeted therapies in reinvigorating immune responses against HCC, with a few combination approaches targeting LAG-3 alongside other checkpoints demonstrating synergistic effects in restoring T cell function. Therefore, harnessing LAG-3 as a therapeutic target holds promise for enhancing antitumor immunity and potentially improving HCC treatment outcomes. Our narrative review aims to delve into the full spectrum of LAG-3 signaling in HCC, with the goal of a better understanding of the pathophysiological and immunological basis of its use to arrest HCC growth and development.
Collapse
|
4
|
Qin Q, Zhou Y, Guo J, Chen Q, Tang W, Li Y, You J, Li Q. Conserved methylation signatures associate with the tumor immune microenvironment and immunotherapy response. Genome Med 2024; 16:47. [PMID: 38566132 PMCID: PMC10985907 DOI: 10.1186/s13073-024-01318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Aberrant DNA methylation is a major characteristic of cancer genomes. It remains unclear which biological processes determine epigenetic reprogramming and how these processes influence the variants in the cancer methylome, which can further impact cancer phenotypes. METHODS We performed pairwise permutations of 381,900 loci in 569 paired DNA methylation profiles of cancer tissue and matched normal tissue from The Cancer Genome Atlas (TCGA) and defined conserved differentially methylated positions (DMPs) based on the resulting null distribution. Then, we derived independent methylation signatures from 2,465 cancer-only methylation profiles from the TCGA and 241 cell line-based methylation profiles from the Genomics of Drug Sensitivity in Cancer (GDSC) cohort using nonnegative matrix factorization (NMF). We correlated DNA methylation signatures with various clinical and biological features, including age, survival, cancer stage, tumor immune microenvironment factors, and immunotherapy response. We inferred the determinant genes of these methylation signatures by integrating genomic and transcriptomic data and evaluated the impact of these signatures on cancer phenotypes in independent bulk and single-cell RNA/methylome cohorts. RESULTS We identified 7,364 differentially methylated positions (2,969 Hyper-DMPs and 4,395 Hypo-DMPs) in nine cancer types from the TCGA. We subsequently retrieved three highly conserved, independent methylation signatures (Hyper-MS1, Hypo-MS1, and Hypo-MS4) from cancer tissues and cell lines based on these Hyper and Hypo-DMPs. Our data suggested that Hypo-MS4 activity predicts poor survival and is associated with immunotherapy response and distant tumor metastasis, and Hypo-MS4 activity is related to TP53 mutation and FOXA1 binding specificity. In addition, we demonstrated a correlation between the activities of Hypo-MS4 in cancer cells and the fractions of regulatory CD4 + T cells with the expression levels of immunological genes in the tumor immune microenvironment. CONCLUSIONS Our findings demonstrated that the methylation signatures of distinct biological processes are associated with immune activity in the cancer microenvironment and predict immunotherapy response.
Collapse
Affiliation(s)
- Qingqing Qin
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Ying Zhou
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Jintao Guo
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Qinwei Chen
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China
| | - Weiwei Tang
- Department of Medical Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University and Institute of Hematology, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, The School of Clinical Medicine of Fujian, Medical University, Xiamen, 361003, China
| | - Yuchen Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Jun You
- Department of Gastrointestinal Oncology Surgery, The First Affiliated Hospital of Xiamen University, Cancer Center, Xiamen, 361003, China
| | - Qiyuan Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, China.
- School of Medicine, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, China.
- Department of Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China.
| |
Collapse
|
5
|
Wei H, Huang L, Lu Q, Huang Z, Huang Y, Xu Z, Li W, Pu J. N 6-Methyladenosine-Modified LEAWBIH Drives Hepatocellular Carcinoma Progression through Epigenetically Activating Wnt/β-Catenin Signaling. J Hepatocell Carcinoma 2023; 10:1991-2007. [PMID: 37954496 PMCID: PMC10637240 DOI: 10.2147/jhc.s433070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Purpose N6-methyladenosine (m6A) modification plays an important role in regulating RNA maturation, stability, and translation. Thus, m6A modification is involved in various pathophysiological processes including hepatocellular carcinoma (HCC). However, the direct contribution of m6A modifications to RNA function in HCC remains unclear. Here, we identified LEAWBIH (long non-coding RNA epigenetically activating Wnt/β-catenin signalling in HCC) as an m6A-modified long non-coding RNA (lncRNA) and investigated the effects of m6A on the function of LEAWBIH in HCC. Methods Quantitative polymerase chain reaction was performed to measure the gene expression in tissues and cells. The level of m6A modification was detected using a methylated RNA immunoprecipitation assay and single-base elongation- and ligation-based qPCR amplification method. Cell proliferation was evaluated using the Glo cell viability and CCK-8 assays. Cell migration and invasion were evaluated using Transwell migration and invasion assays. The mechanisms of m6A modified LEAWBIH were investigated using chromatin isolation by RNA purification, chromatin immunoprecipitation, and dual-luciferase reporter assays. Results LEAWBIH was highly expressed and correlated with poor survival in HCC patients. LEAWBIH was identified as a m6A-modified transcript. m6A modification increased LEAWBIH transcript stability. The m6A modification level of LEAWBIH was increased in HCC, and a high m6A modification level of LEAWBIH predicted poor survival. LEAWBIH promotes HCC cell proliferation, migration, and invasion in an m6A modification-dependent manner. Mechanistic investigations revealed that m6A-modified LEAWBIH activated Wnt/β-catenin signaling. m6A-modified LEAWBIH binds to the m6A reader YTHDC1, which further interacts with and recruits H3K9me2 demethylase KDM3B to CTNNB1 promoter, leading to H3K9me2 demethylation and CTNNB1 transcription activation. Functional rescue assays showed that blocking Wnt/β-catenin signaling abolished the role of LEAWBIH in HCC. Conclusion m6A-modified LEAWBIH exerts oncogenic effects in HCC by epigenetically activating Wnt/β-catenin signaling, highlighting m6A-modified LEAWBIH as a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Lizheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Qi Lu
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Zheng Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Yanyan Huang
- Graduate College of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Zuoming Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Wenchuan Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
- Guangxi Clinical Medical Research Center of Hepatobiliary Disease, Baise, People’s Republic of China
| |
Collapse
|
6
|
Huerne K, Jackson SS, Lall R, Palmour N, Berner AM, Dupras C, Joly Y. Studies in Cancer Epigenetics through a Sex and Gendered Lens: A Comprehensive Scoping Review. Cancers (Basel) 2023; 15:4207. [PMID: 37686484 PMCID: PMC10486657 DOI: 10.3390/cancers15174207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Background: Sex and gender are vitally important in the study of epigenetic mechanisms for various types of cancer. However, little has been done to assess the state of sex and gender-based analyses (SGBA) in this field. The aim was to undertake a critical evaluation of sex and gender representation, discussion, and data analysis within the cancer epigenetics field since 2010. Methods: A PRISMA-ScR scoping review was conducted with 111 peer-reviewed studies comprising of colorectal, gastric, head and neck, hepatocellular carcinoma, and lung cancers. Data extraction and a quality appraisal were performed by a team of epidemiologists and bioethicists. Results: Of the 111 included studies, only 17 studies (15.3%) explicitly stated sex and gender analysis to be their primary aim. A total of 103 studies (92.8%) provided a detailed analysis of sex/gender as a biological or social variable, while the remaining 8 studies (7.2%) only stratified results by sex/gender. Although sex and gender were a key facet in all the eligible studies, only 7 studies (6.3%) provided an explicit definition of the terms "sex" or "gender", while the remaining 104 studies (93.7%) used the words "sex" or "gender" without providing a definition. A total of 84 studies (75.7%) conflated the concepts of "sex" and "gender", while 44 studies (39.6%) were inconsistent with their usage of the "sex" and "gender" terms. Conclusions: Very few studies offered a robust analysis of sex/gender data according to SAGER guidelines. We call for clear and directed guidelines regarding the use of sex/gender as a variable in epigenetics research.
Collapse
Affiliation(s)
- Katherine Huerne
- Center of Genomics and Policy, Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Sarah S. Jackson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
| | - Rina Lall
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC H3A 0G1, Canada
| | - Nicole Palmour
- Center of Genomics and Policy, Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| | - Alison May Berner
- Department of Genomics & Computational Biology, Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK
| | - Charles Dupras
- Department of Social and Preventive Medicine, School of Public Health, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Yann Joly
- Center of Genomics and Policy, Department of Human Genetics, McGill University, Montreal, QC H3A 0G1, Canada
| |
Collapse
|
7
|
Budkina A, Medvedeva YA, Stupnikov A. Assessing the Differential Methylation Analysis Quality for Microarray and NGS Platforms. Int J Mol Sci 2023; 24:ijms24108591. [PMID: 37239934 DOI: 10.3390/ijms24108591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Differential methylation (DM) is actively recruited in different types of fundamental and translational studies. Currently, microarray- and NGS-based approaches for methylation analysis are the most widely used with multiple statistical models designed to extract differential methylation signatures. The benchmarking of DM models is challenging due to the absence of gold standard data. In this study, we analyze an extensive number of publicly available NGS and microarray datasets with divergent and widely utilized statistical models and apply the recently suggested and validated rank-statistic-based approach Hobotnica to evaluate the quality of their results. Overall, microarray-based methods demonstrate more robust and convergent results, while NGS-based models are highly dissimilar. Tests on the simulated NGS data tend to overestimate the quality of the DM methods and therefore are recommended for use with caution. Evaluation of the top 10 DMC and top 100 DMC in addition to the not-subset signature also shows more stable results for microarray data. Summing up, given the observed heterogeneity in NGS methylation data, the evaluation of newly generated methylation signatures is a crucial step in DM analysis. The Hobotnica metric is coordinated with previously developed quality metrics and provides a robust, sensitive, and informative estimation of methods' performance and DM signatures' quality in the absence of gold standard data solving a long-existing problem in DM analysis.
Collapse
Affiliation(s)
- Anna Budkina
- Department of Biomedical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Yulia A Medvedeva
- Department of Biomedical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Federal State Institution «Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences», 119071 Moscow, Russia
| | - Alexey Stupnikov
- Department of Biomedical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
8
|
Fu Y, Yang K, Wu K, Wang H, Li Q, Zhang F, Yang K, Yao Q, Ma X, Deng Y, Zhang J, Liu C, Qu K. Identification of hepatocellular carcinoma subtypes based on PcG-related genes and biological relevance with cancer cells. Clin Epigenetics 2022; 14:184. [PMID: 36566204 PMCID: PMC9790136 DOI: 10.1186/s13148-022-01393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/30/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is an extensive heterogeneous disease where epigenetic factors contribute to its pathogenesis. Polycomb group (PcG) proteins are a group of subunits constituting various macro-molecular machines to regulate the epigenetic landscape, which contributes to cancer phenotype and has the potential to develop a molecular classification of HCC. RESULTS Here, based on multi-omics data analysis of DNA methylation, mRNA expression, and copy number of PcG-related genes, we established an epigenetic classification system of HCC, which divides the HCC patients into two subgroups with significantly different outcomes. Comparing these two epigenetic subgroups, we identified different metabolic features, which were related to epigenetic regulation of polycomb-repressive complex 1/2 (PRC1/2). Furthermore, we experimentally proved that inhibition of PcG complexes enhanced the lipid metabolism and reduced the capacity of HCC cells against glucose shortage. In addition, we validated the low chemotherapy sensitivity of HCC in Group A and found inhibition of PRC1/2 promoted HCC cells' sensitivity to oxaliplatin in vitro and in vivo. Finally, we found that aberrant upregulation of CBX2 in Group A and upregulation of CBX2 were associated with poor prognosis in HCC patients. Furthermore, we found that manipulation of CBX2 affected the levels of H3K27me3 and H2AK119ub. CONTRIBUTIONS Our study provided a novel molecular classification system based on PcG-related genes data and experimentally validated the biological features of HCC in two subgroups. Our founding supported the polycomb complex targeting strategy to inhibit HCC progression where CBX2 could be a feasible therapeutic target.
Collapse
Affiliation(s)
- Yunong Fu
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Kaibo Yang
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Kunjin Wu
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Hai Wang
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Qinglin Li
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Fengping Zhang
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Kun Yang
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Qing Yao
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Xiaohua Ma
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Yujie Deng
- grid.417295.c0000 0004 1799 374XDepartment of Geriatrics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi China
| | - Jingyao Zhang
- grid.452438.c0000 0004 1760 8119Department of Surgical Intensive Care Units, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Chang Liu
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China ,grid.452438.c0000 0004 1760 8119Department of Surgical Intensive Care Units, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| | - Kai Qu
- grid.452438.c0000 0004 1760 8119Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 Shaanxi China
| |
Collapse
|
9
|
Hong Y, Zhang Y, Zhao H, Chen H, Yu QQ, Cui H. The roles of lncRNA functions and regulatory mechanisms in the diagnosis and treatment of hepatocellular carcinoma. Front Cell Dev Biol 2022; 10:1051306. [PMID: 36467404 PMCID: PMC9716033 DOI: 10.3389/fcell.2022.1051306] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/07/2022] [Indexed: 10/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent and deadly type of liver cancer. While the underlying molecular mechanisms are poorly understood, it is documented that lncRNAs may play key roles. Many HCC-associated lncRNAs have been linked to HBV and HCV infection, mediating gene expression, cell growth, development, and death. Studying the regulatory mechanisms and biological functions of HCC-related lncRNAs will assist our understanding of HCC pathogenesis as well as its diagnosis and management. Here, we address the potential of dysregulated lncRNAs in HCC as diagnostic and therapeutic biomarkers, and we evaluate the oncogenic or tumor-suppressive properties of these lncRNAs.
Collapse
Affiliation(s)
- Yuling Hong
- School of Clinical Medicine, Jining Medical University, Jining, China
| | - Yunxing Zhang
- Jining First People’s Hospital, Jining Medical College, Jining, China
| | - Haibo Zhao
- Jining First People’s Hospital, Jining Medical College, Jining, China
| | - Hailing Chen
- School of Clinical Medicine, Jining Medical University, Jining, China
| | - Qing-Qing Yu
- Jining First People’s Hospital, Jining Medical College, Jining, China
| | - Hongxia Cui
- Jining First People’s Hospital, Jining Medical College, Jining, China
| |
Collapse
|
10
|
Molina L, Zhu J, Trépo E, Bayard Q, Amaddeo G, Blanc JF, Calderaro J, Ma X, Zucman-Rossi J, Letouzé E, Chiche L, Bioulac-Sage P, Balabaud C, Possenti L, Decraecker M, Paradis V, Laurent A. Bi-allelic hydroxymethylbilane synthase inactivation defines a homogenous clinico-molecular subtype of hepatocellular carcinoma. J Hepatol 2022; 77:1038-1046. [PMID: 35636578 PMCID: PMC10061578 DOI: 10.1016/j.jhep.2022.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Acute intermittent porphyria (AIP), caused by heterozygous germline mutations of the heme synthesis pathway enzyme HMBS (hydroxymethylbilane synthase), confers a high risk of hepatocellular carcinoma (HCC) development. Yet, the role of HMBS in liver tumorigenesis remains unclear. METHODS Herein, we explore HMBS alterations in a large series of 758 HCC cases, including 4 patients with AIP. We quantify the impact of HMBS mutations on heme biosynthesis pathway intermediates and we investigate the molecular and clinical features of HMBS-mutated tumors. RESULTS We identify recurrent bi-allelic HMBS inactivation, both in patients with AIP acquiring a second somatic HMBS mutation and in sporadic HCC with 2 somatic hits. HMBS alterations are enriched in truncating mutations, in particular in splice regions, leading to abnormal transcript structures. Bi-allelic HMBS inactivation results in a massive accumulation of its toxic substrate porphobilinogen and synergizes with CTNNB1-activating mutations, leading to the development of well-differentiated tumors with a transcriptomic signature of Wnt/β-catenin pathway activation and a DNA methylation signature related to ageing. HMBS-inactivated HCC mostly affects females, in the absence of fibrosis and classical HCC risk factors. CONCLUSIONS These data identify HMBS as a tumor suppressor gene whose bi-allelic inactivation defines a homogenous clinical and molecular HCC subtype. LAY SUMMARY Heme (the precursor to hemoglobin, which plays a key role in oxygen transport around the body) synthesis occurs in the liver and involves several enzymes including hydroxymethylbilane synthase (HMBS). HMBS mutations cause acute intermittent porphyria, a disease caused by the accumulation of toxic porphyrin precursors. Herein, we show that HMBS inactivation is also involved in the development of liver cancers with distinct clinical and molecular characteristics.
Collapse
Affiliation(s)
- Laura Molina
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Junjie Zhu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Eric Trépo
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France; Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Quentin Bayard
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Giuliana Amaddeo
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France; INSERM, U955, Equipe 18 "Physiopathologie et Thérapeutiques des Hépatites Virales Chroniques et des cancers liés", Créteil, France; Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Service d'Hépatologie, Créteil, France
| | | | - Jean-Frédéric Blanc
- Department of Hepato-Gastroenterology and Digestive Oncology, CHU de Bordeaux, Haut-Lévêque Hospital, Bordeaux, Aquitaine, France; Department of Pathology, CHU de Bordeaux, Pellegrin Hospital, Bordeaux, Aquitaine, France; Bordeaux Research in Translational Oncology, Université Bordeaux, Bordeaux, Aquitaine, France
| | - Julien Calderaro
- Université Paris Est Créteil, INSERM, IMRB, Créteil, France; INSERM, U955, Equipe 18 "Physiopathologie et Thérapeutiques des Hépatites Virales Chroniques et des cancers liés", Créteil, France; Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Département de Pathologie, Créteil, France
| | - Xiaochao Ma
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France; Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France.
| | - Eric Letouzé
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France; Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, Nantes, France.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Fontanellas A, Avila MA. Hydroxymethylbilane synthase (aka porphobilinogen deaminase): A novel metabolic tumor suppressor gene in hepatocellular carcinoma. J Hepatol 2022; 77:912-914. [PMID: 35798130 DOI: 10.1016/j.jhep.2022.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022]
Affiliation(s)
- Antonio Fontanellas
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; CIBERehd, ISCIII, Madrid, Spain; IdiSNA, Pamplona, Spain.
| | - Matías A Avila
- Program of Hepatology, CIMA, University of Navarra, Pamplona, Spain; CIBERehd, ISCIII, Madrid, Spain; IdiSNA, Pamplona, Spain.
| |
Collapse
|
12
|
Zhang C, Zhang W, Yuan Z, Yang W, Hu X, Duan S, Wei Q. Contribution of DNA methylation to the risk of hepatitis C virus-associated hepatocellular carcinoma: A meta-analysis. Pathol Res Pract 2022; 238:154136. [PMID: 36155324 DOI: 10.1016/j.prp.2022.154136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/07/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
Abstract
DNA methylation is a crucial epigenetic modification in hepatocellular carcinoma (HCC), and hepatitis C virus (HCV) can induce hepatocarcinogenesis. Nevertheless, the interaction mechanism between DNA methylation and HCV infection in HCC is still ambiguous. In this study, we performed a comprehensive meta-analysis to assess the contribution of DNA methylation in HCV-associated HCC. After four steps of literature screening, we finally obtained 33 qualified case-control studies for this meta-analysis. These studies consisted of 587 HCV-positive cancer tissues and 326 HCV-negative cancer tissues. Our results revealed that four genes (p16, GSTP1, APC, and RUNX3) were more hypermethylated in the HCV-positive liver cancer tissues than in the HCV-negative liver cancer tissues. In addition, the p16 gene was more hypermethylated in the HCV-positive paracancerous tissues than in the HCV-negative paracancerous tissues. Subgroup meta-analysis by geographical populations showed that p16 methylation was significantly higher in HCV-positive cancerous tissues from Japanese and Chinese. Besides, p16 methylation was significantly higher among patients (> 60 years) but not among the others (≤ 60 years). However, there was no obvious association between DNA methylation and other clinicopathological characteristics, including gender, tumor size, differentiation, and clinical stage. Our study suggested that DNA methylation could become potential biomarkers for HCV-associated HCC. DNA methylation contributed to the risk of HCV-associated HCC.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wangjian Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhijun Yuan
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenjun Yang
- Department of Pathology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiangrong Hu
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shiwei Duan
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang, China.
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Fu J, Qin W, Tong Q, Li Z, Shao Y, Liu Z, Liu C, Wang Z, Xu X. A novel DNA methylation-driver gene signature for long-term survival prediction of hepatitis-positive hepatocellular carcinoma patients. Cancer Med 2022; 11:4721-4735. [PMID: 35637633 PMCID: PMC9741990 DOI: 10.1002/cam4.4838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Abnormal DNA methylation is one of the most general epigenetic modifications in hepatocellular carcinoma (HCC). Recent research showed that DNA methylation was a prognostic indicator of all-cause HCC and nonviral HCC. However, whether DNA methylation-driver genes could be used for predicting survival, the probability of hepatitis-positive HCC remains unclear. METHODS In this study, DNA methylation-driver genes (MDGs) were screened by a joint analysis of methylome and transcriptome data of 142 hepatitis-positive HCC patients. Subsequently, a prognostic risk score and nomogram were constructed. Finally, correlation analyses between the risk score and signaling pathways and immunity were conducted by GSVA and CIBERSORT. RESULTS Through random forest screening and Cox progression analysis, 10 prognostic methylation-driver genes (AC008271.1, C11orf53, CASP8, F2RL2, GBP5, LUCAT1, RP11-114B7.6, RP11-149I23.3, RP11-383 J24.1, and SLC35G2) were screened out. As a result, a prognostic risk score signature was constructed. The independent value of the risk score for prognosis prediction were addressed in the TCGA-HCC and the China-HCC cohorts. Next, clinicopathological features were analyzed and HBV status and histological grade were screened to construct a nomogram together with the risk score. The prognostic efficiency of the nomogram was validated by the calibration curves and the concordance index (C index: 0.829, 95% confidence interval: 0.794-0.864), while its clinical application ability was confirmed by decision curve analysis (DCA). At last, the relationship between the risk score and signaling pathways, as well as the correlations between immune cells were elucidated preliminary. CONCLUSIONS Taken together, our study explored a novel DNA methylation-driver gene risk score signature and an efficient nomogram for long-term survival prediction of hepatitis-positive HCC patients.
Collapse
Affiliation(s)
- Jie Fu
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Wei Qin
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Qing Tong
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zhenghao Li
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Yaoli Shao
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zhiqiang Liu
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Chun Liu
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Zicheng Wang
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina
| | - Xundi Xu
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaChina,Department of General SurgerySouth China Hospital of Shenzhen UniversityShenzhenChina
| |
Collapse
|
14
|
Captier N, Merlevede J, Molkenov A, Seisenova A, Zhubanchaliyev A, Nazarov PV, Barillot E, Kairov U, Zinovyev A. BIODICA: a computational environment for Independent Component Analysis of omics data. Bioinformatics 2022; 38:2963-2964. [PMID: 35561190 DOI: 10.1093/bioinformatics/btac204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
SUMMARY We developed BIODICA, an integrated computational environment for application of independent component analysis (ICA) to bulk and single-cell molecular profiles, interpretation of the results in terms of biological functions and correlation with metadata. The computational core is the novel Python package stabilized-ica which provides interface to several ICA algorithms, a stabilization procedure, meta-analysis and component interpretation tools. BIODICA is equipped with a user-friendly graphical user interface, allowing non-experienced users to perform the ICA-based omics data analysis. The results are provided in interactive ways, thus facilitating communication with biology experts. AVAILABILITY AND IMPLEMENTATION BIODICA is implemented in Java, Python and JavaScript. The source code is freely available on GitHub under the MIT and the GNU LGPL licenses. BIODICA is supported on all major operating systems. URL: https://sysbio-curie.github.io/biodica-environment/.
Collapse
Affiliation(s)
- Nicolas Captier
- Institut National de la Santé et de la Recherche Médicale (INSERM), U900, F-75005 Paris, France
- Institut Curie, PSL Research University, F-75005 Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
- Laboratoire d'Imagerie Translationnelle en Oncologie, Institut Curie, INSERM U1288, PSL Research University, 91400 Orsay, France
| | - Jane Merlevede
- Institut National de la Santé et de la Recherche Médicale (INSERM), U900, F-75005 Paris, France
- Institut Curie, PSL Research University, F-75005 Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Askhat Molkenov
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Ainur Seisenova
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Altynbek Zhubanchaliyev
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Petr V Nazarov
- Multiomics Data Science Research Group, Department of Cancer Research & Bioinformatics Platform, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Emmanuel Barillot
- Institut National de la Santé et de la Recherche Médicale (INSERM), U900, F-75005 Paris, France
- Institut Curie, PSL Research University, F-75005 Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| | - Ulykbek Kairov
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Andrei Zinovyev
- Institut National de la Santé et de la Recherche Médicale (INSERM), U900, F-75005 Paris, France
- Institut Curie, PSL Research University, F-75005 Paris, France
- MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, F-75006 Paris, France
| |
Collapse
|
15
|
Recalde M, Gárate-Rascón M, Herranz JM, Elizalde M, Azkona M, Unfried JP, Boix L, Reig M, Sangro B, Fernández-Barrena MG, Fortes P, Ávila MA, Berasain C, Arechederra M. DNA Methylation Regulates a Set of Long Non-Coding RNAs Compromising Hepatic Identity during Hepatocarcinogenesis. Cancers (Basel) 2022; 14:cancers14092048. [PMID: 35565178 PMCID: PMC9102946 DOI: 10.3390/cancers14092048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Hepatocarcinogenesis is a long process which implies the loss of hepatic functions. Our effort is to understand the mechanisms implicated in this pathological process in order to contribute to the development of new diagnostic markers and therapeutic targets. In this study we have identified a set of lncRNAs significantly downregulated in hepatocellular carcinoma (HCC) in correlation with the grade of tumor dedifferentiation and patients’ worse prognosis. Mechanistically, our results show that they are related with hepatic differentiation and at least a subset of those lncRNAs are essential to ensure the expression of other hepato-specific genes required for liver function. Moreover, we demonstrate that the expression of these lncRNAs in HCC is silenced by DNA methylation. All in all, we uncover connected epigenetic alterations involved in the progression of liver cancer and identify potential new biomarkers. Abstract Background: Long noncoding RNAs (lncRNAs) are emerging as key players in cancer, including hepatocellular carcinoma (HCC). Here we identify the mechanism implicated in the HCC inhibition of a set of lncRNAs, and their contribution to the process of hepatocarcinogenesis. Methods and Results: The top-ranked 35 lncRNAs downregulated in HCC (Top35 LNDH) were validated in several human HCC cohorts. We demonstrate that their inhibition is associated with promoter hypermethylation in HCC compared to control tissue, and in HCC human cell lines compared to primary hepatocytes. Moreover, demethylating treatment of HCC human cell lines induced the expression of these lncRNAs. The Top35 LNDH were preferentially expressed in the adult healthy liver compared to other tissues and fetal liver and were induced in well-differentiated HepaRG cells. Remarkably, their knockdown compromised the expression of other hepato-specific genes. Finally, the expression of the Top35 LNDH positively correlates with the grade of tumor differentiation and, more importantly, with a better patient prognosis. Conclusions: Our results demonstrate that the selected Top35 LNDH are not only part of the genes that compose the hepatic differentiated signature but participate in its establishment. Moreover, their downregulation through DNA methylation occurs during the process of hepatocarcinogenesis compromising hepatocellular differentiation and HCC patients’ prognosis.
Collapse
Affiliation(s)
- Miriam Recalde
- Program of Hepatology, Centre of Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.R.); (M.G.-R.); (J.M.H.); (M.E.); (M.A.); (M.G.F.-B.); (M.A.Á.)
| | - María Gárate-Rascón
- Program of Hepatology, Centre of Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.R.); (M.G.-R.); (J.M.H.); (M.E.); (M.A.); (M.G.F.-B.); (M.A.Á.)
| | - José María Herranz
- Program of Hepatology, Centre of Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.R.); (M.G.-R.); (J.M.H.); (M.E.); (M.A.); (M.G.F.-B.); (M.A.Á.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (L.B.); (M.R.); (B.S.); (P.F.)
| | - María Elizalde
- Program of Hepatology, Centre of Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.R.); (M.G.-R.); (J.M.H.); (M.E.); (M.A.); (M.G.F.-B.); (M.A.Á.)
| | - María Azkona
- Program of Hepatology, Centre of Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.R.); (M.G.-R.); (J.M.H.); (M.E.); (M.A.); (M.G.F.-B.); (M.A.Á.)
| | - Juan P. Unfried
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
| | - Loreto Boix
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (L.B.); (M.R.); (B.S.); (P.F.)
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - María Reig
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (L.B.); (M.R.); (B.S.); (P.F.)
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | - Bruno Sangro
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (L.B.); (M.R.); (B.S.); (P.F.)
- Hepatology Unit, Navarra University Clinic, 31008 Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Maite G. Fernández-Barrena
- Program of Hepatology, Centre of Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.R.); (M.G.-R.); (J.M.H.); (M.E.); (M.A.); (M.G.F.-B.); (M.A.Á.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (L.B.); (M.R.); (B.S.); (P.F.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Puri Fortes
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (L.B.); (M.R.); (B.S.); (P.F.)
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain;
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Matías A. Ávila
- Program of Hepatology, Centre of Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.R.); (M.G.-R.); (J.M.H.); (M.E.); (M.A.); (M.G.F.-B.); (M.A.Á.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (L.B.); (M.R.); (B.S.); (P.F.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Carmen Berasain
- Program of Hepatology, Centre of Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.R.); (M.G.-R.); (J.M.H.); (M.E.); (M.A.); (M.G.F.-B.); (M.A.Á.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (L.B.); (M.R.); (B.S.); (P.F.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (C.B.); (M.A.); Tel.: +34-948194700 (C.B. & M.A.)
| | - María Arechederra
- Program of Hepatology, Centre of Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (M.R.); (M.G.-R.); (J.M.H.); (M.E.); (M.A.); (M.G.F.-B.); (M.A.Á.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Carlos III Health Institute), 28029 Madrid, Spain; (L.B.); (M.R.); (B.S.); (P.F.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
- Correspondence: (C.B.); (M.A.); Tel.: +34-948194700 (C.B. & M.A.)
| |
Collapse
|
16
|
Llovet JM, Pinyol R, Kelley RK, El-Khoueiry A, Reeves HL, Wang XW, Gores GJ, Villanueva A. Molecular pathogenesis and systemic therapies for hepatocellular carcinoma. NATURE CANCER 2022; 3:386-401. [PMID: 35484418 PMCID: PMC9060366 DOI: 10.1038/s43018-022-00357-2] [Citation(s) in RCA: 184] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/25/2022] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) remains one of the most prevalent and deadliest cancers. The poor outcome associated with HCC is dramatically changing due to the advent of effective systemic therapies. Here we discuss the molecular pathogenesis of HCC, molecular classes and determinants of heterogeneity. In addition, effective single-agent and combination systemic therapies involving immunotherapies as standard of care are analyzed. Finally, we propose a flowchart of sequential therapies, explore mechanisms of resistance and address the need for predictive biomarkers.
Collapse
Affiliation(s)
- Josep M Llovet
- Liver Cancer Translational Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| | - Roser Pinyol
- Liver Cancer Translational Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Robin K Kelley
- Helen Diller Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Anthony El-Khoueiry
- Keck School of Medicine, USC Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Helen L Reeves
- Newcastle University Translational and Clinical Research Institute and Newcastle University Centre for Cancer, Medical School, Newcastle Upon Tyne, UK
- Hepatopancreatobiliary Multidisciplinary Team, Newcastle upon Tyne NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Augusto Villanueva
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
17
|
Braghini MR, Lo Re O, Romito I, Fernandez-Barrena MG, Barbaro B, Pomella S, Rota R, Vinciguerra M, Avila MA, Alisi A. Epigenetic remodelling in human hepatocellular carcinoma. J Exp Clin Cancer Res 2022; 41:107. [PMID: 35331312 PMCID: PMC8943959 DOI: 10.1186/s13046-022-02297-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/19/2022] [Indexed: 04/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer, being the sixth most commonly diagnosed cancer and the fourth leading cause of cancer-related death. As other heterogeneous solid tumours, HCC results from a unique synergistic combination of genetic alterations mixed with epigenetic modifications.In HCC the patterns and frequencies of somatic variations change depending on the nearby chromatin. On the other hand, epigenetic alterations often induce genomic instability prone to mutations. Epigenetics refers to heritable states of gene expression without alteration to the DNA sequence itself and, unlike genetic changes, the epigenetic modifications are reversible and affect gene expression more extensively than genetic changes. Thus, studies of epigenetic regulation and the involved molecular machinery are greatly contributing to the understanding of the mechanisms that underline HCC onset and heterogeneity. Moreover, this knowledge may help to identify biomarkers for HCC diagnosis and prognosis, as well as future new targets for more efficacious therapeutic approaches.In this comprehensive review we will discuss the state-of-the-art knowledge about the epigenetic landscape in hepatocarcinogenesis, including evidence on the diagnostic and prognostic role of non-coding RNAs, modifications occurring at the chromatin level, and their role in the era of precision medicine.Apart from other better-known risk factors that predispose to the development of HCC, characterization of the epigenetic remodelling that occurs during hepatocarcinogenesis could open the way to the identification of personalized biomarkers. It may also enable a more accurate diagnosis and stratification of patients, and the discovery of new targets for more efficient therapeutic approaches.
Collapse
Affiliation(s)
- Maria Rita Braghini
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Oriana Lo Re
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Ilaria Romito
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Maite G Fernandez-Barrena
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Barbara Barbaro
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy
| | - Silvia Pomella
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Rota
- Department of Paediatric Haematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manlio Vinciguerra
- Department of Translational Stem Cell Biology, Research Institute of the Medical University of Varna, Varna, Bulgaria
| | - Matias A Avila
- Hepatology Program, CIMA, University of Navarra, Pamplona, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Viale S. Paolo, 15, 00146, Rome, Italy.
| |
Collapse
|
18
|
Zhang S, Xu J, Cao H, Jiang M, Xiong J. KB-68A7.1 Inhibits Hepatocellular Carcinoma Development Through Binding to NSD1 and Suppressing Wnt/β-Catenin Signalling. Front Oncol 2022; 11:808291. [PMID: 35127520 PMCID: PMC8810504 DOI: 10.3389/fonc.2021.808291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies with extremely poor prognosis. Therefore, revealing the critical molecules involved in HCC progression and prognosis is urgently needed. In this study, through combining public dataset and our cohort, we found a novel prognosis-related long non-coding RNA KB-68A7.1 in HCC. KB-68A7.1 was lowly expressed in HCC, whose low expression was associated with large tumour size, aggressive clinical characteristic, and poor survival. Gain- and loss-of-function assays demonstrated that KB-68A7.1 restricted HCC cellular proliferation, induced HCC cellular apoptosis, and suppressed HCC cellular migration and invasion in vitro. Xenograft assays demonstrated that KB-68A7.1 suppressed HCC tumour growth and metastasis in vivo. These functional assays suggested KB-68A7.1 as a tumour suppressor in HCC. Histone methyltransferase nuclear receptor binding SET domain-containing protein 1 (NSD1) was found to bind to KB-68A7.1. KB-68A7.1 was mainly distributed in the cytoplasm. The binding of KB-68A7.1 to NSD1 sequestrated NSD1 in the cytoplasm, leading to the reduction in nuclear NSD1 level. Through decreasing nuclear NSD1 level, KB-68A7.1 reduced di-methylation of histone H3 at lysine 36 (H3K36me2) and increased tri-methylation of histone H3 at lysine 27 (H3K27me3) at the promoter of WNT10B, a target of NSD1. Thus, KB-68A7.1 repressed WNT10B transcription. The expression of WNT10B was negatively correlated with that of KB-68A7.1 in HCC tissues. Through repressing WNT10B, KB-68A7.1 further repressed Wnt/β-catenin signalling. Functional rescue assays showed that overexpression of WNT10B reversed the tumour-suppressive roles of KB-68A7.1, whereas the oncogenic roles of KB-68A7.1 depletion were abolished by Wnt/β-catenin signalling inhibitor. Overall, this study identified KB-68A7.1 as a lowly expressed and prognosis-related lncRNA in HCC, which suppressed HCC progression through binding to NSD1 and repressing Wnt/β-catenin signalling.
Collapse
Affiliation(s)
- Shuhua Zhang
- Department of Hepatobiliary Surgery of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianqun Xu
- Department of Respiratory Medicine, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
- *Correspondence: Jianqun Xu,
| | - Huan Cao
- Department of Hepatobiliary Surgery of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mi Jiang
- Department of Hepatobiliary Surgery of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiong
- Department of Hepatobiliary Surgery of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Gallon J, Coto-Llerena M, Ercan C, Bianco G, Paradiso V, Nuciforo S, Taha-Melitz S, Meier MA, Boldanova T, Pérez-Del-Pulgar S, Rodríguez-Tajes S, von Flüe M, Soysal SD, Kollmar O, Llovet JM, Villanueva A, Terracciano LM, Heim MH, Ng CKY, Piscuoglio S. Epigenetic priming in chronic liver disease impacts the transcriptional and genetic landscapes of hepatocellular carcinoma. Mol Oncol 2021; 16:665-682. [PMID: 34863035 PMCID: PMC8807355 DOI: 10.1002/1878-0261.13154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/18/2021] [Accepted: 12/02/2021] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinomas (HCCs) usually arise from chronic liver disease (CLD). Precancerous cells in chronically inflamed environments may be 'epigenetically primed', sensitising them to oncogenic transformation. We investigated whether epigenetic priming in CLD may affect HCC outcomes by influencing the genomic and transcriptomic landscapes of HCC. Analysis of DNA methylation arrays from 10 paired CLD-HCC identified 339 shared dysregulated CpG sites and 18 shared differentially methylated regions compared with healthy livers. These regions were associated with dysregulated expression of genes with relevance in HCC, including ubiquitin D (UBD), cytochrome P450 family 2 subfamily C member 19 (CYP2C19) and O-6-methylguanine-DNA methyltransferase (MGMT). Methylation changes were recapitulated in an independent cohort of nine paired CLD-HCC. High CLD methylation score, defined using the 124 dysregulated CpGs in CLD and HCC in both cohorts, was associated with poor survival, increased somatic genetic alterations and TP53 mutations in two independent HCC cohorts. Oncogenic transcriptional and methylation dysregulation is evident in CLD and compounded in HCC. Epigenetic priming in CLD sculpts the transcriptional landscape of HCC and creates an environment favouring the acquisition of genetic alterations, suggesting that the extent of epigenetic priming in CLD could influence disease outcome.
Collapse
Affiliation(s)
- John Gallon
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Switzerland
| | - Mairene Coto-Llerena
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Switzerland.,Institute of Medical Genetics and Pathology, University Hospital Basel, Switzerland
| | - Caner Ercan
- Institute of Medical Genetics and Pathology, University Hospital Basel, Switzerland
| | - Gaia Bianco
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Switzerland
| | - Viola Paradiso
- Institute of Medical Genetics and Pathology, University Hospital Basel, Switzerland
| | - Sandro Nuciforo
- Hepatology Laboratory, Department of Biomedicine, University of Basel, Switzerland
| | - Stephanie Taha-Melitz
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Switzerland.,Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Switzerland
| | - Marie-Anne Meier
- Hepatology Laboratory, Department of Biomedicine, University of Basel, Switzerland
| | - Tujana Boldanova
- Hepatology Laboratory, Department of Biomedicine, University of Basel, Switzerland.,Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Switzerland
| | | | | | - Markus von Flüe
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Switzerland
| | - Savas D Soysal
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Switzerland
| | - Otto Kollmar
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Switzerland
| | - Josep M Llovet
- Translational Research in Hepatic Oncology, Liver Unit, IDIBAPS, Hospital Clínic, University of Barcelona, Spain.,Liver Cancer Program, Divisions of Liver Diseases and Hematology/Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Augusto Villanueva
- Liver Cancer Program, Divisions of Liver Diseases and Hematology/Medical Oncology, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luigi M Terracciano
- Department of Pathology, Humanitas Clinical and Research Center, IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Markus H Heim
- Hepatology Laboratory, Department of Biomedicine, University of Basel, Switzerland.,Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Switzerland
| | - Charlotte K Y Ng
- Department for BioMedical Research, University of Bern, Switzerland.,SIB, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Salvatore Piscuoglio
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Switzerland.,Institute of Medical Genetics and Pathology, University Hospital Basel, Switzerland
| |
Collapse
|
20
|
Feng ZH, Zheng L, Yao T, Tao SY, Wei XA, Zheng ZY, Zheng BJ, Zhang XY, Huang B, Liu JH, Chen YL, Shan Z, Yuan PT, Wang CG, Chen J, Shen SY, Zhao FD. EIF4A3-induced circular RNA PRKAR1B promotes osteosarcoma progression by miR-361-3p-mediated induction of FZD4 expression. Cell Death Dis 2021; 12:1025. [PMID: 34716310 PMCID: PMC8556261 DOI: 10.1038/s41419-021-04339-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022]
Abstract
Emerging evidence indicates that circRNAs are broadly expressed in osteosarcoma (OS) cells and play a crucial role in OS progression. Recently, cancer-specific circRNA circPRKAR1B has been identified by high-throughput sequencing and is recorded in publicly available databases. Nevertheless, the detailed functions and underlying mechanisms of circPRKAR1B in OS remains poorly understood. By functional experiments, we found that circPRKAR1B enhanced OS cell proliferation, migration, and promotes OS epithelial–mesenchymal transition (EMT). Mechanistic investigations suggested that circPRKAR1B promotes OS progression through sponging miR-361-3p to modulate the expression of FZD4. Subsequently, we identified that EIF4A3 promoted cirPRKAR1B formation through binding to the downstream target of circPRKAR1B on PRKAR1B mRNA. Further rescue study revealed that overexpression of the Wnt signalling could impair the onco-suppressor activities of the silencing of circPRKAR1B. Interestingly, further experiments indicated that circPRKAR1B is involved in the sensitivity of chemoresistance in OS. On the whole, our results demonstrated that circPRKAR1B exerted oncogenic roles in OS and suggested the circPRKAR1B/miR-361-3p/FZD4 axis plays an important role in OS progression and might be a potential therapeutic target.
Collapse
Affiliation(s)
- Zhen-Hua Feng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Lin Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Si-Yue Tao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xiao-An Wei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Ze-Yu Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Bing-Jie Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xu-Yang Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Bao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Jun-Hui Liu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yi-Lei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Zhi Shan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Pu-Tao Yuan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Cheng-Gui Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shu-Ying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| | - Feng-Dong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
21
|
Macias RI, Monte MJ, Serrano MA, González-Santiago JM, Martín-Arribas I, Simão AL, Castro RE, González-Gallego J, Mauriz JL, Marin JJ. Impact of aging on primary liver cancer: epidemiology, pathogenesis and therapeutics. Aging (Albany NY) 2021; 13:23416-23434. [PMID: 34633987 PMCID: PMC8544321 DOI: 10.18632/aging.203620] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/28/2021] [Indexed: 01/18/2023]
Abstract
Aging involves progressive physiological and metabolic reprogramming to adapt to gradual deterioration of organs and functions. This includes mechanisms of defense against pre-malignant transformations. Thus, certain tumors are more prone to appear in elderly patients. This is the case of the two most frequent types of primary liver cancer, i.e., hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Accordingly, aging hallmarks, such as genomic instability, telomere attrition, epigenetic alterations, altered proteostasis, mitochondrial dysfunction, cellular senescence, exhaustion of stem cell niches, impaired intracellular communication, and deregulated nutrient sensing can play an important role in liver carcinogenesis in the elders. In addition, increased liver fragility determines a worse response to risk factors, which more frequently affect the aged population. This, together with the difficulty to carry out an early detection of HCC and iCCA, accounts for the late diagnosis of these tumors, which usually occurs in patients with approximately 60 and 70 years, respectively. Furthermore, there has been a considerable controversy on what treatment should be used in the management of HCC and iCCA in elderly patients. The consensus reached by numerous studies that have investigated the feasibility and safety of different curative and palliative therapeutic approaches in elders with liver tumors is that advanced age itself is not a contraindication for specific treatments, although the frequent presence of comorbidities in these individuals should be taken into consideration for their management.
Collapse
Affiliation(s)
- Rocio I.R. Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maria J. Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maria A. Serrano
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jesús M. González-Santiago
- Department of Gastroenterology and Hepatology, University Hospital of Salamanca, IBSAL, Salamanca, Spain
| | - Isabel Martín-Arribas
- Department of Gastroenterology and Hepatology, University Hospital of Salamanca, IBSAL, Salamanca, Spain
| | - André L. Simão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui E. Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - José L. Mauriz
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jose J.G. Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
22
|
Hirsch TZ, Pilet J, Morcrette G, Roehrig A, Monteiro BJE, Molina L, Bayard Q, Trépo E, Meunier L, Caruso S, Renault V, Deleuze JF, Fresneau B, Chardot C, Gonzales E, Jacquemin E, Guerin F, Fabre M, Aerts I, Taque S, Laithier V, Branchereau S, Guettier C, Brugières L, Rebouissou S, Letouzé E, Zucman-Rossi J. Integrated Genomic Analysis Identifies Driver Genes and Cisplatin-Resistant Progenitor Phenotype in Pediatric Liver Cancer. Cancer Discov 2021; 11:2524-2543. [PMID: 33893148 PMCID: PMC8916021 DOI: 10.1158/2159-8290.cd-20-1809] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/22/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022]
Abstract
Pediatric liver cancers (PLC) comprise diverse diseases affecting infants, children, and adolescents. Despite overall good prognosis, PLCs display heterogeneous response to chemotherapy. Integrated genomic analysis of 126 pediatric liver tumors showed a continuum of driver mechanisms associated with patient age, including new targetable oncogenes. In 10% of patients with hepatoblastoma, all before three years old, we identified a mosaic premalignant clonal expansion of cells altered at the 11p15.5 locus. Analysis of spatial and longitudinal heterogeneity revealed an important plasticity between "hepatocytic," "liver progenitor," and "mesenchymal" molecular subgroups of hepatoblastoma. We showed that during chemotherapy, "liver progenitor" cells accumulated massive loads of cisplatin-induced mutations with a specific mutational signature, leading to the development of heavily mutated relapses and metastases. Drug screening in PLC cell lines identified promising targets for cisplatin-resistant progenitor cells, validated in mouse xenograft experiments. These data provide new insights into cisplatin resistance mechanisms in PLC and suggest alternative therapies. SIGNIFICANCE: PLCs are deadly when they resist chemotherapy, with limited alternative treatment options. Using a multiomics approach, we identified PLC driver genes and the cellular phenotype at the origin of cisplatin resistance. We validated new treatments targeting these molecular features in cell lines and xenografts.This article is highlighted in the In This Issue feature, p. 2355.
Collapse
Affiliation(s)
- Theo Z Hirsch
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Jill Pilet
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Guillaume Morcrette
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
- Department of Pediatric Pathology, APHP, Robert Debré Hospital, Paris, France
| | - Amélie Roehrig
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Benedict J E Monteiro
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Laura Molina
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Quentin Bayard
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Eric Trépo
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, C.U.B. Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Léa Meunier
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Victor Renault
- Laboratory for Bioinformatics, Fondation Jean Dausset-CEPH, Paris, France
| | - Jean-François Deleuze
- Laboratory for Bioinformatics, Fondation Jean Dausset-CEPH, Paris, France
- Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Brice Fresneau
- Gustave Roussy, Université Paris-Saclay, Department of Children and Adolescents Oncology, Villejuif, France
| | | | - Emmanuel Gonzales
- Pediatric Hepatology and Liver Transplantation Unit, National Reference Centre for Rare Pediatric Liver Diseases, FILFOIE, ERN RARE LIVER, APHP, Bicêtre University Hospital, University of Paris-Saclay, Le Kremlin Bicêtre, and INSERM UMR_S 1193, Hepatinov, University of Paris-Saclay, Orsay, France
| | - Emmanuel Jacquemin
- Pediatric Hepatology and Liver Transplantation Unit, National Reference Centre for Rare Pediatric Liver Diseases, FILFOIE, ERN RARE LIVER, APHP, Bicêtre University Hospital, University of Paris-Saclay, Le Kremlin Bicêtre, and INSERM UMR_S 1193, Hepatinov, University of Paris-Saclay, Orsay, France
| | - Florent Guerin
- Department of Pediatric Surgery, Bicêtre Hospital, APHP, Paris-Saclay University, Orsay, France
| | - Monique Fabre
- Department of Pathology, Hôpital Universitaire Necker-Enfants malades, AP-HP, Centre-Université de Paris, Université Paris Descartes, Paris, France
| | - Isabelle Aerts
- Oncology Center SIREDO, Institut Curie, PSL Research University, Paris, France
| | - Sophie Taque
- Département de Pédiatrie, CHU Fontenoy, Rennes, France
| | - Véronique Laithier
- Department of Children Oncology, Centre Hospitalier Universitaire Besançon, Besançon, France
| | - Sophie Branchereau
- Department of Pediatric Surgery, Bicêtre Hospital, APHP, Paris-Saclay University, Orsay, France
| | - Catherine Guettier
- Department of Pathology Hôpital Bicêtre-AP-HP, INSERM U1193, Paris-Saclay University, Orsay, France
| | - Laurence Brugières
- Gustave Roussy, Université Paris-Saclay, Department of Children and Adolescents Oncology, Villejuif, France
| | - Sandra Rebouissou
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Eric Letouzé
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Paris, France.
- Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, Paris, France
| |
Collapse
|
23
|
Intrinsic activation of β-catenin signaling by CRISPR/Cas9-mediated exon skipping contributes to immune evasion in hepatocellular carcinoma. Sci Rep 2021; 11:16732. [PMID: 34429454 PMCID: PMC8384852 DOI: 10.1038/s41598-021-96167-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023] Open
Abstract
Comprehensive analysis of clinical samples has recently identified molecular and immunological classification of hepatocellular carcinoma (HCC), and the CTNNB1 (β-catenin)-mutated subtype exhibits distinctive characteristics of immunosuppressive tumor microenvironment. For clarifying the molecular mechanisms, we first established human and mouse HCC cells with exon 3 skipping of β-catenin, which promoted nuclear translocation and activated the Wnt/β-catenin signaling pathway, by using newly developed multiplex CRISPR/Cas9-based genome engineering system. Gene set enrichment analysis indicated downregulation of immune-associated gene sets in the HCC cells with activated β-catenin signaling. Comparative analysis of gene expression profiles between HCC cells harboring wild-type and exon 3 skipping β-catenin elucidated that the expression levels of four cytokines were commonly decreased in human and mouse β-catenin-mutated HCC cells. Public exome and transcriptome data of 373 human HCC samples showed significant downregulation of two candidate cytokine genes, CCL20 and CXCL2, in HCC tumors with β-catenin hotspot mutations. T cell killing assays and immunohistochemical analysis of grafted tumor tissues demonstrated that the mouse Ctnnb1Δex3 HCC cells evaded immunosurveillance. Taken together, this study discovered that cytokine controlled by β-catenin signaling activation could contribute to immune evasion, and provided novel insights into cancer immunotherapy for the β-catenin-mutated HCC subtype.
Collapse
|