1
|
Hughes KA, Misra B, Maghareh M, Samart P, Nguyen E, Hussain S, Geldenhuys WJ, Bobbala S. Flash nanoprecipitation allows easy fabrication of pH-responsive acetalated dextran nanoparticles for intracellular release of payloads. DISCOVER NANO 2024; 19:4. [PMID: 38175336 PMCID: PMC10766584 DOI: 10.1186/s11671-023-03947-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Acetalated dextran (Ac-Dex) nanoparticles are currently of immense interest due to their sharp pH-responsive nature and high biodegradability. Ac-Dex nanoparticles are often formulated through single- or double-emulsion methods utilizing polyvinyl alcohol as the stabilizer. The emulsion methods utilize toxic organic solvents such as dichloromethane or chloroform and require multi-step processing to form stable Ac-Dex nanoparticles. Here, we introduce a simple flash nanoprecipitation (FNP) approach that utilizes a confined impinging jet mixer and a non-toxic solvent, ethanol, to form Ac-Dex nanoparticles rapidly. Ac-Dex nanoparticles were stabilized using nonionic PEGylated surfactants, D-α-Tocopherol polyethylene glycol succinate (TPGS), or Pluronic (F-127). Ac-Dex nanoparticles formed using FNP were highly monodisperse and stably encapsulated a wide range of payloads, including hydrophobic, hydrophilic, and macromolecules. When lyophilized, Ac-Dex TPGS nanoparticles remained stable for at least one year with greater than 80% payload retention. Ac-Dex nanoparticles were non-toxic to cells and achieved intracellular release of payloads into the cytoplasm. In vivo studies demonstrated a predominant biodistribution of Ac-Dex TPGS nanoparticles in the liver, lungs, and spleen after intravenous administration. Taken together, the FNP technique allows easy fabrication and loading of Ac-Dex nanoparticles that can precisely release payloads into intracellular environments for diverse therapeutic applications. pH-responsive Acetalateddextran can be formulated using nonionic surfactants, such as TPGS or F-127, for intracellular release of payloads. Highly monodisperse and stable nanoparticles can be created through the simple, scalable flash nanoprecipitation technique, which utilizes a confined impingement jet mixer.
Collapse
Affiliation(s)
- Krystal A Hughes
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26505, USA
| | - Bishal Misra
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26505, USA
| | - Maryam Maghareh
- Department of Clinical Pharmacy, West Virginia University School of Pharmacy, Morgantown, WV, 26505, USA
| | - Parinya Samart
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26505, USA
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ethan Nguyen
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26505, USA
| | - Salik Hussain
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26505, USA
- Department of Physiology, Pharmacology and Toxicology, West Virginia University, Morgantown, WV, 26505, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26505, USA
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, 26505, USA
| | - Sharan Bobbala
- Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV, 26505, USA.
| |
Collapse
|
2
|
Kyrrestad I, Larsen AK, Sánchez Romano J, Simón-Santamaría J, Li R, Sørensen KK. Infection of liver sinusoidal endothelial cells with Muromegalovirus muridbeta1 involves binding to neuropilin-1 and is dynamin-dependent. Front Cell Infect Microbiol 2023; 13:1249894. [PMID: 38029264 PMCID: PMC10665495 DOI: 10.3389/fcimb.2023.1249894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSEC) are scavenger cells with a remarkably high capacity for clearance of several blood-borne macromolecules and nanoparticles, including some viruses. Endocytosis in LSEC is mainly via the clathrin-coated pit mediated route, which is dynamin-dependent. LSEC can also be a site of infection and latency of betaherpesvirus, but mode of virus entry into these cells has not yet been described. In this study we have investigated the role of dynamin in the early stage of muromegalovirus muridbeta1 (MuHV-1, murid betaherpesvirus 1, murine cytomegalovirus) infection in mouse LSECs. LSEC cultures were freshly prepared from C57Bl/6JRj mouse liver. We first examined dose- and time-dependent effects of two dynamin-inhibitors, dynasore and MitMAB, on cell viability, morphology, and endocytosis of model ligands via different LSEC scavenger receptors to establish a protocol for dynamin-inhibition studies in these primary cells. LSECs were challenged with MuHV-1 (MOI 0.2) ± dynamin inhibitors for 1h, then without inhibitors and virus for 11h, and nuclear expression of MuHV-1 immediate early antigen (IE1) measured by immune fluorescence. MuHV-1 efficiently infected LSECs in vitro. Infection was significantly and independently inhibited by dynasore and MitMAB, which block dynamin function via different mechanisms, suggesting that initial steps of MuHV-1 infection is dynamin-dependent in LSECs. Infection was also reduced in the presence of monensin which inhibits acidification of endosomes. Furthermore, competitive binding studies with a neuropilin-1 antibody blocked LSEC infection. This suggests that MuHV-1 infection in mouse LSECs involves virus binding to neuropilin-1 and occurs via endocytosis.
Collapse
Affiliation(s)
- Ingelin Kyrrestad
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
3
|
Bhandari S, Larsen AK, McCourt P, Smedsrød B, Sørensen KK. The Scavenger Function of Liver Sinusoidal Endothelial Cells in Health and Disease. Front Physiol 2021; 12:757469. [PMID: 34707514 PMCID: PMC8542980 DOI: 10.3389/fphys.2021.757469] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
The aim of this review is to give an outline of the blood clearance function of the liver sinusoidal endothelial cells (LSECs) in health and disease. Lining the hundreds of millions of hepatic sinusoids in the human liver the LSECs are perfectly located to survey the constituents of the blood. These cells are equipped with high-affinity receptors and an intracellular vesicle transport apparatus, enabling a remarkably efficient machinery for removal of large molecules and nanoparticles from the blood, thus contributing importantly to maintain blood and tissue homeostasis. We describe here central aspects of LSEC signature receptors that enable the cells to recognize and internalize blood-borne waste macromolecules at great speed and high capacity. Notably, this blood clearance system is a silent process, in the sense that it usually neither requires or elicits cell activation or immune responses. Most of our knowledge about LSECs arises from studies in animals, of which mouse and rat make up the great majority, and some species differences relevant for extrapolating from animal models to human are discussed. In the last part of the review, we discuss comparative aspects of the LSEC scavenger functions and specialized scavenger endothelial cells (SECs) in other vascular beds and in different vertebrate classes. In conclusion, the activity of LSECs and other SECs prevent exposure of a great number of waste products to the immune system, and molecules with noxious biological activities are effectively “silenced” by the rapid clearance in LSECs. An undesired consequence of this avid scavenging system is unwanted uptake of nanomedicines and biologics in the cells. As the development of this new generation of therapeutics evolves, there will be a sharp increase in the need to understand the clearance function of LSECs in health and disease. There is still a significant knowledge gap in how the LSEC clearance function is affected in liver disease.
Collapse
Affiliation(s)
- Sabin Bhandari
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| | - Anett Kristin Larsen
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| | - Peter McCourt
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| | - Bård Smedsrød
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| | - Karen Kristine Sørensen
- Vascular Biology Research Group, Department of Medical Biology, University of Tromsø (UiT) - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
4
|
FitzGerald LI, Johnston AP. It’s what’s on the inside that counts: Techniques for investigating the uptake and recycling of nanoparticles and proteins in cells. J Colloid Interface Sci 2021; 587:64-78. [DOI: 10.1016/j.jcis.2020.11.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/15/2020] [Accepted: 11/23/2020] [Indexed: 01/19/2023]
|
5
|
Liver sinusoidal endothelial cells contribute to the uptake and degradation of entero bacterial viruses. Sci Rep 2020; 10:898. [PMID: 31965000 PMCID: PMC6972739 DOI: 10.1038/s41598-020-57652-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/18/2019] [Indexed: 01/01/2023] Open
Abstract
The liver is constantly exposed to dietary antigens, viruses, and bacterial products with inflammatory potential. For decades cellular uptake of virus has been studied in connection with infection, while the few studies designed to look into clearance mechanisms focused mainly on the role of macrophages. In recent years, attention has been directed towards the liver sinusoidal endothelial cells (LSECs), which play a central role in liver innate immunity by their ability to scavenge pathogen- and damage-associated molecular patterns. Every day our bodies are exposed to billions of gut-derived pathogens which must be efficiently removed from the circulation to prevent inflammatory and/or immune reactions in other vascular beds. Here, we have used GFP-labelled Enterobacteria phage T4 (GFP-T4-phage) as a model virus to study the viral scavenging function and metabolism in LSECs. The uptake of GFP-T4-phages was followed in real-time using deconvolution microscopy, and LSEC identity confirmed by visualization of fenestrae using structured illumination microscopy. By combining these imaging modalities with quantitative uptake and inhibition studies of radiolabelled GFP-T4-phages, we demonstrate that the bacteriophages are effectively degraded in the lysosomal compartment. Due to their high ability to take up and degrade circulating bacteriophages the LSECs may act as a primary anti-viral defence mechanism.
Collapse
|
6
|
Wei R, Trus I, Yang B, Huang L, Nauwynck HJ. Breed Differences in PCV2 Uptake and Disintegration in Porcine Monocytes. Viruses 2018; 10:v10100562. [PMID: 30326643 PMCID: PMC6213064 DOI: 10.3390/v10100562] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 01/22/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) is associated with various diseases which are designated as PCV2-associated diseases (PCVADs). Their severity varies among breeds. In the diseased pigs, virus is present in monocytes, without replication or full degradation. PCV2 entry and viral outcome in primary porcine monocytes and the role of monocytes in PCV2 genetic susceptibility have not been studied. Here, virus uptake and trafficking were analyzed and compared among purebreds Piétrain, Landrace and Large White and hybrid Piétrain × Topigs20. Viral capsids were rapidly internalized into monocytes, followed by a slow disintegration to a residual level. PCV2 uptake was decreased by chlorpromazine, cytochalasin D and dynasore. The internalized capsids followed the endosomal trafficking pathway, ending up in lysosomes. PCV2 genome was nicked by lysosomal DNase II in vitro, but persisted in monocytes in vivo. Monocytes from purebred Piétrain and the hybrid showed a higher level of PCV2 uptake and disintegration, compared to those from Landrace and Large White. In conclusion, PCV2 entry occurs via clathrin-mediated endocytosis. After entry, viral capsids are partially disintegrated, while viral genomes largely escape from the pathway to avoid degradation. The degree of PCV2 uptake and disintegration differ among pig breeds.
Collapse
Affiliation(s)
- Ruifang Wei
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Ivan Trus
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Bo Yang
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | - Liping Huang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Maduan Street 427, Harbin 150001, China.
| | - Hans J Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| |
Collapse
|
7
|
Abstract
Liver sinusoidal endothelial cells (LSECs) line the low shear, sinusoidal capillary channels of the liver and are the most abundant non-parenchymal hepatic cell population. LSECs do not simply form a barrier within the hepatic sinusoids but have vital physiological and immunological functions, including filtration, endocytosis, antigen presentation and leukocyte recruitment. Reflecting these multifunctional properties, LSECs display unique structural and phenotypic features that differentiate them from the capillary endothelium present within other organs. It is now clear that LSECs have a critical role in maintaining immune homeostasis within the liver and in mediating the immune response during acute and chronic liver injury. In this Review, we outline how LSECs influence the immune microenvironment within the liver and discuss their contribution to immune-mediated liver diseases and the complications of fibrosis and carcinogenesis.
Collapse
|
8
|
Endolysosomes Are the Principal Intracellular Sites of Acid Hydrolase Activity. Curr Biol 2016; 26:2233-45. [PMID: 27498570 PMCID: PMC5026700 DOI: 10.1016/j.cub.2016.06.046] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 12/17/2022]
Abstract
The endocytic delivery of macromolecules from the mammalian cell surface for degradation by lysosomal acid hydrolases requires traffic through early endosomes to late endosomes followed by transient (kissing) or complete fusions between late endosomes and lysosomes. Transient or complete fusion results in the formation of endolysosomes, which are hybrid organelles from which lysosomes are re-formed. We have used synthetic membrane-permeable cathepsin substrates, which liberate fluorescent reporters upon proteolytic cleavage, as well as acid phosphatase cytochemistry to identify which endocytic compartments are acid hydrolase active. We found that endolysosomes are the principal organelles in which acid hydrolase substrates are cleaved. Endolysosomes also accumulated acidotropic probes and could be distinguished from terminal storage lysosomes, which were acid hydrolase inactive and did not accumulate acidotropic probes. Using live-cell microscopy, we have demonstrated that fusion events, which form endolysosomes, precede the onset of acid hydrolase activity. By means of sucrose and invertase uptake experiments, we have also shown that acid-hydrolase-active endolysosomes and acid-hydrolase-inactive, terminal storage lysosomes exist in dynamic equilibrium. We conclude that the terminal endocytic compartment is composed of acid-hydrolase-active, acidic endolysosomes and acid hydrolase-inactive, non-acidic, terminal storage lysosomes, which are linked and function in a lysosome regeneration cycle. Late endosome-lysosome fusion creates acidic, cathepsin-active endolysosomes Terminal storage lysosomes are cathepsin inactive and not acidic Fusion events creating endolysosomes precede the onset of cathepsin activity A lysosome regeneration cycle links endolysosomes and terminal storage lysosomes
Collapse
|
9
|
Rohrbeck A, Fühner V, Schröder A, Hagemann S, Vu XK, Berndt S, Hust M, Pich A, Just I. Detection and Quantification of ADP-Ribosylated RhoA/B by Monoclonal Antibody. Toxins (Basel) 2016; 8:100. [PMID: 27043630 PMCID: PMC4848626 DOI: 10.3390/toxins8040100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 03/20/2016] [Accepted: 03/29/2016] [Indexed: 01/03/2023] Open
Abstract
Clostridium botulinum exoenzyme C3 is the prototype of C3-like ADP-ribosyltransferases that modify the GTPases RhoA, B, and C. C3 catalyzes the transfer of an ADP-ribose moiety from the co-substrate nicotinamide adenine dinucleotide (NAD) to asparagine-41 of Rho-GTPases. Although C3 does not possess cell-binding/-translocation domains, C3 is able to efficiently enter intact cells, including neuronal and macrophage-like cells. Conventionally, the detection of C3 uptake into cells is carried out via the gel-shift assay of modified RhoA. Since this gel-shift assay does not always provide clear, evaluable results an additional method to confirm the ADP-ribosylation of RhoA is necessary. Therefore, a new monoclonal antibody has been generated that specifically detects ADP-ribosylated RhoA/B, but not RhoC, in Western blot and immunohistochemical assay. The scFv antibody fragment was selected by phage display using the human naive antibody gene libraries HAL9/10. Subsequently, the antibody was produced as scFv-Fc and was found to be as sensitive as a commercially available RhoA antibody providing reproducible and specific results. We demonstrate that this specific antibody can be successfully applied for the analysis of ADP-ribosylated RhoA/B in C3-treated Chinese hamster ovary (CHO) and HT22 cells. Moreover, ADP-ribosylation of RhoA was detected within 10 min in C3-treated CHO wild-type cells, indicative of C3 cell entry.
Collapse
Affiliation(s)
- Astrid Rohrbeck
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Viola Fühner
- Biotechnology and Bioinformatics, Department of Biotechnology, Institute for Biochemistry, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.
| | - Anke Schröder
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Sandra Hagemann
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Xuan-Khang Vu
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Sarah Berndt
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Michael Hust
- Biotechnology and Bioinformatics, Department of Biotechnology, Institute for Biochemistry, Technische Universität Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany.
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Ingo Just
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
10
|
Sørensen KK, McCourt P, Berg T, Crossley C, Le Couteur D, Wake K, Smedsrød B. The scavenger endothelial cell: a new player in homeostasis and immunity. Am J Physiol Regul Integr Comp Physiol 2012; 303:R1217-30. [PMID: 23076875 DOI: 10.1152/ajpregu.00686.2011] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To maintain homeostasis, the animal body is equipped with a powerful system to remove circulating waste. This review presents evidence that the scavenger endothelial cell (SEC) is responsible for the clearance of blood-borne waste macromolecules in vertebrates. SECs express pattern-recognition endocytosis receptors (mannose and scavenger receptors), and in mammals, the endocytic Fc gamma-receptor IIb2. This cell type has an endocytic machinery capable of super-efficient uptake and degradation of physiological and foreign waste material, including all major classes of biological macromolecules. In terrestrial vertebrates, most SECs line the wall of the liver sinusoid. In phylogenetically older vertebrates, SECs reside instead in heart, kidney, or gills. SECs, thus, by virtue of their efficient nonphagocytic elimination of physiological and microbial substances, play a critical role in the innate immunity of vertebrates. In major invertebrate phyla, including insects, the same function is carried out by nephrocytes. The concept of a dual-cell principle of waste clearance is introduced to emphasize that professional phagocytes (macrophages in vertebrates; hemocytes in invertebrates) eliminate larger particles (>0.5 μm) by phagocytosis, whereas soluble macromolecules and smaller particles are eliminated efficiently and preferentially by clathrin-mediated endocytosis in nonphagocytic SECs in vertebrates or nephrocytes in invertebrates. Including these cells as important players in immunology and physiology provides an additional basis for understanding host defense and tissue homeostasis.
Collapse
Affiliation(s)
- Karen Kristine Sørensen
- Vascular Biology Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | | | | | | | | | | | | |
Collapse
|
11
|
Elvevold K, Simon-Santamaria J, Hasvold H, McCourt P, Smedsrød B, Sørensen KK. Liver sinusoidal endothelial cells depend on mannose receptor-mediated recruitment of lysosomal enzymes for normal degradation capacity. Hepatology 2008; 48:2007-15. [PMID: 19026003 DOI: 10.1002/hep.22527] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
UNLABELLED Liver sinusoidal endothelial cells (LSECs) are largely responsible for the removal of circulating lysosomal enzymes (LE) via mannose receptor (MR)-mediated endocytosis. We hypothesized that LSECs rely on this uptake to maintain their extraordinarily high degradation capacity for other endocytosed material. Circulatory half-life studies of (125)I-cathepsin-D in MR knockout (MR(-/-)) and wild-type mice, and endocytosis studies in LSEC cultures, showed a total dependence on the MR for effective clearance of cathepsin-D. Radioiodinated formaldehyde-treated serum albumin, a ligand for the LSEC scavenger receptors, was used to study catabolism of endocytosed material in MR(-/-) and wild-type mice. The plasma clearance, liver uptake, and the starting point for release of degradation products to blood, were similar in both experimental groups, indicating normal endocytosis and intracellular transport of scavenger receptor ligands in MR(-/-) mice. However, the rate of formaldehyde-treated serum albumin catabolism in the liver of the MR deficient animals was reduced to approximately 50% of wild-type values. A similar reduction in intracellular degradation was recorded in LSEC cultures from MR(-/-) mice compared to wild-type controls. In accordance with this, MR(-/-) LSECs had markedly and significantly reduced enzyme activities for four out of five LE tested, i.e., cathepsin-D, alpha-mannosidase, beta-hexosaminidase and arylsulfatase, but not acid phosphatase, compared to wild-type controls. Immunoblot analysis showed that the content of pro-cathepsin-D relative to total cathepsin-D in wild-type LSECs was less than one-fifth of that in hepatocytes, indicating lower endogenous LE production in the LSECs. CONCLUSION We show for the first time that LSEC depend on MR-mediated recruitment of LE from their surroundings for effective catabolism of endocytosed macromolecules.
Collapse
Affiliation(s)
- Kjetil Elvevold
- Department of Cell Biology and Histology, University of Tromsø, Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
12
|
Oie CI, Olsen R, Smedsrød B, Hansen JB. Liver sinusoidal endothelial cells are the principal site for elimination of unfractionated heparin from the circulation. Am J Physiol Gastrointest Liver Physiol 2008; 294:G520-8. [PMID: 18063704 DOI: 10.1152/ajpgi.00489.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mechanism of elimination of blood borne heparin was studied. To this end unfractionated heparin (UFH) was tagged with FITC, which served as both a visual marker and a site of labeling with (125)I-iodine. UFH labeled in this manner did not alter the anticoagulant activity or binding specificity of the glycosaminoglycan. Labeled heparin administered intravenously to rats (0.1 IU/kg) had a circulatory t(1/2) of 1.7 min, which was increased to 16 min upon coinjection with unlabeled UFH (100 IU/kg). At 15 min after injection, 71% of recovered radioactivity was found in liver. Liver cell separation revealed the following relative uptake capacity, expressed per cell: liver sinusoidal endothelial cell (LSEC)-parenchymal cell-Kupffer cell = 15:3.6:1. Fluorescence microscopy on liver sections showed accumulation of FITC-UFH only in cells lining the liver sinusoids. No fluorescence was detected in parenchymal cells or endothelial cells lining the central vein. Fluorescence microscopy of cultured LSECs following binding of FITC-UFH at 4 degrees C and chasing at 37 degrees C, showed accumulation of the probe in vesicles located at the periphery of the cells after 10 min, with transfer to large, evenly stained vesicles in the perinuclear region after 2 h. Immunogold electron microscopy of LSECs to probe the presence of FITC following injection of FITC-UFH along with BSA-gold to mark lysosomes demonstrated colocalization of the probe with the gold particles in the lysosomal compartment. Receptor-ligand competition experiments in primary cultures of LSECs indicated the presence of a specific heparin receptor, functionally distinct from the hyaluronan/scavenger receptor (Stabilin2). The results suggest a major role for LSECs in heparin elimination.
Collapse
Affiliation(s)
- Cristina Ionica Oie
- Center for Atherothrombotic Research in Tromsø, Department of Medicine, Institute of Clinical Medicine, University of Tromsø, N-9037 Tromsø, Norway.
| | | | | | | |
Collapse
|
13
|
Malovic I, Sørensen KK, Elvevold KH, Nedredal GI, Paulsen S, Erofeev AV, Smedsrød BH, McCourt PAG. The mannose receptor on murine liver sinusoidal endothelial cells is the main denatured collagen clearance receptor. Hepatology 2007; 45:1454-61. [PMID: 17518370 DOI: 10.1002/hep.21639] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED The purpose of this study was to identify the receptor responsible for endocytosis of denatured collagen from blood. The major site of clearance of this material (at least 0.5 g/day in humans) is a receptor on liver sinusoidal endothelial cells (LSECs). We have now identified an 180-kDa endocytic receptor on LSECs, peptide mass fingerprinting of which revealed it to be the mannose receptor. Challenge of mannose-receptor knockout mice and their cultured LSECs revealed significantly reduced blood clearance and a complete absence of LSEC endocytosis of denatured collagen. Organ analysis of wild-type versus knockout mice after injection of denatured collagen revealed significantly reduced liver uptake in the knockout mice. Clearance/endocytosis of ligands for other receptors in these animals was as that for wild-type mice, and denatured collagen uptake in wild-type mice was not affected by other ligands of the mannose receptor, namely mannose and mannan. Furthermore, unlike that of mannose and mannan, endocytosis of denatured collagen by the mannose receptor is calcium independent. This suggests that the binding site for denatured collagen is distinct from that for mannose/mannan. Mannose receptors on LSECs appear to have less affinity for circulating triple helical type I collagen. CONCLUSION The mannose receptor is the main candidate for being the endocytic denatured collagen receptor on LSECs.
Collapse
Affiliation(s)
- Ivana Malovic
- Department of Cell Biology and Histology, University of Tromsø, NO-9037 Tromsø, Norway
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Falkowska-Hansen B, Falkowski M, Metharom P, Krunic D, Goerdt S. Clathrin-coated vesicles form a unique net-like structure in liver sinusoidal endothelial cells by assembling along undisrupted microtubules. Exp Cell Res 2007; 313:1745-57. [PMID: 17433812 DOI: 10.1016/j.yexcr.2007.02.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 02/20/2007] [Accepted: 02/22/2007] [Indexed: 11/26/2022]
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly active professional scavenger cells using clathrin-mediated endocytosis to clear the blood from macromolecular waste products. Using confocal microscopy, we observed a remarkable net-like distribution of clathrin heavy chain (CHC) in LSECs while all other cell types examined including various primary endothelial cells and cell lines showed the well-known punctuate staining pattern representing clathrin-coated vesicles (CCV). The net-like distribution of CHC in LSECs co-localized fully with microtubules, but not with actin. Upon 3D imaging, the net-like distribution of CHC resolved into numerous CCVs organized along the microtubules. The CCVs only partially co-localized with early endosome antigen 1 (EEA1) and adaptor protein 2 (AP-2). Endocytic vesicles containing ligand destined for degradation (FITC-AHGG) were organized along the clathrin/tubulin net-like structures, whereas transferrin-containing recycling vesicles co-localized to a much lower extent. Disruption of the microtubules by nocodazole treatment caused a collapse of the net-like organization of CCVs as well as a profound redistribution of EEA1, AP-2 and FITC-AHGG-containing vesicles, while transferrin internalization and recycling remained unaffected.
Collapse
Affiliation(s)
- Berit Falkowska-Hansen
- Department of Dermatology, University Medical Center Mannheim, Ruprecht-Karls University Heidelberg, Theodor-Kutzer-Ufer 1-3, 68163 Mannheim, Germany.
| | | | | | | | | |
Collapse
|
15
|
Abraham LC, Dice JF, Finn PF, Mesires NT, Lee K, Kaplan DL. Extracellular matrix remodeling--methods to quantify cell-matrix interactions. Biomaterials 2006; 28:151-61. [PMID: 16893566 DOI: 10.1016/j.biomaterials.2006.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Accepted: 07/03/2006] [Indexed: 11/29/2022]
Abstract
Tissue turnover during wound healing, regeneration or integration of biomedical materials depends on the rate and extent of materials trafficking into and out of cells involved in extracellular matrix (ECM) remodeling. To exploit these processes, we report the first model for matrix trafficking in which these issues are quantitatively assessed for cells grown on both native collagen (normal tissue) and denatured collagen (wound state) substrates. Human fibroblasts more rapidly remodeled denatured versus normal collagen type I to form new ECM. Fluxes to and from the cells from the collagen substrates and the formation of new ECM were quantified using radioactively labeled substrates. The model can be employed for the systematic and quantitative study of the impact of a broad range of physiological factors and disease states on tissue remodeling, integrating extracellular matrix structures and cell biology.
Collapse
Affiliation(s)
- Leah C Abraham
- Department of Chemical and Biological Engineering, and Bioengineering and Biotechnology Center, Tufts University, Medford, MA 02155, USA
| | | | | | | | | | | |
Collapse
|
16
|
Falkowska-Hansen B, Oynebråten I, Uhlin-Hansen L, Smedsrød B. Endocytosis and degradation of serglycin in liver sinusoidal endothelial cells. Mol Cell Biochem 2006; 287:43-52. [PMID: 16733805 DOI: 10.1007/s11010-005-9024-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 10/04/2005] [Indexed: 11/25/2022]
Abstract
We have previously reported that liver sinusoidal endothelial cells (LSECs) are responsible for the clearance of monocyte chondroitin sulfate proteoglycan serglycin from the circulation (Øynebråten et al.(2000) J. Leukocyte Biol. 67; 183-188). The aim of the present study was to investigate the kinetics of degradation of endocytosed serglycin in primary cultures of LSECs. The final degradation products of serglycin labelled biosynthetically in the glycosaminoglycan (GAG) chains with [3H] in the acetyl groups of N-acetyl galactosamine residues, [14C] in the pyranose rings, or [35S] in the sulfate groups were identified as[3H]-acetate, [14C]-lactate and [35S]-sulfate. Comparison of the rate of release of degradation products from the cells after endocytosis of serglycin labelled chemically with 125I in the tyrosine residues, or biosynthetically with [35S] or [3H] in the sulfate or acetyl groups, respectively, showed that 125I appeared more rapidly in the medium than [35S]-sulfate and [3H]-acetate. Judging from the speed of appearance of free 125I both intracellularly and in the medium, the core protein is degraded considerably more rapidly than the GAG chains. Desulfation of the GAG chains starts after the GAG chains are released from the core protein. Generation of lactate and acetate as the final products from degradation of the carbon skeleton of the GAG chains indicates that catabolism of endocytosed macromolecules in LSECs proceeds anaerobically.
Collapse
|
17
|
Elvevold KH, Nedredal GI, Revhaug A, Smedsrød B. Scavenger properties of cultivated pig liver endothelial cells. COMPARATIVE HEPATOLOGY 2004; 3:4. [PMID: 15306034 PMCID: PMC514717 DOI: 10.1186/1476-5926-3-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 08/12/2004] [Indexed: 01/11/2023]
Abstract
Background The liver sinusoidal endothelial cells (LSEC) and Kupffer cells constitute the most powerful scavenger system in the body. Various waste macromolecules, continuously released from tissues in large quantities as a consequence of normal catabolic processes are cleared by the LSEC. In spite of the fact that pig livers are used in a wide range of experimental settings, the scavenger properties of pig LSEC has not been investigated until now. Therefore, we studied the endocytosis and intracellular transport of ligands for the five categories of endocytic receptors in LSEC. Results Endocytosis of five 125I-labelled molecules: collagen α-chains, FITC-biotin-hyaluronan, mannan, formaldehyde-treated serum albumin (FSA), and aggregated gamma globulin (AGG) was substantial in cultured LSEC. The endocytosis was mediated via the collagen-, hyaluronan-, mannose-, scavenger-, or IgG Fc-receptors, respectively, as judged by the ability of unlabelled ligands to compete with labelled ligands for uptake. Intracellular transport was studied employing a morphological pulse-chase technique. Ninety minutes following administration of red TRITC-FSA via the jugular vein of pigs to tag LSEC lysosomes, cultures of the cells were established, and pulsed with green FITC-labelled collagen, -mannan, and -FSA. By 10 min, the FITC-ligands was located in small vesicles scattered throughout the cytoplasm, with no co-localization with the red lysosomes. By 2 h, the FITC-ligands co-localized with red lysosomes. When LSEC were pulsed with FITC-AGG and TRITC-FSA together, co-localization of the two ligands was observed following a 10 min chase. By 2 h, only partial co-localization was observed; TRITC-FSA was transported to lysosomes, whereas FITC-AGG only slowly left the endosomes. Enzyme assays showed that LSEC and Kupffer cells contained equal specific activities of hexosaminidase, aryl sulphates, acid phosphatase and acid lipase, whereas the specific activities of α-mannosidase, and glucuronidase were higher in LSEC. All enzymes measured showed considerably higher specific activities in LSEC compared to parenchymal cells. Conclusion Pig LSEC express the five following categories of high capacity endocytic receptors: scavenger-, mannose-, hyaluronan-, collagen-, and IgG Fc-receptors. In the liver, soluble ligands for these five receptors are endocytosed exclusively by LSEC. Furthermore, LSEC contains high specific activity of lysosomal enzymes needed for degradation of endocytosed material. Our observations suggest that pig LSEC have the same clearance activity as earlier described in rat LSEC.
Collapse
Affiliation(s)
- Kjetil H Elvevold
- Department of Experimental Pathology, Institute of Medical Biology, University of Tromsø, 9038 Tromsø, Norway
| | - Geir I Nedredal
- Department of Digestive Surgery, University Hospital of Tromsø, 9038 Tromsø, Norway
| | - Arthur Revhaug
- Department of Digestive Surgery, University Hospital of Tromsø, 9038 Tromsø, Norway
| | - Bård Smedsrød
- Department of Experimental Pathology, Institute of Medical Biology, University of Tromsø, 9038 Tromsø, Norway
| |
Collapse
|
18
|
Kjeken R, Mousavi SA, Brech A, Griffiths G, Berg T. Wortmannin-sensitive trafficking steps in the endocytic pathway in rat liver endothelial cells. Biochem J 2001; 357:497-503. [PMID: 11439100 PMCID: PMC1221977 DOI: 10.1042/0264-6021:3570497] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Liver endothelial cells (LECs) play an important homoeostatic role by removing potentially harmful macromolecules from blood. The extremely efficient endocytosis in LECs makes these cells an interesting model for the study of the involvement of phosphoinositides in the different steps of the endocytic process. In the present investigation we have studied the effect of wortmannin, an inhibitor of phosphatidylinositol kinases, on uptake, recycling and intracellular transport of (125)I-labelled ovalbumin, which is taken up in LECs via mannose-receptor-mediated endocytosis. Wortmannin was found to inhibit both uptake and degradation of ovalbumin. Further studies indicated that the reduced uptake via the mannose receptor was due both to a reduction of the number of surface receptors and a reduction in the rate of receptor-ligand internalization. Transport of ligand from endosomes to lysosomes was prevented, leading to increased recycling of internalized ligand. Wortmannin treatment released the Rab5 effector EEA1 from the endosomes and caused reduced size of early endosomes.
Collapse
Affiliation(s)
- R Kjeken
- University of Oslo, Institute of Biology, Division of Molecular Cell Biology, P.O. Box 1050, Blindern, 0316 Oslo, Norway
| | | | | | | | | |
Collapse
|
19
|
Yoshida N, Kinjo M, Tamura M. Microenvironment of endosomal aqueous phase investigated by the mobility of microparticles using fluorescence correlation spectroscopy. Biochem Biophys Res Commun 2001; 280:312-8. [PMID: 11162516 DOI: 10.1006/bbrc.2000.4115] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Temporal observation of the dynamic behavior of molecules in cells gives information about the physiological environment at the region of interest. Here we report the direct measurement of the mobility of rhodamine-labeled microparticles (14 and 35 nm in diameter) ingested in endosomes of cultured bovine aortic endothelial cells using fluorescence correlation spectroscopy (FCS). The fluctuation of fluorescent signals from microparticles were measured by FCS. Obtained autocorrelation functions (FAFs) were analyzed by the 2-D multicomponent model according to an evaluation procedure we newly developed. It was found that microparticles moved freely in endosomes with average diffusion coefficients of 4.3 x 10(-8) and 2.7 x 10(-8) cm2 s(-1) for 14 and 35 nm, which were 45% slower than in water. This result implies that the endosomal aqueous phase is homogeneous with the viscosity about 2.2 times of water. Our study also proposes the new use of FCS for investigation of the internal space of organelles.
Collapse
Affiliation(s)
- N Yoshida
- Laboratory of Supramolecular Biophysics, Research Institute for Electronic Science, Hokkaido University, N12W6, Kita-ku, Sapporo 060-0812, Japan.
| | | | | |
Collapse
|