1
|
Yao ZQ, Schank MB, Zhao J, El Gazzar M, Wang L, Zhang Y, Hill AC, Banik P, Pyburn JS, Moorman JP. The potential of HBV cure: an overview of CRISPR-mediated HBV gene disruption. Front Genome Ed 2024; 6:1467449. [PMID: 39444780 PMCID: PMC11496132 DOI: 10.3389/fgeed.2024.1467449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Hepatitis B virus (HBV) infection is a common cause of liver disease worldwide. The current antiviral treatment using nucleotide analogues (NAs) can only suppress de novo HBV replication but cannot eliminate chronic HBV infection due to the persistence of covalently closed circular (ccc) DNA that sustains viral replication. The CRISPR/Cas9 system is a novel genome-editing tool that enables precise gene disruption and inactivation. With high efficiency and simplicity, the CRISPR/Cas9 system has been utilized in multiple studies to disrupt the HBV genome specifically, eliciting varying anti-HBV effects both in vitro and in vivo. Additionally, multi-locus gene targeting has shown enhanced antiviral activity, paving the way for combination therapy to disrupt and inactivate HBV cccDNA as well as integrated HBV DNA. Despite its promising antiviral effects, this technology faces several challenges that need to be overcome before its clinical application, i.e., off-target effects and in vivo drug delivery. As such, there is a need for improvement in CRISPR/Cas9 efficiency, specificity, versatility, and delivery. Here, we critically review the recent literature describing the tools employed in designing guide RNAs (gRNAs) targeting HBV genomes, the vehicles used for expressing and delivering CRISPR/Cas9 components, the models used for evaluating CRISPR-mediated HBV gene disruption, the methods used for assessing antiviral and off-target effects induced by CRISPR/Cas9-mediated HBV gene disruption, and the prospects of future directions and challenges in leveraging this HBV gene-editing approach, to advance the HBV treatment toward a clinical cure.
Collapse
Affiliation(s)
- Zhi Q. Yao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN, United States
- Hepatitis (HBV/HCV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States
| | - Madison B. Schank
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN, United States
| | - Juan Zhao
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN, United States
| | - Mohamed El Gazzar
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN, United States
| | - Ling Wang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN, United States
| | - Yi Zhang
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN, United States
| | - Addison C. Hill
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN, United States
| | - Puja Banik
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN, United States
| | - Jaeden S. Pyburn
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN, United States
| | - Jonathan P. Moorman
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Department of Internal Medicine, Division of Infectious, Inflammatory and Immunologic Diseases, Quillen College of Medicine, ETSU, Johnson City, TN, United States
- Hepatitis (HBV/HCV/HIV) Program, James H. Quillen VA Medical Center, Department of Veterans Affairs, Johnson City, TN, United States
| |
Collapse
|
2
|
Fukuoka M, Kodama T, Murai K, Hikita H, Sometani E, Sung J, Shimoda A, Shigeno S, Motooka D, Nishio A, Furuta K, Tatsumi T, Yusa K, Takehara T. Genome-wide loss-of-function genetic screen identifies INSIG2 as the vulnerability of hepatitis B virus-integrated hepatoma cells. Cancer Sci 2024; 115:859-870. [PMID: 38287498 PMCID: PMC10920982 DOI: 10.1111/cas.16070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
There are approximately 250 million people chronically infected with hepatitis B virus (HBV) worldwide. Although HBV is often integrated into the host genome and promotes hepatocarcinogenesis, vulnerability of HBV integration in liver cancer cells has not been clarified. The aim of our study is to identify vulnerability factors for HBV-associated hepatocarcinoma. Loss-of-function screening was undertaken in HepG2 and HBV-integrated HepG2.2.15 cells expressing SpCas9 using a pooled genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) library. Genes whose guide RNA (gRNA) abundance significantly decreased in HepG2.2.15 cells but not in HepG2 cells were extracted using the MAGeCK algorithm. We identified four genes (BCL2L1, VPS37A, INSIG2, and CFLAR) that showed significant reductions of gRNA abundance and thus potentially involved in the vulnerability of HBV-integrated cancer cells. Among them, siRNA-mediated mRNA inhibition or CRISPR-mediated genetic deletion of INSIG2 significantly impaired cell proliferation in HepG2.2.15 cells but not in HepG2 cells. Its inhibitory effect was alleviated by cotransfection of siRNAs targeting HBV. INSIG2 inhibition suppressed the pathways related to cell cycle and DNA replication, downregulated cyclin-dependent kinase 2 (CDK2) levels, and delayed the G1 -to-S transition in HepG2.2.15 cells. CDK2 inhibitor suppressed cell cycle progression in HepG2.2.15 cells and INSIG2 inhibition did not suppress cell proliferation in the presence of CDK2 inhibitor. In conclusion, INSIG2 inhibition induced cell cycle arrest in HBV-integrated hepatoma cells in a CDK2-dependent manner, and thus INSIG2 might be a vulnerability factor for HBV-associated liver cancer.
Collapse
Affiliation(s)
- Makoto Fukuoka
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Takahiro Kodama
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Kazuhiro Murai
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Hayato Hikita
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Emi Sometani
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Jihyun Sung
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Akiyoshi Shimoda
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Satoshi Shigeno
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial DiseasesOsaka UniversitySuitaJapan
| | - Akira Nishio
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Kunimaro Furuta
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Tomohide Tatsumi
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| | - Kosuke Yusa
- Stem Cell Genetics, Institute for Frontier Life and Medical SciencesKyoto UniversityKyotoJapan
| | - Tetsuo Takehara
- Department of Gastroenterology and HepatologyOsaka University Graduate School of MedicineSuitaOsakaJapan
| |
Collapse
|
3
|
Zhuang AQ, Chen Y, Chen SM, Liu WC, Li Y, Zhang WJ, Wu YH. Current Status and Challenges in Anti-Hepatitis B Virus Agents Based on Inactivation/Inhibition or Elimination of Hepatitis B Virus Covalently Closed Circular DNA. Viruses 2023; 15:2315. [PMID: 38140556 PMCID: PMC10747957 DOI: 10.3390/v15122315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
There has been over half a century since the discovery of hepatitis B virus (HBV) to now, but approximately 300 million patients with chronic hepatitis B (CHB) still live in the world, resulting in about one million deaths every year. Although currently approved antivirals (e.g., nucleoside analogues) are effective at reducing HBV replication, they have almost no impact on the existing HBV covalently closed circular DNA (cccDNA) reservoir. HBV cccDNA is a critical obstacle to the complete elimination of the virus via antiviral therapy. The true cure of HBV infection requires the eradication of viral cccDNA from HBV-infected cells; thus, the development of new agents directly or indirectly targeting HBV cccDNA is urgently needed due to the limitations of current available drugs against HBV infection. In this regard, it is the major focus of current anti-HBV research worldwide via different mechanisms to either inactivate/inhibit (functional cure) or eliminate (complete cure) HBV cccDNA. Therefore, this review discussed and summarized recent advances and challenges in efforts to inactivate/silence or eliminate viral cccDNA using anti-HBV agents from different sources, such as small molecules (including epigenetic drugs) and polypeptides/proteins, and siRNA or gene-editing approaches targeting/attenuating HBV cccDNA via different mechanisms, as well as future directions that may be considered in efforts to truly cure chronic HBV infection. In conclusion, no breakthrough has been made yet in attenuating HBV cccDNA, although a number of candidates have advanced into the phase of clinical trials. Furthermore, the overwhelming majority of the candidates function to indirectly target HBV cccDNA. No outstanding candidate directly targets HBV cccDNA. Relatively speaking, CCC_R08 and nitazoxanide may be some of the most promising agents to clear HBV infection in small molecule compounds. Additionally, CRISPR-Cas9 systems can directly target HBV cccDNA for decay and demonstrate significant anti-HBV activity. Consequently, gene-editing approaches targeting HBV cccDNA may be one of the most promising means to achieve the core goal of anti-HBV therapeutic strategies. In short, more basic studies on HBV infection need to be carried out to overcome these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi-Hang Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Department of Pharmacy, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
4
|
Zhang H, Tu T. Targeting Hepatitis B Virus DNA Using Designer Gene Editors. Clin Liver Dis 2023; 27:895-916. [PMID: 37778776 DOI: 10.1016/j.cld.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Chronic hepatitis B virus (HBV) infection is a serious disease that currently has no cure. Key forms of HBV include covalently closed circular DNA, which mediates chronic persistence, and integrated DNA, which contributes to immune evasion and carcinogenesis. These forms are not targeted by current therapies; however, gene editing technologies have emerged as promising tools for disrupting HBV DNA. Gene editor-induced double-stranded breaks at precise locations within the HBV genome can induce effects ranging from inactivation of target genes to complete degradation of the target genome. Although promising, several challenges remain in efficacy and safety that require solutions.
Collapse
Affiliation(s)
- Henrik Zhang
- Westmead Institute for Medical Research, University of Sydney School of Medicine and Health, 176 Hawkesbury Road, Westmead, NSW 2145, Australia
| | - Thomas Tu
- Westmead Institute for Medical Research, University of Sydney School of Medicine and Health, 176 Hawkesbury Road, Westmead, NSW 2145, Australia.
| |
Collapse
|
5
|
Pavlou S, Foskolou S, Patikas N, Field SF, Papachristou EK, Santos CD, Edwards AR, Kishore K, Ansari R, Rajan SS, Fernandes HJR, Metzakopian E. CRISPR-Cas9 genetic screen leads to the discovery of L-Moses, a KAT2B inhibitor that attenuates Tunicamycin-mediated neuronal cell death. Sci Rep 2023; 13:3934. [PMID: 36894612 PMCID: PMC9998435 DOI: 10.1038/s41598-023-31141-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Accumulation of aggregated and misfolded proteins, leading to endoplasmic reticulum stress and activation of the unfolded protein response, is a hallmark of several neurodegenerative disorders, including Alzheimer's and Parkinson's disease. Genetic screens are powerful tools that are proving invaluable in identifying novel modulators of disease associated processes. Here, we performed a loss-of-function genetic screen using a human druggable genome library, followed by an arrayed-screen validation, in human iPSC-derived cortical neurons. We identified and genetically validated 13 genes, whose knockout was neuroprotective against Tunicamycin, a glycoprotein synthesis inhibitor widely used to induce endoplasmic reticulum stress. We also demonstrated that pharmacological inhibition of KAT2B, a lysine acetyltransferase identified by our genetic screens, by L-Moses, attenuates Tunicamycin-mediated neuronal cell death and activation of CHOP, a key pro-apoptotic member of the unfolded protein response in both cortical and dopaminergic neurons. Follow-up transcriptional analysis suggested that L-Moses provided neuroprotection by partly reversing the transcriptional changes caused by Tunicamycin. Finally, L-Moses treatment attenuated total protein levels affected by Tunicamycin, without affecting their acetylation profile. In summary, using an unbiased approach, we identified KAT2B and its inhibitor, L-Moses, as potential therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sofia Pavlou
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK.
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | - Stefanie Foskolou
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Nikolaos Patikas
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Sarah F Field
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Evangelia K Papachristou
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Clive D' Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Abigail R Edwards
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Rizwan Ansari
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Sandeep S Rajan
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Hugo J R Fernandes
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK.
| |
Collapse
|
6
|
Martinez MG, Smekalova E, Combe E, Gregoire F, Zoulim F, Testoni B. Gene Editing Technologies to Target HBV cccDNA. Viruses 2022; 14:v14122654. [PMID: 36560658 PMCID: PMC9787400 DOI: 10.3390/v14122654] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Hepatitis B virus (HBV) remains a significant cause of mortality and morbidity worldwide, since chronic HBV infection is associated with elevated risk of cirrhosis and hepatocellular carcinoma. Current licensed therapies against HBV efficiently suppress viral replication; however, they do not have significant effects on the intrahepatic covalently closed circular DNA (cccDNA) of the viral minichromosome responsible for viral persistence. Thus, life-long treatment is required to avoid viral rebound. There is a significant need for novel therapies that can reduce, silence or eradicate cccDNA, thus preventing HBV reemergence after treatment withdrawal. In this review, we discuss the latest developments and applications of gene editing and related approaches for directly targeting HBV DNA and, more specifically, cccDNA in infected hepatocytes.
Collapse
Affiliation(s)
| | | | - Emmanuel Combe
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France
| | | | - Fabien Zoulim
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France
- Hospices Civils de Lyon (HCL), 69002 Lyon, France
- Université Claude-Bernard Lyon 1 (UCBL1), 69008 Lyon, France
| | - Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69008 Lyon, France
- Université Claude-Bernard Lyon 1 (UCBL1), 69008 Lyon, France
- Correspondence:
| |
Collapse
|