1
|
Zhang H, Liang T, Duan W, Liu F, Li L, Liu Q, Li J, Zong Q, Jin L, Wang Q, Zhou Q. STING modulates HBV-related acute-on-chronic liver failure by mediating autophagy and macrophage polarization. Immunobiology 2025; 230:152860. [PMID: 39706132 DOI: 10.1016/j.imbio.2024.152860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/02/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND & AIMS HBV-related acute-on-chronic liver failure (HBV-ACLF) is a severe acute liver injury secondary to HBV-related chronic liver disease (with or without cirrhosis) and is characterized by a high short-term mortality rate. Presently, there is a paucity of experimental models that specifically focus on HBV-ACLF based on chronic hepatitis B. Therefore, this study aimed to establish an experimental mouse model of HBV-ACLF using chronic hepatitis B (CHB) as a basis and investigate the impact of STING activation on the disease. METHODS To simulate HBV-ACLF conditions, a model was constructed by combining chronic HBV replication (caudal vein high-pressure hydrodynamic injection of pAAV/HBV1.2 plasmid) and acute hepatic insult (intraperitoneal injection of Acetaminophen (APAP)). Then, model mice were administered either a STING agonist or STING inhibitor. Liver injury, STING pathway, autophagy flux, and macrophage polarization were assessed to elucidate the potential role of STING. RESULTS The mouse model developed chronic hepatitis B and acute liver injury, partially reflecting features of clinical HBV-ACLF based on CHB. STING activation, autophagy, and macrophage polarization were found to be involved in the disease process. During the early stage (6 h) of the STING agonist treatment group, the STING pathway was activated, autophagy flux was up-regulated, and liver inflammation and injury were alleviated. Contrastingly, at the late stage of STING agonist treatment (24 h, 48 h), macrophages were polarized to the M1 phenotype, exacerbating liver inflammatory infiltration and injury. However, treatment with a STING covalent inhibitor reversed these effects. CONCLUSIONS Sting-induced autophagy exerts a protective effect on liver injury during the early stage. However, in later stages, STING may aggravate liver injury by shifting liver macrophage polarization to the M1 phenotype, thereby enhancing the inflammatory response.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, China
| | - Teng Liang
- Department of Clinical Laboratory, Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, China
| | - Wanlu Duan
- Department of Clinical Laboratory, Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, China
| | - Futing Liu
- Department of Clinical Laboratory, Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, China
| | - LiPing Li
- Department of Clinical Laboratory, Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, China
| | - Qian Liu
- Department of Clinical Laboratory, Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, China
| | - Jianfei Li
- Department of Clinical Laboratory, Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, China
| | - Qiyin Zong
- Department of Clinical Laboratory, Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, China
| | - Lei Jin
- Department of infectious diseases, Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, China
| | - Qin Wang
- Department of Clinical Laboratory, Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, China.
| | - Qiang Zhou
- Department of Clinical Laboratory, Second Affiliated Hospital of Anhui Medical University, No. 678, Furong Road, Hefei 230601, Anhui, China.
| |
Collapse
|
2
|
McConnell MJ, Kostallari E, Ibrahim SH, Iwakiri Y. The evolving role of liver sinusoidal endothelial cells in liver health and disease. Hepatology 2023; 78:649-669. [PMID: 36626620 PMCID: PMC10315420 DOI: 10.1097/hep.0000000000000207] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/25/2022] [Indexed: 01/12/2023]
Abstract
LSECs are a unique population of endothelial cells within the liver and are recognized as key regulators of liver homeostasis. LSECs also play a key role in liver disease, as dysregulation of their quiescent phenotype promotes pathological processes within the liver including inflammation, microvascular thrombosis, fibrosis, and portal hypertension. Recent technical advances in single-cell analysis have characterized distinct subpopulations of the LSECs themselves with a high resolution and defined their gene expression profile and phenotype, broadening our understanding of their mechanistic role in liver biology. This article will review 4 broad advances in our understanding of LSEC biology in general: (1) LSEC heterogeneity, (2) LSEC aging and senescence, (3) LSEC role in liver regeneration, and (4) LSEC role in liver inflammation and will then review the role of LSECs in various liver pathologies including fibrosis, DILI, alcohol-associated liver disease, NASH, viral hepatitis, liver transplant rejection, and ischemia reperfusion injury. The review will conclude with a discussion of gaps in knowledge and areas for future research.
Collapse
Affiliation(s)
- Matthew J. McConnell
- Section of Digestive Disease, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | | | - Samar H. Ibrahim
- Division of Gastroenterology, Mayo Clinic, Rochester, MN
- Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, MN
| | - Yasuko Iwakiri
- Section of Digestive Disease, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
3
|
Zhao X, Xue X, Cui Z, Kwame Amevor F, Wan Y, Fu K, Wang C, Peng C, Li Y. microRNAs-based diagnostic and therapeutic applications in liver fibrosis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022:e1773. [PMID: 36585388 DOI: 10.1002/wrna.1773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 01/01/2023]
Abstract
Liver fibrosis is a process of over-extracellular matrix (ECM) aggregation and angiogenesis, which develops into cirrhosis and hepatocellular carcinoma (HCC). With the increasing pressure of liver fibrosis, new therapeutics to cure this disease requires much attention. Exosome-cargoed microRNAs (miRNAs) are emerging approaches in the precision of the liver fibrotic paradigm. In this review, we outlined the different types of hepatic cells derived miRNAs that drive intra-/extra-cellular interactive communication in liver fibrosis with different physiological and pathological processes. Specifically, we highlighted the possible mechanism of liver fibrosis pathogenesis associated with immune response and angiogenesis. In addition, potential clinical biomarkers and different stem cell transplant-derived miRNAs-based therapeutic strategies in liver fibrosis were summarized in this review. miRNAs-based approaches might help researchers devise new candidates for the cell-free treatment of liver fibrosis. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyan Xue
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhifu Cui
- College Science and Technology, Southwest University, Chongqing, China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Ministry of Education, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Magri A, Harris JM, D'Arienzo V, Minisini R, Jühling F, Wing PAC, Rapetti R, Leutner M, Testoni B, Baumert TF, Zoulim F, Balfe P, Pirisi M, McKeating JA. Inflammatory Gene Expression Associates with Hepatitis B Virus cccDNA- but Not Integrant-Derived Transcripts in HBeAg Negative Disease. Viruses 2022; 14:1070. [PMID: 35632812 PMCID: PMC9146050 DOI: 10.3390/v14051070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a global health problem that presents as a spectrum of liver disease, reflecting an interplay between the virus and the host immune system. HBV genomes exist as episomal covalently closed circular DNA (cccDNA) or chromosomal integrants. The relative contribution of these genomes to the viral transcriptome in chronic hepatitis B (CHB) is not well-understood. We developed a qPCR method to estimate the abundance of HBV cccDNA- and integrant-derived viral transcripts and applied this to a cohort of patients diagnosed with CHB in the HBe antigen negative phase of disease. We noted a variable pattern of HBV transcripts from both DNA templates, with preS1/S2 mRNAs predominating and a significant association between increasing age and the expression of integrant-derived mRNAs, but not with inflammatory status. In contrast, cccDNA-derived transcripts were associated with markers of liver inflammation. Analysis of the inflammatory hepatic transcriptome identified 24 genes significantly associated with cccDNA transcriptional activity. Our study uncovers an immune gene signature that associates with HBV cccDNA transcription and increases our understanding of viral persistence.
Collapse
Affiliation(s)
- Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - James M Harris
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | | | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Frank Jühling
- Institut de Recherche sur les Maladies Virales et Hépatiques, University of Strasbourg and Inserm, UMR_S1110, F-67000 Strasbourg, France
| | - Peter A C Wing
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX1 4BH, UK
| | - Rachele Rapetti
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Monica Leutner
- Department of Diagnostic Services and Supportive Therapies, ASL Verbano-Cusio-Ossola, 28887 Omegna, Italy
| | - Barbara Testoni
- Cancer Research Center of Lyon, UMR INSERM 1052, 69008 Lyon, France
| | - Thomas F Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques, University of Strasbourg and Inserm, UMR_S1110, F-67000 Strasbourg, France
- Pôle Hépato-Digestif, Institut Hopitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Institut Universitaire de France, 75005 Paris, France
| | - Fabien Zoulim
- Cancer Research Center of Lyon, UMR INSERM 1052, 69008 Lyon, France
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX1 4BH, UK
| |
Collapse
|
5
|
Du Y, Broering R, Li X, Zhang X, Liu J, Yang D, Lu M. In Vivo Mouse Models for Hepatitis B Virus Infection and Their Application. Front Immunol 2021; 12:766534. [PMID: 34777385 PMCID: PMC8586444 DOI: 10.3389/fimmu.2021.766534] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022] Open
Abstract
Despite the availability of effective vaccination, hepatitis B virus (HBV) infection continues to be a major challenge worldwide. Research efforts are ongoing to find an effective cure for the estimated 250 million people chronically infected by HBV in recent years. The exceptionally limited host spectrum of HBV has limited the research progress. Thus, different HBV mouse models have been developed and used for studies on infection, immune responses, pathogenesis, and antiviral therapies. However, these mouse models have great limitations as no spread of HBV infection occurs in the mouse liver and no or only very mild hepatitis is present. Thus, the suitability of these mouse models for a given issue and the interpretation of the results need to be critically assessed. This review summarizes the currently available mouse models for HBV research, including hydrodynamic injection, viral vector-mediated transfection, recombinant covalently closed circular DNA (rc-cccDNA), transgenic, and liver humanized mouse models. We systematically discuss the characteristics of each model, with the main focus on hydrodynamic injection mouse model. The usefulness and limitations of each mouse model are discussed based on the published studies. This review summarizes the facts for considerations of the use and suitability of mouse model in future HBV studies.
Collapse
Affiliation(s)
- Yanqin Du
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ruth Broering
- Department of Gastroenterology and Hepatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Xiaoran Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|