1
|
Longitudinal [18]UCB-H/[18F]FDG imaging depicts complex patterns of structural and functional neuroplasticity following bilateral vestibular loss in the rat. Sci Rep 2022; 12:6049. [PMID: 35411002 PMCID: PMC9001652 DOI: 10.1038/s41598-022-09936-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
Neuronal lesions trigger mechanisms of structural and functional neuroplasticity, which can support recovery. However, the temporal and spatial appearance of structure–function changes and their interrelation remain unclear. The current study aimed to directly compare serial whole-brain in vivo measurements of functional plasticity (by [18F]FDG-PET) and structural synaptic plasticity (by [18F]UCB-H-PET) before and after bilateral labyrinthectomy in rats and investigate the effect of locomotor training. Complex structure–function changes were found after bilateral labyrinthectomy: in brainstem-cerebellar circuits, regional cerebral glucose metabolism (rCGM) decreased early, followed by reduced synaptic density. In the thalamus, increased [18F]UCB-H binding preceded a higher rCGM uptake. In frontal-basal ganglia loops, an increase in synaptic density was paralleled by a decrease in rCGM. In the group with locomotor training, thalamic rCGM and [18F]UCB-H binding increased following bilateral labyrinthectomy compared to the no training group. Rats with training had considerably fewer body rotations. In conclusion, combined [18F]FDG/[18F]UCB-H dual tracer imaging reveals that adaptive neuroplasticity after bilateral vestibular loss is not a uniform process but is composed of complex spatial and temporal patterns of structure–function coupling in networks for vestibular, multisensory, and motor control, which can be modulated by early physical training.
Collapse
|
2
|
Shah FA, Liu G, Al Kury LT, Zeb A, Abbas M, Li T, Yang X, Liu F, Jiang Y, Li S, Koh PO. Melatonin Protects MCAO-Induced Neuronal Loss via NR2A Mediated Prosurvival Pathways. Front Pharmacol 2019; 10:297. [PMID: 31024297 PMCID: PMC6461025 DOI: 10.3389/fphar.2019.00297] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/11/2019] [Indexed: 12/27/2022] Open
Abstract
Stroke is the significant cause of human mortality and sufferings depending upon race and demographic location. Melatonin is a potent antioxidant that exerts protective effects in differential experimental stroke models. Several mechanisms have been previously suggested for the neuroprotective effects of melatonin in ischemic brain injury. The aim of this study is to investigate whether melatonin treatment affects the glutamate N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor signaling in cerebral cortex and striatum 24 h after permanent middle cerebral artery occlusion (MCAO). Melatonin (5 mg/kg) attenuated ischemia-induced down regulation of NMDA receptor 2 (NR2a), postsynaptic density-95 (PSD95) and increases NR2a/PSD95 complex association, which further activates the pro-survival PI3K/Akt/GSK3β pathway with mitigated collapsin response mediator protein 2 (CRMP2) phosphorylation. Furthermore, melatonin increases the expression of γ-enolase, a neurotrophic factor in ischemic cortex and striatum, and preserve the expression of presynaptic (synaptophysin and SNAP25) and postsynaptic (p-GluR1845) protein. Our study demonstrated a novel neuroprotective mechanism for melatonin in ischemic brain injury which could be a promising neuroprotective agent for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Fawad Ali Shah
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Islamabad, Pakistan
| | - Gongping Liu
- Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Lina T Al Kury
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Alam Zeb
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Islamabad, Islamabad, Pakistan
| | - Muzaffar Abbas
- Department of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| | - Tao Li
- Department of Forensic Medicine, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xifei Yang
- Centre for Addiction and Mental Health, Campbell Research Institute, Toronto, ON, Canada
| | - Fang Liu
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yuhua Jiang
- Cancer Centre, The Second Hospital of Shandong University, Jinan, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | | |
Collapse
|
3
|
Abstract
Much of our understanding of the neuronal mechanisms of spatial navigation is derived from chronic recordings in rodents in which head-direction, place, and grid cells have all been described. However, despite the proposed importance of self-reference information to these internal representations of space, their congruence with vestibular signaling remains unclear. Here we have undertaken brain-wide functional mapping using both fMRI and electrophysiological methods to directly determine the spatial extent, strength, and time course of vestibular signaling across the rat forebrain. We find distributed activity throughout thalamic, limbic, and particularly primary sensory cortical areas in addition to known head-direction pathways. We also observe activation of frontal regions, including infralimbic and cingulate cortices, indicating integration of vestibular information throughout functionally diverse cortical regions. These whole-brain activity maps therefore suggest a widespread contribution of vestibular signaling to a self-centered framework for multimodal sensorimotor integration in support of movement planning, execution, spatial navigation, and autonomic responses to gravito-inertial changes.
Collapse
|
4
|
Smith P, Darlington C, Zheng Y. The Effects of Complete Vestibular Deafferentation on Spatial Memory and the Hippocampus in the Rat: The Dunedin Experience. Multisens Res 2015; 28:461-85. [DOI: 10.1163/22134808-00002469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our studies conducted over the last 14 years have demonstrated that a complete bilateral vestibular deafferentation (BVD) in rats results in spatial memory deficits in a variety of behavioural tasks, such as the radial arm maze, the foraging task and the spatial T maze, as well as deficits in other tasks such as the five-choice serial reaction time task (5-CSRT task) and object recognition memory task. These deficits persist long after the BVD, and are not simply attributable to ataxia, anxiety, hearing loss or hyperactivity. In tasks such as the foraging task, the spatial memory deficits are evident in darkness when vision is not required to perform the task. The deficits in the radial arm maze, the foraging task and the spatial T maze, in particular, suggest hippocampal dysfunction following BVD, and this is supported by the finding that both hippocampal place cells and theta rhythm are dysfunctional in BVD rats. Now that it is clear that the hippocampus is adversely affected by BVD, the next challenge is to determine what vestibular information is transmitted to it and how that information is used by the hippocampus and the other brain structures with which it interacts.
Collapse
Affiliation(s)
- Paul F. Smith
- Dept. Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Cynthia L. Darlington
- Dept. Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Yiwen Zheng
- Dept. Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Guidetti G. The role of cognitive processes in vestibular disorders. HEARING, BALANCE AND COMMUNICATION 2013. [DOI: 10.3109/21695717.2013.765085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Smith PF. Dyscalculia and vestibular function. Med Hypotheses 2012; 79:493-6. [PMID: 22819131 DOI: 10.1016/j.mehy.2012.06.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/18/2012] [Accepted: 06/26/2012] [Indexed: 02/01/2023]
Abstract
BACKGROUND A few studies in humans suggest that changes in stimulation of the balance organs of the inner ear (the 'vestibular system') can disrupt numerical cognition, resulting in 'dyscalculia', the inability to manipulate numbers. Many studies have also demonstrated that patients with vestibular dysfunction exhibit deficits in spatial memory. OBJECTIVES It is suggested that there may be a connection between spatial memory deficits resulting from vestibular dysfunction and the occurrence of dyscalculia, given the evidence that numerosity is coupled to the processing of spatial information (e.g., the 'spatial numerical association of response codes ('SNARC') effect'). RESULTS AND CONCLUSION The evidence supporting this hypothesis is summarised and potential experiments to test it are proposed.
Collapse
Affiliation(s)
- P F Smith
- Dept. Pharmacology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
7
|
Baek JH, Zheng Y, Darlington CL, Smith PF. Cannabinoid CB(1) receptor expression and affinity in the rat hippocampus following bilateral vestibular deafferentation. Neurosci Lett 2011; 487:330-4. [PMID: 20974221 DOI: 10.1016/j.neulet.2010.10.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/09/2010] [Accepted: 10/19/2010] [Indexed: 01/09/2023]
Abstract
Numerous studies have shown that bilateral vestibular deafferentation (BVD) results in spatial memory deficits and hippocampal dysfunction in rats and humans. Since cannabinoid CB(1) receptors are well known to regulate synaptic plasticity in the hippocampus, we investigated whether BVD resulted in changes in CB(1) receptor expression and affinity in the rat hippocampus at 1, 3 and 7 days post-surgery, using a combination of Western blotting and radioligand binding. Using Western blotting, we found that CB(1) receptor expression was significantly lower in BVD animals compared to sham controls only in the CA3 area across the 3 time points (P=0.03). CB(1) receptor expression decreased significantly over time for both the BVD and sham animals (P=0.000). The radioligand binding assays showed no significant change in the IC(50) of the CB(1) receptor for the cannabinoid CB(1)/CB(2) receptor agonist, WIN55,212-2. These results suggest that the CB(1) receptor down-regulates in the CA3 region of the hippocampus following BVD, but with no changes in the affinity of the CB(1) receptor for WIN55,212-2.
Collapse
Affiliation(s)
- Jean Ha Baek
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago Medical School, P.O. Box 913, Dunedin, New Zealand
| | | | | | | |
Collapse
|
8
|
Zheng Y, Mason-Parker SE, Logan B, Darlington CL, Smith PF, Abraham WC. Hippocampal synaptic transmission and LTP in vivo are intact following bilateral vestibular deafferentation in the rat. Hippocampus 2010; 20:461-8. [PMID: 19533678 DOI: 10.1002/hipo.20645] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Numerous studies in animals and humans have shown that damage to the vestibular system in the inner ear results in spatial memory deficits, presumably because areas of the brain such as the hippocampus require vestibular input to accurately represent the spatial environment. Consistent with this hypothesis, studies in animals have demonstrated that complete bilateral vestibular deafferentation (BVD) causes a disruption of place cell firing as well as theta activity. The aim of this study was to investigate whether BVD in rats affects baseline field potentials (field excitatory postsynaptic potentials and population spikes) and long-term potentiation (LTP) in CA1 and the dentate gyrus (DG) of awake freely moving rats up to 43 days post-BVD and of anesthetized rats at 7 months post-BVD. Compared to sham controls, BVD had no significant effect on either baseline field potentials or LTP in either condition. These results suggest that although BVD interferes with the encoding, consolidation, and/or retrieval of spatial memories and the function of place cells, these changes are not related to detectable in vivo decrements in basal synaptic transmission or LTP, at least in the investigated pathways.
Collapse
Affiliation(s)
- Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| | | | | | | | | | | |
Collapse
|
9
|
Smith PF, Darlington CL, Zheng Y. Move it or lose it--is stimulation of the vestibular system necessary for normal spatial memory? Hippocampus 2010; 20:36-43. [PMID: 19405142 DOI: 10.1002/hipo.20588] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Studies in both experimental animals and human patients have demonstrated that peripheral vestibular lesions, especially bilateral lesions, are associated with spatial memory impairment that is long-lasting and may even be permanent. Electrophysiological evidence from animals indicates that bilateral vestibular loss causes place cells and theta activity to become dysfunctional; the most recent human evidence suggests that the hippocampus may cause atrophy in patients with bilateral vestibular lesions. Taken together, these studies suggest that self-motion information provided by the vestibular system is important for the development of spatial memory by areas of the brain such as the hippocampus, and when it is lost, spatial memory is impaired. This naturally suggests the converse possibility that activation of the vestibular system may enhance memory. Surprisingly, there is some human evidence that this may be the case. This review considers the relationship between the vestibular system and memory and suggests that the evolutionary age of this primitive sensory system as well as how it detects self-motion (i.e., detection of acceleration vs. velocity) may be the reasons for its unique contribution to spatial memory.
Collapse
Affiliation(s)
- Paul F Smith
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago Medical School, Dunedin, New Zealand.
| | | | | |
Collapse
|
10
|
Chen HY, Hung YC, Chen TY, Huang SY, Wang YH, Lee WT, Wu TS, Lee EJ. Melatonin improves presynaptic protein, SNAP-25, expression and dendritic spine density and enhances functional and electrophysiological recovery following transient focal cerebral ischemia in rats. J Pineal Res 2009; 47:260-70. [PMID: 19709397 DOI: 10.1111/j.1600-079x.2009.00709.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synapto-dendritic dysfunction and rearrangement takes place over time at the peri-infarct brain after stroke, and the event plays an important role in post-stroke functional recovery. Here, we evaluated whether melatonin would modulate the synapto-dendritic plasticity after stroke. Adult male Sprague-Dawley rats were treated with melatonin (5 mg/kg) or vehicle at reperfusion onset after transient occlusion of the right middle cerebral artery (tMCAO) for 90 min. Local cerebral blood perfusion, somatosensory electrophysiological recordings and neurobehavioral tests were serially measured. Animals were sacrificed at 7 days after tMCAO. The brain was processed for Nissl-stained histology, Golgi-Cox-impregnated sections, or Western blotting for presynaptic proteins, synaptosomal-associated protein of 25 kDa (SNAP-25) and synaptophysin (a calcium-binding protein found on presynaptic vesicle membranes). Relative to controls, melatonin-treated animals had significantly reduced infarction volumes (P < 0.05) and improved neurobehavioral outcomes, as accessed by sensorimotor and rota-rod motor performance tests (P < 0.05, respectively). Melatonin also significantly improved the SNAP-25, but not synaptophysin, protein expression in the ischemic brain (P < 0.05). Moreover, melatonin significantly improved the dendritic spine density and the somatosensory electrophysiological field potentials both in the ischemic brain and the contralateral homotopic intact brain (P < 0.05, respectively). Together, melatonin not only effectively attenuated the loss of presynaptic protein, SANP-25, and dendritic spine density in the ischemic territory, but also improved the reductions in the dendritic spine density in the contralateral intact brain. This synapto-dendritic plasticity may partly account for the melatonin-mediated improvements in functional and electrophysiological circuitry after stroke.
Collapse
Affiliation(s)
- Hung-Yi Chen
- Neurophysiology Laboratory, Neurosurgical Service, Department of Surgery, National Cheng Kung University Medical Center and Medical School, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Smith PF, Brandt T, Strupp M, Darlington CL, Zheng Y. Balance before reason in rats and humans. Ann N Y Acad Sci 2009; 1164:127-33. [PMID: 19645890 DOI: 10.1111/j.1749-6632.2008.03726.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Considerable clinical and experimental evidence indicates that loss of vestibular function results in cognitive deficits, especially deficits in spatial memory. These studies demonstrate the importance of balance for the most fundamental of cognitive processes and suggest that information about head acceleration and orientation must have been critical to the evolution of brain structures such as the hippocampus. Studies of animals with bilateral vestibular lesions have shown that theta rhythm and the activity of hippocampal place cells are severely disrupted; recent human studies show that bilateral vestibular loss is even associated with hippocampal atrophy. While it is conceivable that the effects of vestibular lesions on the hippocampus are due to chronic stress and increased glucocorticoid levels, at present there is little evidence to support this hypothesis. It is also possible that the hippocampal changes are due to a reduction in exploration and active behavior; however, in rats, at least, bilateral vestibular lesions cause hyperactivity rather than hypoactivity. Alternatively, the hippocampus may have developed a special dependence upon the vestibular system during evolution, since it was the first sensory system to reliably indicate gravitational vertical.
Collapse
Affiliation(s)
- Paul F Smith
- Department Pharmacology and Toxicology, School of Medical Sciences, University of Otago Medical School, Dunedin, New Zealand.
| | | | | | | | | |
Collapse
|
12
|
Zheng Y, Balabhadrapatruni S, Masumura C, Munro O, Darlington CL, Smith PF. Bilateral vestibular deafferentation causes deficits in a 5-choice serial reaction time task in rats. Behav Brain Res 2009; 203:113-7. [PMID: 19397937 DOI: 10.1016/j.bbr.2009.04.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 04/16/2009] [Accepted: 04/20/2009] [Indexed: 10/20/2022]
Abstract
Peripheral lesions of the vestibular system have been associated with spatial memory deficits in animals and humans; however, no study to date has investigated the effects of such lesions on attention. In this study, we used a 5-choice serial reaction time task (5-CSRTT) to determine whether rats with bilateral vestibular deafferentation (BVD) had attention deficits at 5 months post-op. compared to sham controls. We found that BVD rats took longer than sham animals to reach the designated criterion of >70% correct responses (P=0.006), they made significantly fewer correct responses (P=0.005), and significantly more incorrect responses (P=0.000), while showing no difference in omissions and premature responses and a significant decrease in perseverative responses (P=0.03). BVD rats also responded with a significantly shorter response latency, whether their response was correct (P=0.001) or incorrect (P=0.002), and obtained their reward for a correct response more quickly (P=0.000). These results suggest that rats with bilateral vestibular loss exhibit deficits on a 5-CSRTT that cannot be explained by an inability to respond and that their speed of response is altered.
Collapse
Affiliation(s)
- Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago Medical School, Dunedin, New Zealand.
| | | | | | | | | | | |
Collapse
|