1
|
Chen Z, Xia LP, Shen L, Xu D, Guo Y, Wang H. Glucocorticoids and intrauterine programming of nonalcoholic fatty liver disease. Metabolism 2024; 150:155713. [PMID: 37914025 DOI: 10.1016/j.metabol.2023.155713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Accumulating epidemiological and experimental evidence indicates that nonalcoholic fatty liver disease (NAFLD) has an intrauterine origin. Fetuses exposed to adverse prenatal environments (e.g., maternal malnutrition and xenobiotic exposure) are more susceptible to developing NAFLD after birth. Glucocorticoids are crucial triggers of the developmental programming of fetal-origin diseases. Adverse intrauterine environments often lead to fetal overexposure to maternally derived glucocorticoids, which can program fetal hepatic lipid metabolism through epigenetic modifications. Adverse intrauterine environments program the offspring's glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis, which contributes to postnatal catch-up growth and disturbs glucose and lipid metabolism. These glucocorticoid-driven programming alterations increase susceptibility to NAFLD in the offspring. Notably, after delivery, offspring often face an environment distinct from their in utero life. The mismatch between the intrauterine and postnatal environments can serve as a postnatal hit that further disturbs the programmed endocrine axes, accelerating the onset of NAFLD. In this review, we summarize the current epidemiological and experimental evidence demonstrating that NAFLD has an intrauterine origin and discuss the underlying intrauterine programming mechanisms, focusing on the role of overexposure to maternally derived glucocorticoids. We also briefly discuss potential early life interventions that may be beneficial against fetal-originated NAFLD.
Collapse
Affiliation(s)
- Ze Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430072, China
| | - Li-Ping Xia
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Lang Shen
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Dan Xu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China; Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
2
|
Zhou H, Niu B, Wu X, Chu W, Zhou Y, Chen Z, Mi Y, Liu Y, Li P. iTRAQ-based quantitative proteomics analysis of the effect of ACT001 on non-alcoholic steatohepatitis in mice. Sci Rep 2023; 13:11336. [PMID: 37443174 PMCID: PMC10345009 DOI: 10.1038/s41598-023-38448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023] Open
Abstract
ACT001 is a novel sesquiterpene lactone derivative that has been shown to have significant antitumor and anti-inflammatory effects. However, the effect of ACT001 on nonalcoholic steatohepatitis (NASH) is unknown. Methionine and choline deficient (MCD) diet induced NASH model in C57BL/6J mice. Steatosis, inflammation and fibrosis-related indices of serum and liver tissues were detected by fully automated biochemical analyzer, enzyme-linked immunosorbent assay (ELISA) kit, flow cytometry, hematoxylin and eosin (H&E), Masson and immunohistochemical staining. The results showed that ACT001 reduced serum lipid and inflammatory factor levels, attenuated hepatic steatosis, inflammation and fibrosis, and inhibited hepatic oxidative stress and activation of NOD-like receptor protein 3 (NLRP3) inflammatory vesicles in NASH mice. In addition, 381 differentially expressed proteins (DEPs), including 162 up-regulated and 219 down-regulated proteins, were identified in the MCD group and ACT001 high-dose group using isotope labeling relative and absolute quantification (iTRAQ) technique analysis. Among these DEPs, five proteins associated with NAFLD were selected for real-time fluorescence quantitative PCR (RT-qPCR) validation, and the results were consistent with proteomics. In conclusion, ACT001 has a therapeutic effect on NASH, and the results of proteomic analysis will provide new ideas for the mechanism study of ACT001 for NASH treatment.
Collapse
Affiliation(s)
- Hui Zhou
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Niu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Department of Infectious Diseases, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xue Wu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
| | - Weike Chu
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
| | - Yibing Zhou
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
| | - Ze Chen
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
| | - Yuqiang Mi
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China
- Tianjin Research Institute of Liver Diseases, Tianjin, China
| | - Yonggang Liu
- Department of Pathology, Tianjin Second People's Hospital, Tianjin, China
| | - Ping Li
- Clinical School of the Second People's Hospital, Tianjin Medical University, Tianjin, China.
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin, China.
- Tianjin Research Institute of Liver Diseases, Tianjin, China.
| |
Collapse
|
3
|
Simmers MD, Jima DD, Tsuji Y, Cowley M. LncRNA Tuna is activated in cadmium-induced placental insufficiency and drives the NRF2-mediated oxidative stress response. Front Cell Dev Biol 2023; 11:1151108. [PMID: 37325564 PMCID: PMC10267411 DOI: 10.3389/fcell.2023.1151108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/24/2023] [Indexed: 06/17/2023] Open
Abstract
Cadmium (Cd) is a toxic heavy metal found throughout the environment and one of the top ten toxicants of major public health concern identified by the World Health Organization. In utero Cd exposure causes fetal growth restriction, malformation, and spontaneous abortion; however, the mechanisms by which Cd impacts these outcomes are poorly understood. Cd accumulates in the placenta, suggesting that these negative outcomes may be a consequence of disrupted placental function and placental insufficiency. To understand the impact of Cd on gene expression within the placenta, we developed a mouse model of Cd-induced fetal growth restriction through maternal consumption of CdCl2 and performed RNA-seq on control and CdCl2 exposed placentae. The top differentially expressed transcript was the Tcl1 Upstream Neuron-Associated (Tuna) long non-coding RNA, which was upregulated over 25-fold in CdCl2 exposed placentae. Tuna has been shown to be critical for neural stem cell differentiation. However, within the placenta, there is no evidence that Tuna is normally expressed or functional at any developmental stage. To determine the spatial expression of Cd-activated Tuna within the placenta, we used in situ hybridization as well as placental layer-specific RNA isolation and analysis. Both methods confirmed the absence of Tuna expression in control samples and determined that Cd-induced Tuna expression is specific to the junctional zone. Since many lncRNAs regulate gene expression, we hypothesized that Tuna forms part of the mechanism of Cd-induced transcriptomic changes. To test this, we over-expressed Tuna in cultured choriocarcinoma cells and compared gene expression profiles to those of control and CdCl2 exposed cells. We demonstrate significant overlap between genes activated by Tuna overexpression and genes activated by CdCl2 exposure, with enrichment in the NRF2-mediated oxidative stress response. Herein we analyze the NRF2 pathway and show that Tuna increases NRF2/NRF2 both at the transcript and protein levels. Tuna drives increased NRF2 target gene expression, a result that is abrogated with the use of an NRF2 inhibitor, confirming that Tuna activates oxidative stress response genes through this pathway. This work identifies the lncRNA Tuna as a potential novel player in Cd-induced placental insufficiency.
Collapse
Affiliation(s)
- Mark D. Simmers
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Dereje D. Jima
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| | - Yoshiaki Tsuji
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Michael Cowley
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
4
|
Liu Y, Wang Y, Wang C, Sun X, Gao S, Liu R, Yang X. Alterations in hepatic transcriptome and cecum microbiota underlying potential ways to prevent early fatty liver in laying hens. Poult Sci 2023; 102:102593. [PMID: 36972673 PMCID: PMC10066560 DOI: 10.1016/j.psj.2023.102593] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/13/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Fatty liver syndrome (FLS) is a kind of nutritional metabolic disease in laying hens. Revealing FLS pathogenesis during the early period is what really makes sense for the prevention or nutritional regulation strategies. In the study, 9 healthy or naturally occurring early FLS birds were screened based on visual inspection, liver index and morphologic analysis. Liver and fresh cecal content samples were collected. Then transcriptomic and 16S rRNA technologies are applied to investigate hepatic transcriptome and cecum microbiota composition. Unpaired Student t test and some omics methods were used for statistical analysis. Results showed higher liver weight and index were found in FLS group; morphologic analysis indicated that there existed more lipid droplets in the liver of birds with FLS. Based on DESeq2 analysis, there were 229 up- and 487 down-regulated genes in the FLS group, among which most genes related to de novo fatty acid synthesis were up-regulated such as acetyl-CoA carboxylase, fatty acid synthase, stearoyl-CoA desaturase, and ELOVL fatty acid elongase 6 (ELOVL6). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis indicated that pathways associated with lipid metabolism and liver damage were affected. 16S rRNA sequencing analysis of cecum microbiota showed that there was a significant difference between the Con and FLS groups. LEfSe analysis revealed that the relative abundance of Coprococcus, Odoribacter, Collinsella, Turicibacter, YRC22, Enterococcus, Shigella, and Bifidobacterium were down-regulated in the FLS group, whereas the abundance of Bacteroides, Mucispirillum, Butyricicoccus, Campylobacter, Akkermansia, and Clostridium were up-regulated. The KEGG enrichment from differential microbiota suggested that some metabolism-related functions were altered to some extent. Taken together, during the developmental of early fatty liver of laying hens, lipogenesis was enhanced, whereas abnormal metabolism occurs not only in lipid transportation but also in hydrolysis, which caused structural damage to the liver organ. Moreover, the dysbiosis of the cecum microbiota occurred. All of these serve as targets or provide theoretical references for the development of probiotics for fatty liver prevention in laying hens.
Collapse
|
5
|
Galvan-Martinez DH, Bosquez-Mendoza VM, Ruiz-Noa Y, Ibarra-Reynoso LDR, Barbosa-Sabanero G, Lazo-de-la-Vega-Monroy ML. Nutritional, pharmacological, and environmental programming of NAFLD in early life. Am J Physiol Gastrointest Liver Physiol 2023; 324:G99-G114. [PMID: 36472341 DOI: 10.1152/ajpgi.00168.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the main liver disease worldwide, and its prevalence in children and adolescents has been increasing in the past years. It has been demonstrated that parental exposure to different conditions, both preconceptionally and during pregnancy, can lead to fetal programming of several metabolic diseases, including NAFLD. In this article, we review some of the maternal and paternal conditions that may be involved in early-life programing of adult NAFLD. First, we describe the maternal nutritional factors that have been suggested to increase the risk of NAFLD in the offspring, such as an obesogenic diet, overweight/obesity, and altered lipogenesis. Second, we review the association of certain vitamin supplementation and the use of some drugs during pregnancy, for instance, glucocorticoids, with a higher risk of NAFLD. Furthermore, we discuss the evidence showing that maternal-fetal pathologies, including gestational diabetes mellitus (GDM), insulin resistance (IR), and intrauterine growth restriction (IUGR), as well as the exposure to environmental contaminants, and the impact of microbiome changes, are important factors in early-life programming of NAFLD. Finally, we review how paternal preconceptional conditions, such as exercise and diet (particularly obesogenic diets), may impact fetal growth and liver function. Altogether, the presented evidence supports the hypothesis that both in utero exposure and parental conditions may influence fetal outcomes, including the development of NAFLD in early life and adulthood. The study of these conditions is crucial to better understand the diverse mechanisms involved in NAFLD, as well as for defining new preventive strategies for this disease.
Collapse
Affiliation(s)
| | | | - Yeniley Ruiz-Noa
- Health Sciences Division, Medical Sciences Department, University of Guanajuato, Campus Leon, Mexico
| | | | - Gloria Barbosa-Sabanero
- Health Sciences Division, Medical Sciences Department, University of Guanajuato, Campus Leon, Mexico
| | | |
Collapse
|
6
|
Riegl SD, Starnes C, Jima DD, Baptissart M, Diehl AM, Belcher SM, Cowley M. The imprinted gene Zac1 regulates steatosis in developmental cadmium-induced nonalcoholic fatty liver disease. Toxicol Sci 2023; 191:34-46. [PMID: 36200916 PMCID: PMC9887675 DOI: 10.1093/toxsci/kfac106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cadmium (Cd) exposure in adulthood is associated with nonalcoholic fatty liver disease (NAFLD), characterized by steatosis, inflammation, and fibrosis. The prevalence of NAFLD in children is increasing, suggesting a role for the developmental environment in programming susceptibility. However, the role of developmental Cd exposure in programming NAFLD and the underlying mechanisms remain unclear. We have proposed that imprinted genes are strong candidates for connecting the early life environment and later life disease. In support of this, we previously identified roles for the Imprinted Gene Network (IGN) and its regulator Zac1 in programming NAFLD in response to maternal metabolic dysfunction. Here, we test the hypothesis that developmental Cd exposure is sufficient to program NAFLD, and further, that this process is mediated by Zac1 and the IGN. Using mice, we show that developmental cadmium chloride (CdCl2) exposure leads to histological, biochemical, and molecular signatures of steatosis and fibrosis in juveniles. Transcriptomic analyses comparing livers of CdCl2-exposed and control mice show upregulation of Zac1 and the IGN coincident with disease presentation. Increased hepatic Zac1 expression is independent of promoter methylation and imprinting statuses. Finally, we show that over-expression of Zac1 in cultured hepatocytes is sufficient to induce lipid accumulation in a Pparγ-dependent manner and demonstrate direct binding of Zac1 to the Pparγ promoter. Our findings demonstrate that developmental Cd exposure is sufficient to program NAFLD in later life, and with our previous work, establish Zac1 and the IGN as key regulators of prosteatotic and profibrotic pathways, two of the major pathological hallmarks of NAFLD.
Collapse
Affiliation(s)
- Sierra D Riegl
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Cassie Starnes
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Dereje D Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Marine Baptissart
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Scott M Belcher
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Michael Cowley
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|