1
|
Fan X, Rong H, Wang Y, Li M, Song W, Su A, Yu T. The correlation between serum total bile acid and alanine aminotransferase of pregnant women and the disorders of neonatal hyperbilirubinemia-related amino acid metabolism. BMC Pregnancy Childbirth 2024; 24:26. [PMID: 38172739 PMCID: PMC10763467 DOI: 10.1186/s12884-023-06226-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND To explore the association between liver metabolism-related indicators in maternal serum and neonatal hyperbilirubinemia (NHB), and further investigate the predictive value of these indicators in NHB-related amino acid metabolism disorders. METHODS 51 NHB and 182 No-NHB newborns and their mothers who treated in the Fourth Hospital of Shijiazhuang from 2018 to 2022 were participated in the study. The differences in clinical data were compared by the Mann-Whitney U test and Chi-square test. Multivariate logistic regression was used to analyze the relationship between maternal serum indicators and the occurrence of NHB. The correlation analysis and risk factor assessment of maternal serum indicators with NHB-related amino acid metabolic disorders were performed using Spearman correlation analysis and multivariate logistic regression. RESULTS Compared to the non NHB group, the NHB group had higher maternal serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), ALT/AST, and total bile acid (TBA), while lower levels of serum albumin (ALB), total cholesterol (TC) and high-density lipoprotein (HDL). The levels of alanine (ALA), valine (VAL), ornithine (ORN), and proline (PRO) in the newborns were reduced in NHB group, while arginine (ARG) showed a tendency to be elevated. Multiple logistic regression analysis showed that maternal ALT, AST, ALT/AST, and TBA levels were all at higher risk with the development of NHB, whereas ALB, TC, and HDL levels were negatively associated with NHB development. Increasing maternal TBA level was associated with lower ALA (r=-0.167, p = 0.011), VAL (r=-0.214, p = 0.001), ORN (r=-0.196, p = 0.003), and PRO in the newborns (r=-0.131, p = 0.045). Maternal ALT level was negatively associated with ALA (r=-0.135, p = 0.039), VAL (r=-0.177, p = 0.007), ORN (r=-0.257, p < 0.001), while ALT/AST was positively correlated with ARG (r = 0.133, p = 0.013). After adjustment for confounding factors, maternal serum TBA and ALT were the independent risk factor for neonatal ORN metabolic disorders [(adjusted odds ratio (AOR) = 0.379, 95%CI = 0.188-0.762, p = 0.006), (AOR = 0.441, 95%CI = 0.211-0.922, p = 0.030)]. Maternal ALT level was an independent risk factor for neonatal VAL metabolic disorders (AOR = 0.454, 95%CI = 0.218-0.949, p = 0.036). CONCLUSIONS The levels of high TBA, ALT, AST, and low HDL, TC of maternal were associated with the risk of NHB. Maternal TBA and ALT levels were independent risk factors for NHB-related amino acid disturbances which have value as predictive makers.
Collapse
Affiliation(s)
- Xizhenzi Fan
- Research center for clinical medical sciences, Hebei key laboratory of maternal and fetal medicine, The Fourth Hospital of Shijiazhuang, Shijiazhuang, 050000, China
| | - Huijuan Rong
- Department of Nursing, The Fourth Hospital of Shijiazhuang, Shijiazhuang, 050000, China
| | - Yingying Wang
- Department of Functional Region of Diagnosis, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Mingwei Li
- Research center for clinical medical sciences, Hebei key laboratory of maternal and fetal medicine, The Fourth Hospital of Shijiazhuang, Shijiazhuang, 050000, China
| | - Wenhui Song
- Research center for clinical medical sciences, Hebei key laboratory of maternal and fetal medicine, The Fourth Hospital of Shijiazhuang, Shijiazhuang, 050000, China
| | - Achou Su
- Research center for clinical medical sciences, Hebei key laboratory of maternal and fetal medicine, The Fourth Hospital of Shijiazhuang, Shijiazhuang, 050000, China
| | - Tianxiao Yu
- Research center for clinical medical sciences, Hebei key laboratory of maternal and fetal medicine, The Fourth Hospital of Shijiazhuang, Shijiazhuang, 050000, China.
| |
Collapse
|
2
|
Fujiwara R, Journey M, Al-Doori F, Bell P, Judge B, Miracle K, Ito K, Jones S. Potential neonatal toxicity of new psychoactive substances. Pharmacol Ther 2023; 248:108468. [PMID: 37290575 DOI: 10.1016/j.pharmthera.2023.108468] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Cannabis, cocaine, 3,4-methylenedioxymethamphetamine, and lysergic acid diethylamide are psychoactive substances with a significant increase in consumption during the 21st century due to their popularity in medicinal and recreational use. New psychoactive substances (NPSs) mimic established psychoactive substances. NPSs are known as being natural and safe to consumers; however, they are neither natural nor safe, causing severe adverse reactions, including seizures, nephrotoxicity, and sometimes death. Synthetic cannabinoids, synthetic cathinones, phenethylamines, and piperazines are all examples of NPSs. As of January 2020, nearly 1000 NPSs have become documented. Due to their low cost, ease of availability, and difficulty of detection, misuse of NPSs has become a familiar and growing problem, especially in adolescents and young adults in the past decade. The use of NPSs is associated with higher risks of unplanned sexual intercourse and pregnancy. As many as 4 in 100 women seeking treatment for substance abuse are pregnant or nursing. Animal studies and human clinical case reports have shown that exposure to certain NPSs during lactation periods has toxic effects on neonates, increasing various risks, including brain damage. Nevertheless, neonatal toxicity effects of NPSs are usually unrecognized and overlooked by healthcare professionals. In this review article, we introduce and discuss the potential neonatal toxicity of NPSs, emphasizing synthetic cannabinoids. Utilizing the established prediction models, we identify synthetic cannabinoids and their highly accumulative metabolites in breast milk.
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA.
| | - Megan Journey
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Fatimah Al-Doori
- College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paris Bell
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Brahmjot Judge
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Kamille Miracle
- College of Graduate Studies, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Kousei Ito
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| | - Sabrina Jones
- Department of Physics, University of Arkansas Fayetteville, Fayetteville, AR, USA
| |
Collapse
|
3
|
Banerjee B, Olajide OJ, Bortolussi G, Muro AF. Activation of Alternative Bilirubin Clearance Pathways Partially Reduces Hyperbilirubinemia in a Mouse Model Lacking Functional Ugt1a1 Activity. Int J Mol Sci 2022; 23:ijms231810703. [PMID: 36142606 PMCID: PMC9505366 DOI: 10.3390/ijms231810703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/21/2022] Open
Abstract
Bilirubin is a heme catabolite and Ugt1a1 is the only enzyme involved in the biological elimination of bilirubin. Partially functional or non-functional Ugt1a1 may result in neuronal damage and death due to the accumulation of unconjugated bilirubin in the brain. The understanding of the role of alternative bilirubin detoxification mechanisms that can reduce bilirubin toxicity risk is crucial for developing novel therapeutic strategies. To provide a proof-of-principle showing whether activation of alternative detoxification pathways could lead to life-compatible bilirubin levels in the absence of Ugt1a1 activity, we used Ugt1−/− hyperbilirubinemic mice devoid of bilirubin glucuronidation activity. We treated adult Ugt1−/− mice with TCPOBOP, a strong agonist of the constitutive androstane receptor (CAR). TCPOBOP treatment decreased plasma and liver tissue bilirubin levels by about 38%, and resulted in the transcriptional activation of a vast array of genes involved in bilirubin transport and metabolism. However, brain bilirubin level was unaltered. We observed ~40% degradation of bilirubin in the liver microsomes from TCPOBOP treated Ugt1−/− mice. Our findings suggest that, in the absence of Ugt1a1, the activation of alternative bilirubin clearance pathways can partially improve hyperbilirubinemic conditions. This therapeutic approach may only be considered in a combinatorial manner along with other treatments.
Collapse
|
4
|
Bortolussi G, Shi X, ten Bloemendaal L, Banerjee B, De Waart DR, Baj G, Chen W, Oude Elferink RP, Beuers U, Paulusma CC, Stocker R, Muro AF, Bosma PJ. Long-Term Effects of Biliverdin Reductase a Deficiency in Ugt1-/- Mice: Impact on Redox Status and Metabolism. Antioxidants (Basel) 2021; 10:antiox10122029. [PMID: 34943131 PMCID: PMC8698966 DOI: 10.3390/antiox10122029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of neurotoxic bilirubin due to a transient neonatal or persistent inherited deficiency of bilirubin glucuronidation activity can cause irreversible brain damage and death. Strategies to inhibit bilirubin production and prevent neurotoxicity in neonatal and adult settings seem promising. We evaluated the impact of Bvra deficiency in neonatal and aged mice, in a background of unconjugated hyperbilirubinemia, by abolishing bilirubin production. We also investigated the disposal of biliverdin during fetal development. In Ugt1−/− mice, Bvra deficiency appeared sufficient to prevent lethality and to normalize bilirubin level in adults. Although biliverdin accumulated in Bvra-deficient fetuses, both Bvra−/− and Bvra−/−Ugt1−/− pups were healthy and reached adulthood having normal liver, brain, and spleen histology, albeit with increased iron levels in the latter. During aging, both Bvra−/− and Bvra−/−Ugt1−/− mice presented normal levels of relevant hematological and metabolic parameters. Interestingly, the oxidative status in erythrocytes from 9-months-old Bvra−/− and Bvra−/−Ugt1−/− mice was significantly reduced. In addition, triglycerides levels in these 9-months-old Bvra−/− mice were significantly higher than WT controls, while Bvra−/−Ugt1−/− tested normal. The normal parameters observed in Bvra−/−Ugt1−/− mice fed chow diet indicate that Bvra inhibition to treat unconjugated hyperbilirubinemia seems safe and effective.
Collapse
Affiliation(s)
- Giulia Bortolussi
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (G.B.); (B.B.)
| | - Xiaoxia Shi
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
- Key Laboratory of Protein Modification and Disease, School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Lysbeth ten Bloemendaal
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
| | - Bhaswati Banerjee
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (G.B.); (B.B.)
| | - Dirk R. De Waart
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
| | - Gabriele Baj
- Light Microscopy Imaging Center, Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Weiyu Chen
- Heart Research Institute, Sydney, NSW 2042, Australia; (W.C.); (R.S.)
| | - Ronald P. Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
| | - Ulrich Beuers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
| | - Coen C. Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
| | - Roland Stocker
- Heart Research Institute, Sydney, NSW 2042, Australia; (W.C.); (R.S.)
| | - Andrés F. Muro
- International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy; (G.B.); (B.B.)
- Correspondence: (A.F.M.); (P.J.B.); Tel.: +39-040-3757369 (A.F.M.); +31-20-566-8850 (P.J.B.)
| | - Piter J. Bosma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.S.); (L.t.B.); (D.R.D.W.); (R.P.O.E.); (U.B.); (C.C.P.)
- Correspondence: (A.F.M.); (P.J.B.); Tel.: +39-040-3757369 (A.F.M.); +31-20-566-8850 (P.J.B.)
| |
Collapse
|
5
|
Experimental models assessing bilirubin neurotoxicity. Pediatr Res 2020; 87:17-25. [PMID: 31493769 DOI: 10.1038/s41390-019-0570-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/29/2019] [Accepted: 08/16/2019] [Indexed: 02/08/2023]
Abstract
The molecular and cellular events leading to bilirubin-induced neurotoxicity, the mechanisms regulating liver and intestine expression in neonates, and alternative pathways of bilirubin catabolism remain incompletely defined. To answer these questions, researchers have developed a number of model systems to closely recapitulate the main characteristics of the disease, ranging from tissue cultures to engineered mouse models. In the present review we describe in vitro, ex vivo, and in vivo models developed to study bilirubin metabolism and neurotoxicity, with a special focus on the use of engineered animal models. In addition, we discussed the most recent studies related to potential therapeutic approaches to treat neonatal hyperbilirubinemia, ranging from anti-inflammatory drugs, activation of nuclear receptor pathways, blockade of bilirubin catabolism, and stimulation of alternative bilirubin-disposal pathways.
Collapse
|
6
|
Bortolussi G, Muro AF. Advances in understanding disease mechanisms and potential treatments for Crigler–Najjar syndrome. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1495558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Giulia Bortolussi
- Mouse Molecular Genetics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Andrés Fernando Muro
- Mouse Molecular Genetics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
7
|
Fujiwara R, Haag M, Schaeffeler E, Nies AT, Zanger UM, Schwab M. Systemic regulation of bilirubin homeostasis: Potential benefits of hyperbilirubinemia. Hepatology 2018; 67:1609-1619. [PMID: 29059457 DOI: 10.1002/hep.29599] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/11/2017] [Accepted: 10/13/2017] [Indexed: 12/17/2022]
Abstract
Neurotoxic bilirubin is the end product of heme catabolism in mammals. Bilirubin is solely conjugated by uridine diphospho-glucuronosyltransferase 1A1, which is a membrane-bound enzyme that catalyzes the transfer of glucuronic acid. Due to low function of hepatic and intestinal uridine diphospho-glucuronosyltransferase 1A1 during the neonatal period, human neonates develop mild to severe physiological hyperbilirubinemia. Accumulation of bilirubin in the brain leads to the onset of irreversible brain damage, termed kernicterus. Breastfeeding is one of the most significant factors that increase the risk of developing kernicterus in infants. Why does this most natural way of feeding increase the risk of brain damage or even death? This question leads to the hypothesis that breast milk-induced hyperbilirubinemia might bring certain benefits that outweigh those risks. While bilirubin is neurotoxic and cytotoxic, this compound is also a potent antioxidant. There are studies showing improved clinical conditions in patients with hyperbilirubinemia. Accumulating evidence also shows that genetic polymorphisms linked to hyperbilirubinemia are beneficial against various diseases. In this review article, we first introduce the production, metabolism, and transport of bilirubin. We then discuss the potential benefits of neonatal and adult hyperbilirubinemia. Finally, epigenetic factors as well as metabolomic information associated with hyperbilirubinemia are described. This review article advances the understanding of the physiological importance of the paradoxical compound bilirubin. (Hepatology 2018;67:1609-1619).
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Department of Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany.,Department of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Department of Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany.,Department of Clinical Pharmacology, University Hospital, Tuebingen, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
8
|
Fujiwara R, Yoda E, Tukey RH. Species differences in drug glucuronidation: Humanized UDP-glucuronosyltransferase 1 mice and their application for predicting drug glucuronidation and drug-induced toxicity in humans. Drug Metab Pharmacokinet 2017; 33:9-16. [PMID: 29079228 DOI: 10.1016/j.dmpk.2017.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022]
Abstract
More than 20% of clinically used drugs are glucuronidated by a microsomal enzyme UDP-glucuronosyltransferase (UGT). Inhibition or induction of UGT can result in an increase or decrease in blood drug concentration. To avoid drug-drug interactions and adverse drug reactions in individuals, therefore, it is important to understand whether UGTs are involved in metabolism of drugs and drug candidates. While most of glucuronides are inactive metabolites, acyl-glucuronides that are formed from compounds with a carboxylic acid group can be highly toxic. Animals such as mice and rats are widely used to predict drug metabolism and drug-induced toxicity in humans. However, there are marked species differences in the expression and function of drug-metabolizing enzymes including UGTs. To overcome the species differences, mice in which certain drug-metabolizing enzymes are humanized have been recently developed. Humanized UGT1 (hUGT1) mice were created in 2010 by crossing Ugt1-null mice with human UGT1 transgenic mice in a C57BL/6 background. hUGT1 mice can be promising tools to predict human drug glucuronidation and acyl-glucuronide-associated toxicity. In this review article, studies of drug metabolism and toxicity in the hUGT1 mice are summarized. We further discuss research and strategic directions to advance the understanding of drug glucuronidation in humans.
Collapse
Affiliation(s)
- Ryoichi Fujiwara
- Department of Pharmaceutics, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| | - Emiko Yoda
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, School of Pharmacy, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Robert H Tukey
- Laboratory of Environmental Toxicology, Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|