1
|
Lin Y, Huang H, Cao J, Zhang K, Chen R, Jiang J, Yi X, Feng S, Liu J, Zheng S, Ling Q. An integrated proteomics and metabolomics approach to assess graft quality and predict early allograft dysfunction after liver transplantation: a retrospective cohort study. Int J Surg 2024; 110:3480-3494. [PMID: 38502860 PMCID: PMC11175820 DOI: 10.1097/js9.0000000000001292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/22/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Early allograft dysfunction (EAD) is a common complication after liver transplantation (LT) and is associated with poor prognosis. Graft itself plays a major role in the development of EAD. We aimed to reveal the EAD-specific molecular profiles to assess graft quality and establish EAD predictive models. METHODS A total of 223 patients who underwent LT were enrolled and divided into training ( n =73) and validation ( n =150) sets. In the training set, proteomics was performed on graft biopsies, together with metabolomics on paired perfusates. Differential expression, enrichment analysis, and protein-protein interaction network were used to identify the key molecules and pathways involved. EAD predictive models were constructed using machine learning and verified in the validation set. RESULTS A total of 335 proteins were differentially expressed between the EAD and non-EAD groups. These proteins were significantly enriched in triglyceride and glycerophospholipid metabolism, neutrophil degranulation, and the MET-related signaling pathway. The top 12 graft proteins involved in the aforementioned processes were identified, including GPAT1, LPIN3, TGFB1, CD59, and SOS1. Moreover, downstream metabolic products, such as lactate dehydrogenase, interleukin-8, triglycerides, and the phosphatidylcholine/phosphorylethanolamine ratio in the paired perfusate displayed a close relationship with the graft proteins. To predict the occurrence of EAD, an integrated model using perfusate metabolic products and clinical parameters showed areas under the curve of 0.915 and 0.833 for the training and validation sets, respectively. It displayed superior predictive efficacy than that of currently existing models, including donor risk index and D-MELD scores. CONCLUSIONS We identified novel biomarkers in both grafts and perfusates that could be used to assess graft quality and provide new insights into the etiology of EAD. Herein, we also offer a valid tool for the early prediction of EAD.
Collapse
Affiliation(s)
- Yimou Lin
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Haitao Huang
- Department of Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiaying Cao
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Ke Zhang
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Ruihan Chen
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Jingyu Jiang
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Xuewen Yi
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
| | - Shi Feng
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jimin Liu
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Shusen Zheng
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, Hangzhou, China
| | - Qi Ling
- Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Medical Center for Infectious Diseases, Hangzhou, China
| |
Collapse
|
2
|
Ghouse J, Sveinbjörnsson G, Vujkovic M, Seidelin AS, Gellert-Kristensen H, Ahlberg G, Tragante V, Rand SA, Brancale J, Vilarinho S, Lundegaard PR, Sørensen E, Erikstrup C, Bruun MT, Jensen BA, Brunak S, Banasik K, Ullum H, Verweij N, Lotta L, Baras A, Mirshahi T, Carey DJ, Kaplan DE, Lynch J, Morgan T, Schwantes-An TH, Dochtermann DR, Pyarajan S, Tsao PS, Laisk T, Mägi R, Kozlitina J, Tybjærg-Hansen A, Jones D, Knowlton KU, Nadauld L, Ferkingstad E, Björnsson ES, Ulfarsson MO, Sturluson Á, Sulem P, Pedersen OB, Ostrowski SR, Gudbjartsson DF, Stefansson K, Olesen MS, Chang KM, Holm H, Bundgaard H, Stender S. Integrative common and rare variant analyses provide insights into the genetic architecture of liver cirrhosis. Nat Genet 2024; 56:827-837. [PMID: 38632349 PMCID: PMC11096111 DOI: 10.1038/s41588-024-01720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
We report a multi-ancestry genome-wide association study on liver cirrhosis and its associated endophenotypes, alanine aminotransferase (ALT) and γ-glutamyl transferase. Using data from 12 cohorts, including 18,265 cases with cirrhosis, 1,782,047 controls, up to 1 million individuals with liver function tests and a validation cohort of 21,689 cases and 617,729 controls, we identify and validate 14 risk associations for cirrhosis. Many variants are located near genes involved in hepatic lipid metabolism. One of these, PNPLA3 p.Ile148Met, interacts with alcohol intake, obesity and diabetes on the risk of cirrhosis and hepatocellular carcinoma (HCC). We develop a polygenic risk score that associates with the progression from cirrhosis to HCC. By focusing on prioritized genes from common variant analyses, we find that rare coding variants in GPAM associate with lower ALT, supporting GPAM as a potential target for therapeutic inhibition. In conclusion, this study provides insights into the genetic underpinnings of cirrhosis.
Collapse
Affiliation(s)
- Jonas Ghouse
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
- Cardiac Genetics Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | - Marijana Vujkovic
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anne-Sofie Seidelin
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Helene Gellert-Kristensen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Gustav Ahlberg
- Cardiac Genetics Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Søren A Rand
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Cardiac Genetics Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Joseph Brancale
- Section of Digestive Diseases, Department of Internal Medicine, and Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Silvia Vilarinho
- Section of Digestive Diseases, Department of Internal Medicine, and Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Pia Rengtved Lundegaard
- Cardiac Genetics Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Mie Topholm Bruun
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | | | - Søren Brunak
- Translational Disease Systems Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karina Banasik
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | | | - Niek Verweij
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc, Tarrytown, NY, USA
| | - Luca Lotta
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc, Tarrytown, NY, USA
| | - Aris Baras
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc, Tarrytown, NY, USA
| | - Tooraj Mirshahi
- Department of Molecular and Functional Genomics, Geisinger Health System, Danville, PA, USA
| | - David J Carey
- Department of Molecular and Functional Genomics, Geisinger Health System, Danville, PA, USA
| | - David E Kaplan
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Julie Lynch
- VA Informatics and Computing Infrastructure (VINCI), VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Timothy Morgan
- Gastroenterology Section, Veterans Affairs Long Beach Healthcare System, Long Beach, CA, USA
- Department of Medicine, University of California, Irvine, CA, USA
| | - Tae-Hwi Schwantes-An
- Gastroenterology Section, Veterans Affairs Long Beach Healthcare System, Long Beach, CA, USA
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Daniel R Dochtermann
- Center for Data and Computational Sciences, VA Boston Healthcare System, Boston, MA, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences, VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Philip S Tsao
- Palo Alto Epidemiology Research and Information Center for Genomics, VA Palo Alto, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Julia Kozlitina
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - David Jones
- Precision Genomics, Intermountain Healthcare, Saint George, UT, USA
| | - Kirk U Knowlton
- Intermountain Medical Center, Intermountain Heart Institute, Salt Lake City, UT, USA
- University of Utah, School of Medicine, Salt Lake City, UT, USA
| | - Lincoln Nadauld
- Precision Genomics, Intermountain Healthcare, Saint George, UT, USA
- Stanford University, School of Medicine, Stanford, CA, USA
| | | | - Einar S Björnsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Internal Medicine and Emergency Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Magnus O Ulfarsson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
| | | | | | - Ole B Pedersen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Morten Salling Olesen
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Cardiac Genetics Group, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hilma Holm
- deCODE Genetics/Amgen, Reykjavik, Iceland
| | - Henning Bundgaard
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Stender
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Konkwo C, Chowdhury S, Vilarinho S. Genetics of liver disease in adults. Hepatol Commun 2024; 8:e0408. [PMID: 38551385 PMCID: PMC10984672 DOI: 10.1097/hc9.0000000000000408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/30/2024] [Indexed: 04/02/2024] Open
Abstract
Chronic liver disease stands as a significant global health problem with an estimated 2 million annual deaths across the globe. Combining the use of next-generation sequencing technologies with evolving knowledge in the interpretation of genetic variation across the human genome is propelling our understanding, diagnosis, and management of both rare and common liver diseases. Here, we review the contribution of risk and protective alleles to common forms of liver disease, the rising number of monogenic diseases affecting the liver, and the role of somatic genetic variants in the onset and progression of oncological and non-oncological liver diseases. The incorporation of genomic information in the diagnosis and management of patients with liver disease is driving the beginning of a new era of genomics-informed clinical hepatology practice, facilitating personalized medicine, and improving patient care.
Collapse
Affiliation(s)
- Chigoziri Konkwo
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shanin Chowdhury
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Silvia Vilarinho
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Zhang Z, Leng XK, Zhai YY, Zhang X, Sun ZW, Xiao JY, Lu JF, Liu K, Xia B, Gao Q, Jia M, Xu CQ, Jiang YN, Zhang XG, Tao KS, Wu JW. Deficiency of ASGR1 promotes liver injury by increasing GP73-mediated hepatic endoplasmic reticulum stress. Nat Commun 2024; 15:1908. [PMID: 38459023 PMCID: PMC10924105 DOI: 10.1038/s41467-024-46135-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
Liver injury is a core pathological process in the majority of liver diseases, yet the genetic factors predisposing individuals to its initiation and progression remain poorly understood. Here we show that asialoglycoprotein receptor 1 (ASGR1), a lectin specifically expressed in the liver, is downregulated in patients with liver fibrosis or cirrhosis and male mice with liver injury. ASGR1 deficiency exacerbates while its overexpression mitigates acetaminophen-induced acute and CCl4-induced chronic liver injuries in male mice. Mechanistically, ASGR1 binds to an endoplasmic reticulum stress mediator GP73 and facilitates its lysosomal degradation. ASGR1 depletion increases circulating GP73 levels and promotes the interaction between GP73 and BIP to activate endoplasmic reticulum stress, leading to liver injury. Neutralization of GP73 not only attenuates ASGR1 deficiency-induced liver injuries but also improves survival in mice received a lethal dose of acetaminophen. Collectively, these findings identify ASGR1 as a potential genetic determinant of susceptibility to liver injury and propose it as a therapeutic target for the treatment of liver injury.
Collapse
Affiliation(s)
- Zhe Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiang Kai Leng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yuan Yuan Zhai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiao Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhi Wei Sun
- Beijing Sungen Biomedical Technology Co. Ltd, Beijing, China
| | - Jun Ying Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jun Feng Lu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Kun Liu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Air Force Medical University, Xi'an, China
| | - Bo Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qi Gao
- Beijing Sungen Biomedical Technology Co. Ltd, Beijing, China
| | - Miao Jia
- Beijing Sungen Biomedical Technology Co. Ltd, Beijing, China
| | - Cheng Qi Xu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Na Jiang
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiao Gang Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Kai Shan Tao
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Air Force Medical University, Xi'an, China.
| | - Jiang Wei Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| |
Collapse
|
5
|
Wu D, Lu X, Dong LX, Tian J, Deng J, Wei L, Wen H, Zhong S, Jiang M. Nano polystyrene microplastics could accumulate in Nile tilapia (Oreochromis niloticus): Negatively impacts on the intestinal and liver health through water exposure. J Environ Sci (China) 2024; 137:604-614. [PMID: 37980043 DOI: 10.1016/j.jes.2023.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 11/20/2023]
Abstract
Microplastics (MPs) have become a significant concern for their potential toxicity. However, the correlation between the size of plastic particles and their toxicity remains inconclusive. Here, we investigate the toxic effects of different sizes (80 nm, 800 nm, 8 µm and 80 µm) polystyrene MPs (PS-MPs) on the model organism Nile tilapia (Oreochromis niloticus). The results of bioluminescent imaging indicate that the 80 nm PS-MPs are more likely to invade the body. H&E staining shows severe damage on the intestinal villi and distinct hepatic steatosis in the 80 nm group. EdU labeling shows that the proliferation activity of intestinal and liver cells reduces significantly in the 80 nm group. The gut microbiome analysis shows a severe imbalance of gut microbiota homeostasis in the 80 nm group. The analysis of liver transcriptomics and metabolomics shows that the liver lipid metabolism is disordered in the 80 nm group. In conclusion, this study confirms that the 80 nm PS-MPs are more likely to induce intestinal and liver toxicity. All the above lay the foundation for further study on the pathological damage of MPs to other organisms.
Collapse
Affiliation(s)
- Di Wu
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xing Lu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Li-Xue Dong
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Juan Tian
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Jin Deng
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Lei Wei
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hua Wen
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Shan Zhong
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Province Key Laboratory of Allergy and Immunology, Wuhan 430071, China.
| | - Ming Jiang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China.
| |
Collapse
|
6
|
Smith KR, Wang W, Miller MR, Boucher M, Reynold JE, Daurio NA, Li D, Hirenallur-Shanthappa D, Ahn Y, Beebe DA, Kelly KL, Ross TT, Bence KK, Wan M. GPAT1 Deficiency in Mice Modulates NASH Progression in a Model-Dependent Manner. Cell Mol Gastroenterol Hepatol 2023; 17:279-291. [PMID: 37844795 PMCID: PMC10829521 DOI: 10.1016/j.jcmgh.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD), and its more severe form, nonalcoholic steatohepatitis (NASH), is the leading cause for liver failure and liver cancer. Although the etiology is likely multifactorial, genes involved in regulating lipid metabolism are enriched in human NAFLD genome-wide association studies (GWAS), pointing to dysregulated lipid metabolism as a major pathogenic factor. Glycerol-3-phosphate acyltransferase 1 (GPAT1), encoded by GPAM, converts acyl-CoAs and glycerol-3-phosphate into lysophosphatidic acid and has been shown to regulate lipid accumulation in the liver. However, its role in mediating the progression from NAFLD to NASH has not been explored. METHODS GPAT1-deficient mice were generated and challenged with diets inducing hepatic steatosis and NASH. Effects of GPAT1 deficiency on lipid and systemic metabolic end points were evaluated. RESULTS Ablating GPAT1 globally or specifically in mouse hepatocytes reduced hepatic steatosis in the context of diet-induced or genetic obesity. Interestingly, blunting of progression from NAFLD to NASH in global GPAT1 knockout (KO) mice was model dependent. GPAT1 KO mice were protected from choline deficient, amino acid defined high-fat diet-induced NASH development, but not from the high fat, high carbohydrate, and high cholesterol diet-induced NASH. CONCLUSIONS Our preclinical data support the notion that lipid metabolism pathways regulated by GPAT1 in hepatocytes play an essential role in NASH progression, albeit in a model-dependent manner.
Collapse
Affiliation(s)
- Kathleen R Smith
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Wenshan Wang
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Melissa R Miller
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Magalie Boucher
- WRDM Drug Safety, Research and Development, Pfizer Inc, Groton, Connecticut
| | - Jessica E Reynold
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Natalie A Daurio
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Dongmei Li
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | | | - Youngwook Ahn
- WRDM Target Sciences, Pfizer Inc, Cambridge, Massachusetts
| | - David A Beebe
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Kenneth L Kelly
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Trenton T Ross
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Kendra K Bence
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Min Wan
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts.
| |
Collapse
|
7
|
Chen M, Luo J, Ji H, Song W, Zhang D, Su W, Liu S. The Preventive Mechanism of Anserine on Tert-Butyl Hydroperoxide-Induced Liver Injury in L-02 Cells via Regulating the Keap1-Nrf2 and JNK-Caspase-3 Signaling Pathways. Mar Drugs 2023; 21:477. [PMID: 37755089 PMCID: PMC10532766 DOI: 10.3390/md21090477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Anserine is a naturally occurring histidine dipeptide with significant antioxidant activities. This study aimed to investigate the preventive mechanism of anserine on tert-butyl hydroperoxide (TBHP)-induced liver damage in a normal human liver cell line (L-02 cells). The L-02 cells were pretreated with anserine (10, 20, and 40 mmol/L) and then induced with 400 μmol/L of TBHP for 4 h. The results showed that the survival rates of L-02 cells and the contents of GSH were significantly increased with the pretreatment of anserine; the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the extracellular fluid were sharply decreased; and the formation of reactive oxygen species (ROS), nuclear fragmentation, and apoptosis were significantly inhibited. In addition, anserine could bind to the Kelch domain of Kelch-like ECH-associated protein 1 (Keap1) with a binding force of -7.2 kcal/mol; the protein expressions of nuclear factor-erythroid 2-related factor-2 (Nrf2), quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), and Bcl-2 were upregulated by anserine in TBHP-induced L-02 cells, with the downregulation of p-JNK and caspase-3. In conclusion, anserine might alleviated liver injury in L-02 cells via regulating related proteins in the Keap1-Nrf2 and JNK-Caspase-3 signaling pathways.
Collapse
Affiliation(s)
- Ming Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (M.C.); (J.L.); (W.S.); (D.Z.); (W.S.); (S.L.)
| | - Jing Luo
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (M.C.); (J.L.); (W.S.); (D.Z.); (W.S.); (S.L.)
| | - Hongwu Ji
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (M.C.); (J.L.); (W.S.); (D.Z.); (W.S.); (S.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Wenkui Song
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (M.C.); (J.L.); (W.S.); (D.Z.); (W.S.); (S.L.)
| | - Di Zhang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (M.C.); (J.L.); (W.S.); (D.Z.); (W.S.); (S.L.)
| | - Weiming Su
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (M.C.); (J.L.); (W.S.); (D.Z.); (W.S.); (S.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (M.C.); (J.L.); (W.S.); (D.Z.); (W.S.); (S.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
8
|
Structural basis of the acyl-transfer mechanism of human GPAT1. Nat Struct Mol Biol 2023; 30:22-30. [PMID: 36522428 DOI: 10.1038/s41594-022-00884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022]
Abstract
Glycerol-3-phosphate acyltransferase (GPAT)1 is a mitochondrial outer membrane protein that catalyzes the first step of de novo glycerolipid biosynthesis. Hepatic expression of GPAT1 is linked to liver fat accumulation and the severity of nonalcoholic fatty liver diseases. Here we present the cryo-EM structures of human GPAT1 in substrate analog-bound and product-bound states. The structures reveal an N-terminal acyltransferase domain that harbors important catalytic motifs and a tightly associated C-terminal domain that is critical for proper protein folding. Unexpectedly, GPAT1 has no transmembrane regions as previously proposed but instead associates with the membrane via an amphipathic surface patch and an N-terminal loop-helix region that contains a mitochondrial-targeting signal. Combined structural, computational and functional studies uncover a hydrophobic pathway within GPAT1 for lipid trafficking. The results presented herein lay a framework for rational inhibitor development for GPAT1.
Collapse
|
9
|
Mann JP, Hoare M. A minority of somatically mutated genes in pre-existing fatty liver disease have prognostic importance in the development of NAFLD. Liver Int 2022; 42:1823-1835. [PMID: 35474605 PMCID: PMC9544140 DOI: 10.1111/liv.15283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Understanding the genetics of liver disease has the potential to facilitate clinical risk stratification. We recently identified acquired somatic mutations in six genes and one lncRNA in pre-existing fatty liver disease. We hypothesised that germline variation in these genes might be associated with the risk of developing steatosis and contribute to the prediction of disease severity. METHODS Genome-wide association study (GWAS) summary statistics were extracted from seven studies (>1.7 million participants) for variants near ACVR2A, ALB, CIDEB, FOXO1, GPAM, NEAT1 and TNRC6B for: aminotransferases, liver fat, HbA1c, diagnosis of NAFLD, ARLD and cirrhosis. Findings were replicated using GWAS data from multiple independent cohorts. A phenome-wide association study was performed to examine for related metabolic traits, using both common and rare variants, including gene-burden testing. RESULTS There was no evidence of association between rare germline variants or SNPs near five genes (ACVR2A, ALB, CIDEB, FOXO1 and TNRC6B) and risk or severity of liver disease. Variants in GPAM (proxies for p.Ile43Val) were associated with liver fat (p = 3.6 × 10-13 ), ALT (p = 2.8 × 10-39 ) and serum lipid concentrations. Variants in NEAT1 demonstrated borderline significant associations with ALT (p = 1.9 × 10-11 ) and HbA1c, but not with liver fat, as well as influencing waist-to-hip ratio, adjusted for BMI. CONCLUSIONS Despite the acquisition of somatic mutations at these loci during progressive fatty liver disease, we did not find associations between germline variation and markers of liver disease, except in GPAM. In the future, larger sample sizes may identify associations. Currently, germline polygenic risk scores will not capture data from genes affected by somatic mutations.
Collapse
Affiliation(s)
- Jake P. Mann
- Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
- School of Clinical MedicineUniversity of CambridgeCambridgeUK
| | - Matthew Hoare
- School of Clinical MedicineUniversity of CambridgeCambridgeUK
- CRUK Cambridge InstituteUniversity of CambridgeCambridgeUK
| |
Collapse
|
10
|
Zhang Y, Ye S, Lu W, Zhong J, Leng Y, Yang T, Luo J, Xu W, Zhang H, Kong L. RNA helicase DEAD-box protein 5 alleviates nonalcoholic steatohepatitis progression via tethering TSC complex and suppressing mTORC1 signaling. Hepatology 2022; 77:1670-1687. [PMID: 35796622 DOI: 10.1002/hep.32651] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Nonalcoholic fatty liver disease and its progressive form, nonalcoholic steatohepatitis (NASH), are rapidly becoming the top causes of hepatocellular carcinoma (HCC). Currently, there are no approved therapies for the treatment of NASH. DEAD-box protein 5 (DDX5) plays important roles in different cellular processes. However, the precise role of DDX5 in NASH remains unclear. APPROACH AND RESULTS DDX5 expression was downregulated in patients with NASH, mouse models with diet-induced NASH (high-fat diet [HFD], methionine- and choline-deficient diet, and choline-deficient HFD), mouse models with NASH-HCC (diethylnitrosamine with HFD), and palmitic acid-stimulated hepatocytes. Adeno-associated virus-mediated DDX5 overexpression ameliorates hepatic steatosis and inflammation, whereas its deletion worsens such pathology. The untargeted metabolomics analysis was carried out to investigate the mechanism of DDX5 in NASH and NASH-HCC, which suggested the regulatory effect of DDX5 on lipid metabolism. DDX5 inhibits mechanistic target of rapamycin complex 1 (mTORC1) activation by recruiting the tuberous sclerosis complex (TSC)1/2 complex to mTORC1, thus improving lipid metabolism and attenuating the NACHT-, leucine-rich-repeat (LRR)-, and pyrin domain (PYD)-containing protein 3 inflammasome activation. We further identified that the phytochemical compound hyperforcinol K directly interacted with DDX5 and prevented its ubiquitinated degradation mediated by ubiquitin ligase (E3) tripartite motif protein 5, thereby significantly reducing lipid accumulation and inflammation in a NASH mouse model. CONCLUSIONS These findings provide mechanistic insight into the role of DDX5 in mTORC1 regulation and NASH progression, as well as suggest a number of targets and a promising lead compound for therapeutic interventions against NASH.
Collapse
Affiliation(s)
- Yanqiu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Shengtao Ye
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Weijia Lu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiawen Zhong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yingrong Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ting Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wenjun Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|