1
|
Kollaparampil Kishanchand D, K A AK, Chandrababu K, Philips CA, Sivan U, Pulikaparambil Sasidharan BC. The Intricate Interplay: Microbial Metabolites and the Gut-Liver-Brain Axis in Parkinson's Disease. J Neurosci Res 2025; 103:e70016. [PMID: 39754366 DOI: 10.1002/jnr.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 11/21/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
Parkinson's Disease (PD) is a neurodegenerative disorder marked by the depletion of dopaminergic neurons. Recent studies highlight the gut-liver-brain (GLB) axis and its role in PD pathogenesis. The GLB axis forms a dynamic network facilitating bidirectional communication between the gastrointestinal tract, liver, and central nervous system. Dysregulation within this axis, encompassing gut dysbiosis and microbial metabolites, is emerging as a critical factor influencing PD progression. Our understanding of PD was traditionally centered on neurodegenerative processes within the brain. However, examining PD through the lens of the GLB axis provides new insights. This review provides a comprehensive analysis of microbial metabolites, such as short-chain fatty acids (SCFAs), trimethylamine-N-oxide (TMAO), kynurenine, serotonin, bile acids, indoles, and dopamine, which are integral to PD pathogenesis by modulation of the GLB axis. Our extensive research included a comprehensive literature review and database searches utilizing resources such as gutMGene and gutMDisorder. These databases have been instrumental in identifying specific microbes and their metabolites, shedding light on the intricate relationship between the GLB axis and PD. This review consolidates existing knowledge and underscores the potential for targeted therapeutic interventions based on the GLB axis and its components, which offer new avenues for future PD research and treatment strategies. While the GLB axis is not a novel concept, this review is the first to focus specifically on its role in PD, highlighting the importance of integrating the liver and microbial metabolites as central players in the PD puzzle.
Collapse
Affiliation(s)
| | - Athira Krishnan K A
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Krishnapriya Chandrababu
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Cyriac Abby Philips
- Clinical and Translational Hepatology, The Liver Institute, Centre of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala, India
| | - Unnikrishnan Sivan
- Department of FSQA, FFE, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Baby Chakrapani Pulikaparambil Sasidharan
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
- Centre for Excellence in Neurodegeneration and Brain Health, Kochi, Kerala, India
| |
Collapse
|
2
|
Berlot R, Pavlović A, Kojović M. Secondary parkinsonism associated with focal brain lesions. Front Neurol 2024; 15:1438885. [PMID: 39296961 PMCID: PMC11408197 DOI: 10.3389/fneur.2024.1438885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/19/2024] [Indexed: 09/21/2024] Open
Abstract
Focal imaging abnormalities in patients with parkinsonism suggest secondary etiology and require a distinctive clinical approach to diagnosis and treatment. We review different entities presenting as secondary parkinsonism associated with structural brain lesions, with emphasis on the clinical course and neuroimaging findings. Secondary parkinsonism may be due to vascular causes, hydrocephalus, space-occupying lesions, metabolic causes (including acquired hepatocerebral degeneration, diabetic uremic encephalopathy, basal ganglia calcifications, osmotic demyelination syndrome), hypoxic-ischaemic brain injury, intoxications (including methanol, carbon monoxide, cyanide, carbon disulfide, manganese poisoning and illicit drugs), infections and immune causes. The onset can vary from acute to chronic. Both uni-and bilateral presentations are possible. Rigidity, bradykinesia and gait abnormalities are more common than rest tremor. Coexisting other movement disorders and additional associated neurological signs may point to the underlying diagnosis. Neuroimaging studies are an essential part in the diagnostic work-up of secondary parkinsonism and may point directly to the underlying etiology. We focus primarily on magnetic resonance imaging to illustrate how structural imaging combined with neurological assessment can lead to diagnosis. It is crucial that typical imaging abnormalities are recognized within the relevant clinical context. Many forms of secondary parkinsonism are reversible with elimination of the specific cause, while some may benefit from symptomatic treatment. This heterogeneous group of acquired disorders has also helped shape our knowledge of Parkinson's disease and basal ganglia pathophysiology, while more recent findings in the field garner support for the network perspective on brain function and neurological disorders.
Collapse
Affiliation(s)
- Rok Berlot
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Anđela Pavlović
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Kojović
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Sigawi T, Hamtzany O, Hurvitz N, Ishay Y, Dayan R, Arkadir D, Ilan Y. Investigating the Relationship between Chronic Liver Cirrhosis and Parkinsonism: A Comparative Analysis and a Suggested Diagnostic Scheme. Clin Pract 2024; 14:1375-1382. [PMID: 39051304 PMCID: PMC11270255 DOI: 10.3390/clinpract14040110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Aim: Neurological manifestations are common in patients with chronic liver diseases. This study aimed to depict the association between liver cirrhosis and Parkinson's disease (PD) and propose a clinically relevant diagnostic scheme. Methods: We examined patients' medical records with PD and chronic liver impairment secondary to cirrhosis or liver metastases for temporal correlations between liver insult and Parkinsonian signs. Results: Thirty-five individuals with PD and chronic liver impairment were included due to either cirrhosis or liver metastases. In all 22 patients with PD and liver metastases, the diagnosis of PD preceded the diagnosis of cancer. Conversely, patients with cirrhosis were often diagnosed with liver impairment before diagnosing PD. Age at diagnosis did not account for this difference. Conclusions: This study reinforces the potential clinical association between cirrhosis and PD. We also provide a diagnostic scheme that may guide therapeutic interventions and prognostic assessments.
Collapse
Affiliation(s)
- Tal Sigawi
- Department of Medicine, Hadassah Medical Center, Faculty of Medicine, Hebrew University, Jerusalem 9112001, Israel; (T.S.); (O.H.); (N.H.); (Y.I.)
| | - Omer Hamtzany
- Department of Medicine, Hadassah Medical Center, Faculty of Medicine, Hebrew University, Jerusalem 9112001, Israel; (T.S.); (O.H.); (N.H.); (Y.I.)
| | - Noa Hurvitz
- Department of Medicine, Hadassah Medical Center, Faculty of Medicine, Hebrew University, Jerusalem 9112001, Israel; (T.S.); (O.H.); (N.H.); (Y.I.)
| | - Yuval Ishay
- Department of Medicine, Hadassah Medical Center, Faculty of Medicine, Hebrew University, Jerusalem 9112001, Israel; (T.S.); (O.H.); (N.H.); (Y.I.)
| | - Roy Dayan
- Department of Neurology, Hadassah Medical Center, Faculty of Medicine, Hebrew University, Jerusalem 9112001, Israel; (R.D.); (D.A.)
| | - David Arkadir
- Department of Neurology, Hadassah Medical Center, Faculty of Medicine, Hebrew University, Jerusalem 9112001, Israel; (R.D.); (D.A.)
| | - Yaron Ilan
- Department of Medicine, Hadassah Medical Center, Faculty of Medicine, Hebrew University, Jerusalem 9112001, Israel; (T.S.); (O.H.); (N.H.); (Y.I.)
| |
Collapse
|
4
|
DiLeo DA, Gidener T, Aytaman A. Chronic Liver Disease in the Older Patient-Evaluation and Management. Curr Gastroenterol Rep 2023; 25:390-400. [PMID: 37991713 DOI: 10.1007/s11894-023-00908-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
PURPOSE OF REVIEW As our population ages, the number of elderly patients with advanced chronic liver disease (ACLD) will increase. In this review we explore risk factors for liver injury, noninvasive assessment of liver disease, complications of cirrhosis, and management of frailty and sarcopenia in the older patient with ACLD. RECENT FINDINGS Multiple guidelines regarding ACLD have been updated over the past few years. New cutoffs for FIB-4 and NAFLD (MASLD - Metabolic Dysfunction Associated Steatotic Liver Disease) fibrosis scores for elderly patients are being validated. Older patients with MASLD benefit from caloric restriction, exercise programs, and GLP-1 agonists. Patients with ACLD need to be screened for alcohol use disorder with modified scoring systems, and if positive, benefit from referral to chemical dependency programs. Carvedilol and diuretics may safely be used in the elderly for portal hypertension and ascites, respectively, with careful monitoring. Malnutrition, frailty, sarcopenia, and bone mineral disease are common in older patients with ACLD, and early intervention may improve outcomes. Early identification of ACLD in elderly patients allows us to manage risk factors for liver injury, screen for complications, and implement lifestyle and pharmacological therapy to reduce decompensation and death. Future studies may clarify the role of noninvasive imaging in assessing liver fibrosis in the elderly and optimal interventions for nutrition, frailty, sarcopenia, bone health in addition to reevaluation of antibiotic prophylaxis for liver conditions with rising antibiotic resistance.
Collapse
Affiliation(s)
- Daniel Anthony DiLeo
- Department of Gastroenterology, Brooklyn Campus of the Veterans Affairs New York Harbor Healthcare System, 800 Poly Pl, Brooklyn, NY, 11209, USA.
| | - Tolga Gidener
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
| | - Ayse Aytaman
- Department of Gastroenterology, Brooklyn Campus of the Veterans Affairs New York Harbor Healthcare System, 800 Poly Pl, Brooklyn, NY, 11209, USA
| |
Collapse
|
5
|
Tandra G, Yoone A, Mathew R, Wang M, Hales CM, Mitchell CS. Literature-Based Discovery Predicts Antihistamines Are a Promising Repurposed Adjuvant Therapy for Parkinson's Disease. Int J Mol Sci 2023; 24:12339. [PMID: 37569714 PMCID: PMC10418861 DOI: 10.3390/ijms241512339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Parkinson's disease (PD) is a movement disorder caused by a dopamine deficit in the brain. Current therapies primarily focus on dopamine modulators or replacements, such as levodopa. Although dopamine replacement can help alleviate PD symptoms, therapies targeting the underlying neurodegenerative process are limited. The study objective was to use artificial intelligence to rank the most promising repurposed drug candidates for PD. Natural language processing (NLP) techniques were used to extract text relationships from 33+ million biomedical journal articles from PubMed and map relationships between genes, proteins, drugs, diseases, etc., into a knowledge graph. Cross-domain text mining, hub network analysis, and unsupervised learning rank aggregation were performed in SemNet 2.0 to predict the most relevant drug candidates to levodopa and PD using relevance-based HeteSim scores. The top predicted adjuvant PD therapies included ebastine, an antihistamine for perennial allergic rhinitis; levocetirizine, another antihistamine; vancomycin, a powerful antibiotic; captopril, an angiotensin-converting enzyme (ACE) inhibitor; and neramexane, an N-methyl-D-aspartate (NMDA) receptor agonist. Cross-domain text mining predicted that antihistamines exhibit the capacity to synergistically alleviate Parkinsonian symptoms when used with dopamine modulators like levodopa or levodopa-carbidopa. The relationship patterns among the identified adjuvant candidates suggest that the likely therapeutic mechanism(s) of action of antihistamines for combatting the multi-factorial PD pathology include counteracting oxidative stress, amending the balance of neurotransmitters, and decreasing the proliferation of inflammatory mediators. Finally, cross-domain text mining interestingly predicted a strong relationship between PD and liver disease.
Collapse
Affiliation(s)
- Gabriella Tandra
- Laboratory for Pathology Dynamics, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Neural Engineering Center, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Amy Yoone
- Laboratory for Pathology Dynamics, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332, USA
| | - Rhea Mathew
- Laboratory for Pathology Dynamics, Georgia Institute of Technology, Atlanta, GA 30332, USA
- College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Minzhi Wang
- Laboratory for Pathology Dynamics, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Neural Engineering Center, Georgia Institute of Technology, Atlanta, GA 30332, USA
- College of Computing, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Chadwick M. Hales
- Department of Neurology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Cassie S. Mitchell
- Laboratory for Pathology Dynamics, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Neural Engineering Center, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332, USA
- Machine Learning Center at Georgia Tech, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Corral Nieto Y, Yakhine-Diop SMS, Moreno-Cruz P, Manrique García L, Gabrielly Pereira A, Morales-García JA, Niso-Santano M, González-Polo RA, Uribe-Carretero E, Durand S, Maiuri MC, Paredes-Barquero M, Alegre-Cortés E, Canales-Cortés S, López de Munain A, Pérez-Tur J, Pérez-Castillo A, Kroemer G, Fuentes JM, Bravo-San Pedro JM. Changes in Liver Lipidomic Profile in G2019S- LRRK2 Mouse Model of Parkinson's Disease. Cells 2023; 12:cells12050806. [PMID: 36899942 PMCID: PMC10000529 DOI: 10.3390/cells12050806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The identification of Parkinson's disease (PD) biomarkers has become a main goal for the diagnosis of this neurodegenerative disorder. PD has not only been intrinsically related to neurological problems, but also to a series of alterations in peripheral metabolism. The purpose of this study was to identify metabolic changes in the liver in mouse models of PD with the scope of finding new peripheral biomarkers for PD diagnosis. To achieve this goal, we used mass spectrometry technology to determine the complete metabolomic profile of liver and striatal tissue samples from WT mice, 6-hydroxydopamine-treated mice (idiopathic model) and mice affected by the G2019S-LRRK2 mutation in LRRK2/PARK8 gene (genetic model). This analysis revealed that the metabolism of carbohydrates, nucleotides and nucleosides was similarly altered in the liver from the two PD mouse models. However, long-chain fatty acids, phosphatidylcholine and other related lipid metabolites were only altered in hepatocytes from G2019S-LRRK2 mice. In summary, these results reveal specific differences, mainly in lipid metabolism, between idiopathic and genetic PD models in peripheral tissues and open up new possibilities to better understand the etiology of this neurological disorder.
Collapse
Affiliation(s)
- Yaiza Corral Nieto
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Sokhna M. S. Yakhine-Diop
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Paula Moreno-Cruz
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Laura Manrique García
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Amanda Gabrielly Pereira
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - José A. Morales-García
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mireia Niso-Santano
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Rosa A. González-Polo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Elisabet Uribe-Carretero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Sylvère Durand
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
| | - Maria Chiara Maiuri
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
| | - Marta Paredes-Barquero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Eva Alegre-Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Saray Canales-Cortés
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
| | - Adolfo López de Munain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Neuroscience Area of Biodonostia Health Research Institute, Donostia University Hospital, 20014 San Sebastián, Spain
- Department of Neurology, Donostia University Hospital, OSAKIDETZA, 20014 San Sebastian, Spain
- Ilundain Foundation, 20018 San Sebastian, Spain
- Department of Neurosciences, University of the Basque Country UPV-EHU, 20014 San Sebastián, Spain
| | - Jordi Pérez-Tur
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto de Biomedicina de Valencia-CSIC, Unidad de Genética Molecular, 46010 Valencia, Spain
- Unidad Mixta de Genética y Neurología, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Ana Pérez-Castillo
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, 94805 Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, 75006 Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hopital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - José M. Fuentes
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, 10003 Cáceres, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), 10003 Cáceres, Spain
- Correspondence: (J.M.F.); (J.M.B.-S.P.)
| | - José M. Bravo-San Pedro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas-Instituto de Salud Carlos III (CIBER-CIBERNED-ISCIII), 28029 Madrid, Spain
- Correspondence: (J.M.F.); (J.M.B.-S.P.)
| |
Collapse
|
7
|
Bajaj JS, Gentili A, Wade JB, Godschalk M. Specific Challenges in Geriatric Cirrhosis and Hepatic Encephalopathy. Clin Gastroenterol Hepatol 2022; 20:S20-S29. [PMID: 35940730 PMCID: PMC9373233 DOI: 10.1016/j.cgh.2022.04.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 02/07/2023]
Abstract
As the world's population ages, diseases predominantly found in the elderly now overlap with diseases that were thought to be the purview of younger patients. This includes chronic liver disease, which affects more than 2 billion people worldwide. Owing to the obesity epidemic (and associated metabolic diseases), nonalcoholic fatty liver disease has become the most common cause of chronic liver disease and cirrhosis. A major complication of cirrhosis is hepatic encephalopathy (HE), which becomes challenging to diagnose in elderly patients. HE is usually included in the differential diagnosis of acute delirium but not of reversible dementias. To illustrate this point, we present 2 cases of older patients that were misdiagnosed as having dementia and Parkinson's disease or a parkinsonian syndrome but had contributions from cirrhosis. Both cognitive impairment and tremor resolved with treatment of HE.
Collapse
Affiliation(s)
- Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia.
| | - Angela Gentili
- Division of Geriatrics, Department of Medicine, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia
| | - James B Wade
- Division of Neuropsychology, Department of Psychiatry, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia
| | - Michael Godschalk
- Division of Geriatrics, Department of Medicine, Virginia Commonwealth University and Richmond VA Medical Center, Richmond, Virginia
| |
Collapse
|