1
|
Kleine J, Hohmann U, Hohmann T, Ghadban C, Schmidt M, Laabs S, Alessandri B, Dehghani F. Microglia-Dependent and Independent Brain Cytoprotective Effects of Mycophenolate Mofetil During Neuronal Damage. Front Aging Neurosci 2022; 14:863598. [PMID: 35572146 PMCID: PMC9100558 DOI: 10.3389/fnagi.2022.863598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Acute lesions of the central nervous system often lead to permanent limiting deficits. In addition to the initial primary damage, accompanying neuroinflammation is responsible for progression of damage. Mycophenolate mofetil (MMF) as a selective inhibitor of inosine 5-monophosphate dehydrogenase (IMPDH) was shown to modulate the inflammatory response and promote neuronal survival when applied in specific time windows after neuronal injury. The application of brain cytoprotective therapeutics early after neuronal damage is a fundamental requirement for a successful immunomodulation approach. This study was designed to evaluate whether MMF can still mediate brain cytoprotection when applied in predefined short time intervals following CNS injury. Furthermore, the role of microglia and changes in IMPDH2 protein expression were assessed. Organotypic hippocampal slice cultures (OHSC) were used as an in vitro model and excitotoxically lesioned with N-methyl-aspartate (NMDA). Clodronate (Clo) was used to deplete microglia and analyze MMF mediated microglia independent effects. The temporal expression of IMPDH2 was studied in primary glial cell cultures treated with lipopolysaccharide (LPS). In excitotoxically lesioned OHSC a significant brain cytoprotective effect was observed between 8 and 36 h but not within 8 and 24 h after the NMDA damage. MMF mediated effects were mainly microglia dependent at 24, 36, 48 h after injury. However, further targets like astrocytes seem to be involved in protective effects 72 h post-injury. IMPDH2 expression was detected in primary microglia and astrocyte cell cultures. Our data indicate that MMF treatment in OHSC should still be started no later than 8–12 h after injury and should continue at least until 36 h post-injury. Microglia seem to be an essential mediator of the observed brain cytoprotective effects. However, a microglia-independent effect was also found, indicating involvement of astrocytes.
Collapse
Affiliation(s)
- Joshua Kleine
- Department of Anatomy and Cell Biology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Urszula Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Tim Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Chalid Ghadban
- Department of Anatomy and Cell Biology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Miriam Schmidt
- Department of Anatomy and Cell Biology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Sebastian Laabs
- Department of Anatomy and Cell Biology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Beat Alessandri
- Institute for Neurosurgical Pathophysiology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Medical Faculty, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- *Correspondence: Faramarz Dehghani,
| |
Collapse
|
2
|
Mazumder AG, Patial V, Singh D. Mycophenolate mofetil contributes to downregulation of the hippocampal interleukin type 2 and 1β mediated PI3K/AKT/mTOR pathway hyperactivation and attenuates neurobehavioral comorbidities in a rat model of temporal lobe epilepsy. Brain Behav Immun 2019; 75:84-93. [PMID: 30243822 DOI: 10.1016/j.bbi.2018.09.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 08/13/2018] [Accepted: 09/19/2018] [Indexed: 12/24/2022] Open
Abstract
The role of neuroinflammatory mediators has been well established in the pathogenesis of temporal lobe epilepsy (TLE) and associated neurobehavioral comorbidities. Mycophenolate mofetil (MMF) is commonly used as an immunosuppressant in organ transplantations. Its neuroprotective effect is well explored in different preclinical and clinical studies. The present study was designed to investigate the effect of MMF in rat model of lithium pilocarpine (LiPc)-induced spontaneous recurrent seizures and its associated neurobehavioral comorbidities. MMF treatment showed a dose-dependent decrease in seizure severity and reduced aggression in epileptic rats. There was marked improvement in spatial and recognition memory functions, along with substantial decrease in depression-like behavior in MMF treated epileptic rats. There was considerable decrease in mossy fiber sprouting in the dentate gyrus and the cornu ammonis 3 regions of the hippocampus, along with reduction in neuronal death in the treated groups. Furthermore, the hippocampal mRNA level of IL-1β, IL-2, PI3K, AKT, HIF-1α, RAPTOR, mTOR, Rps6kb1 and Rps6 was found to be decreased in MMF treated animals. mTOR, S6, pS6 and GFAP protein expression was decreased, whereas NeuN was increased in the rat hippocampus of the treated animals. The results concluded that MMF suppress recurrent seizures, and improves its associated behavioral impairments and cognitive deficit in rat model of TLE. The observed effects of MMF be correlated with the inhibition of IL-2 and IL-1β linked PI3K/AKT/mTOR signaling pathway hyperactivation.
Collapse
Affiliation(s)
- Arindam Ghosh Mazumder
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India.
| |
Collapse
|
3
|
Ebrahimi F, Koch M, Pieroh P, Ghadban C, Hobusch C, Bechmann I, Dehghani F. Time dependent neuroprotection of mycophenolate mofetil: effects on temporal dynamics in glial proliferation, apoptosis, and scar formation. J Neuroinflammation 2012; 9:89. [PMID: 22569136 PMCID: PMC3430572 DOI: 10.1186/1742-2094-9-89] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 05/08/2012] [Indexed: 12/14/2022] Open
Abstract
Background Immunosuppressants such as mycophenolate mofetil (MMF) have the capacity to inhibit microglial and astrocytic activation and to reduce the extent of cell death after neuronal injury. This study was designed to determine the effective neuroprotective time frame in which MMF elicits its beneficial effects, by analyzing glial cell proliferation, migration, and apoptosis. Methods Using organotypic hippocampal slice cultures (OHSCs), temporal dynamics of proliferation and apoptosis after N-methyl-D-aspartate (NMDA)-mediated excitotoxicity were analyzed by quantitative morphometry of Ki-67 or cleaved caspase-3 immunoreactive glial cells. Treatment on NMDA-lesioned OHSCs with mycophenolate mofetil (MMF)100 μg/mL was started at different time points after injury or performed within specific time frames, and the numbers of propidium iodide (PI)+ degenerating neurons and isolectin (I)B4+ microglial cells were determined. Pre-treatment with guanosine 100 μmol/l was performed to counteract MMF-induced effects. The effects of MMF on reactive astrocytic scar formation were investigated in the scratch-wound model of astrocyte monolayers. Results Excitotoxic lesion induction led to significant increases in glial proliferation rates between 12 and 36 hours after injury and to increased levels of apoptotic cells between 24 and 72 hours after injury. MMF treatment significantly reduced glial proliferation rates without affecting apoptosis. Continuous MMF treatment potently reduced the extent of neuronal cell demise when started within the first 12 hours after injury. A crucial time-frame of significant neuroprotection was identified between 12 and 36 hours after injury. Pre-treatment with the neuroprotective nucleoside guanosine reversed MMF-induced antiproliferative effects on glial cells. In the scratch-wound model, gap closure was reached within 48 hours in controls, and was potently inhibited by MMF. Conclusions Our data indicate that immunosuppression by MMF significantly attenuates the extent of neuronal cell death when administered within a crucial time frame after injury. Moreover, long-lasting immunosuppression, as required after solid-organ transplantation, does not seem to be necessary. Targeting inosine 5-monophosphate dehydrogenase, the rate-limiting enzyme of purine synthesis, is an effective strategy to modulate the temporal dynamics of proliferation and migration of microglia and astrocytes, and thus to reduce the extent of secondary neuronal damage and scar formation.
Collapse
Affiliation(s)
- Fahim Ebrahimi
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
4
|
Dehghani F, Sayan M, Conrad A, Evers J, Ghadban C, Blaheta R, Korf HW, Hailer NP. Inhibition of microglial and astrocytic inflammatory responses by the immunosuppressant mycophenolate mofetil. Neuropathol Appl Neurobiol 2011; 36:598-611. [PMID: 20609108 DOI: 10.1111/j.1365-2990.2010.01104.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Nucleotide depletion induced by the immunosuppressant mycophenolate mofetil (MMF) has been shown to exert neuroprotective effects. It remains unclear whether nucleotide depletion directly counteracts neuronal demise or whether it inhibits microglial or astrocytic activation, thereby resulting in indirect neuroprotection. METHODS Effects of MMF on isolated microglial cells, astrocyte/microglial cell co-cultures and isolated hippocampal neurones were analysed by immunocytochemistry, quantitative morphometry, and elisa. RESULTS We found that: (i) MMF suppressed lipopolysaccharide-induced microglial secretion of interleukin-1β, tumour necrosis factor-α and nitric oxide; (ii) MMF suppressed lipopolysaccharide-induced astrocytic production of tumour necrosis factor-α but not of nitric oxide; (iii) MMF strongly inhibited proliferation of both microglial cells and astrocytes; (iv) MMF did not protect isolated hippocampal neurones from excitotoxic injury; and (v) effects of MMF on glial cells were reversed after treatment with guanosine. CONCLUSIONS Nucleotide depletion induced by MMF inhibits microglial and astrocytic activation. Microglial and astrocytic proliferation is suppressed by MMF-induced inhibition of the salvage pathway enzyme inosine monophosphate dehydrogenase. The previously observed neuroprotection after MMF treatment seems to be indirectly mediated, making this compound an interesting immunosuppressant in the treatment of acute central nervous system lesions.
Collapse
Affiliation(s)
- F Dehghani
- Dr. Senckenbergische Anatomie, Institute of Anatomy 2, Goethe-University, Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Cocultures of rat sensorimotor cortex and spinal cord slices to investigate corticospinal tract sprouting. Spine (Phila Pa 1976) 2009; 34:2494-9. [PMID: 19927097 DOI: 10.1097/brs.0b013e3181b4abd8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Experimental study of corticospinal axonal sprouting in an organotypic slice culture model. OBJECTIVE To develop an in vitro model that simplifies the study of various factors regulating neuronal regeneration. SUMMARY OF BACKGROUND DATA Spinal cord injury leads to permanent neurologic damage, mainly due to the inability of the adult central nervous system to regenerate. Much attention has been focused on promoting axonal regeneration and sprouting, either by exogenous administration of various neurotrophic factors or by the antagonization of factors inhibiting regeneration. METHODS An in vitro system that allows coculture of slices from rat sensorimotor cortex and spinal cord (p4) was established. Two groups of cultures were investigated: In the first group, intact spinal cord slices were cultured adjacent to sensorimotor cortex slices, while in the second group the spinal cord slices were sagittally cut into halves, with the sectioned interface placed directly adjacent to the sensorimotor cortex, to prevent the spinal white matter from interference. Each group was further divided into 2 subgroups: The neurotrophin-3 (NT-3) group, where the culture medium contained 50 ng/mL NT-3 and the control group treated with normal culture medium. Sensorimotor cortex pyramidal neurons were anterogradely labeled with Mini-Ruby, a 10 kD biotinylated dextran amine. RESULTS Cocultures of cortical and spinal cord tissue were propagated in vitro, and axonal sprouting occurred. The group of cocultures treated with NT-3 showed an improved cortical cytoarchitecture, and sprouting axons were more frequently observed. In NT-3-treated cocultures where spinal cord gray matter was directly opposed to cortical slices sprouting axons entered the adjacent spinal cord tissue. This phenomenon was not observed if spinal cord pia mater and white matter were opposed to the cortical slices, or if NT-3 was absent. CONCLUSION Our data suggest that the absence of repellent factors such as white matter and the presence of neurotrophic factors promote axonal sprouting. Cocultures of sensorimotor cortex and spinal cord slices combined with anterograde axonal labeling could provide a valuable in vitro model for the simplified screening of factors influencing corticospinal tract regeneration.
Collapse
|
6
|
Immunosuppression after traumatic or ischemic CNS damage: it is neuroprotective and illuminates the role of microglial cells. Prog Neurobiol 2007; 84:211-33. [PMID: 18262323 DOI: 10.1016/j.pneurobio.2007.12.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 11/15/2007] [Accepted: 12/11/2007] [Indexed: 01/08/2023]
Abstract
Acute traumatic and ischemic events in the central nervous system (CNS) invariably result in activation of microglial cells as local representatives of the immune system. It is still under debate whether activated microglia promote neuronal survival, or whether they exacerbate the original extent of neuronal damage. Protagonists of the view that microglial cells cause secondary damage have proposed that inhibition of microglial activation by immunosuppression is beneficial after acute CNS damage. It is the aim of this review to analyse the effects of immunosuppressants on isolated microglial cells and neurons, and to scrutinize the effects of immunosuppression in different in vivo models of acute CNS trauma or ischemia. It is found that the immunosuppressants cytosine-arabinoside, different steroids, cyclosporin A, FK506, rapamycin, mycophenolate mofetil, and minocycline all have direct inhibitory effects on microglial cells. These effects are mainly exerted by inhibiting microglial proliferation or microglial secretion of neurotoxic substances such as proinflammatory cytokines and nitric oxide. Furthermore, immunosuppression after acute CNS trauma or ischemia results in improved structure preservation and, mostly, in enhanced function. However, all investigated immunosuppressants also have direct effects on neurons, and some immunosuppressants affect other glial cells such as astrocytes. In summary, it is safe to conclude that immunosuppression after acute CNS trauma or ischemia is neuroprotective. Furthermore, circumferential evidence indicates that microglial activation after traumatic or ischemic CNS damage is not beneficial to adjacent neurons in the immediate aftermath of such acute lesions. Further experiments with more specific agents or genetic approaches that specifically inhibit microglial cells are needed in order to fully answer the question of whether microglial activation is "good or bad".
Collapse
|
7
|
Chaichana K, Capilla-Gonzalez V, Gonzalez-Perez O, Pradilla G, Han J, Olivi A, Brem H, Garcia-Verdugo JM, Quiñones-Hinojosa A. Preservation of glial cytoarchitecture from ex vivo human tumor and non-tumor cerebral cortical explants: A human model to study neurological diseases. J Neurosci Methods 2007; 164:261-70. [PMID: 17580092 PMCID: PMC2744592 DOI: 10.1016/j.jneumeth.2007.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/04/2007] [Accepted: 05/08/2007] [Indexed: 11/29/2022]
Abstract
For the human brain, in vitro models that accurately represent what occurs in vivo are lacking. Organotypic models may be the closest parallel to human brain tissue outside of a live patient. However, this model has been limited primarily to rodent-derived tissue. We present an organotypic model to maintain intraoperatively collected human tumor and non-tumor explants ex vivo for a prolonged period of time ( approximately 11 days) without any significant changes to the tissue cytoarchitecture as evidenced through immunohistochemistry and electron microscopy analyses. The ability to establish and reliably predict the cytoarchitectural changes that occur with time in an organotypic model of tumor and non-tumor human brain tissue has several potential applications including the study of cell migration on actual tissue matrix, drug toxicity on neural tissue and pharmacological treatment for brain cancers, among others.
Collapse
Affiliation(s)
- Kaisorn Chaichana
- Department of Neurosurgery, Cancer Research Building, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vivian Capilla-Gonzalez
- Unidad Mixta Centro de Investigacion Principe Felipe - Universidad de Valencia, Laboratorio de Morfologia Celular, Valencia, Spain
| | - Oscar Gonzalez-Perez
- Laboratory of Neuroscience, School of Psychology, University of Colima, Colima, Mexico
| | - Gustavo Pradilla
- Department of Neurosurgery, Cancer Research Building, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Han
- Department of Neurosurgery, Cancer Research Building, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alessandro Olivi
- Department of Neurosurgery, Cancer Research Building, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Henry Brem
- Department of Neurosurgery, Cancer Research Building, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jose Manuel Garcia-Verdugo
- Unidad Mixta Centro de Investigacion Principe Felipe - Universidad de Valencia, Laboratorio de Morfologia Celular, Valencia, Spain
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery, Cancer Research Building, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|