1
|
Alghamdi SA, Alissa M, Alghamdi A, Alshehri MA, Albelasi A, Alzahrani KJ, Safhi AY. Interplays Between Matrix Metalloproteinases and Neurotropic Viruses: An Overview. Rev Med Virol 2024; 34:e2585. [PMID: 39349731 DOI: 10.1002/rmv.2585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 11/08/2024]
Abstract
Matrix metalloproteinases (MMPs) are a diverse group of proteases involved in various physiological and pathological processes through modulation of extracellular matrix (ECM) components, cytokines, and growth factors. In the central nervous system (CNS), MMPs play a major role in CNS development, plasticity, repair, and reorganisation contributing to learning, memory, and neuroimmune response to injury. MMPs are also linked to various neurological disorders such as Alzheimer's disease, Parkinson's disease, cerebral aneurysm, stroke, epilepsy, multiple sclerosis, and brain cancer suggesting these proteases as key regulatory factors in the nervous system. Moreover, MMPs have been involved in the pathogenesis of neurotropic viral infections via dysregulation of various cellular processes, which may highlight these factors as potential targets for the treatment and control of neurological complications associated with viral pathogens. This review provides an overview of the roles of MMPs in various physiological processes of the CNS and their interactions with neurotropic viral pathogens.
Collapse
Affiliation(s)
- Suad A Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdullah Alghamdi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed A Alshehri
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdullah Albelasi
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
2
|
Ganguly K, Adhikary K, Acharjee A, Acharjee P, Trigun SK, Mutlaq AS, Ashique S, Yasmin S, Alshahrani AM, Ansari MY. Biological significance and pathophysiological role of Matrix Metalloproteinases in the Central Nervous System. Int J Biol Macromol 2024; 280:135967. [PMID: 39322129 DOI: 10.1016/j.ijbiomac.2024.135967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Matrix Metalloproteinases (MMPs), which are endopeptidase reliant on zinc, are low in embryonic tissues but increases in response to a variety of physiological stimulus and pathological stresses. Neuro-glial cells, endothelial cells, fibroblasts, and leucocytes secrete MMPs, which cleave extracellular matrix proteins in a time-dependent manner. MMPs affect synaptic plasticity and the development of short-term memory by controlling the size, shape, and excitatory synapses' function through the lateral diffusion of receptors. In addition, MMPs influence the Extracellular Matrix proteins in the Peri-Neuronal Net at the Neuro-glial interface, which aids in the establishment of long-term memory. Through modulating neuronal, and glial cells migration, differentiation, Neurogenesis, and survival, MMPs impact brain development in mammals. In adult brains, MMPs play a beneficial role in physiological plasticity, which includes learning, memory consolidation, social interaction, and complex behaviors, by proteolytically altering a wide variety of factors, including growth factors, cytokines, receptors, DNA repair enzymes, and matrix proteins. Additionally, stress, depression, addiction, hepatic encephalopathy, and stroke may all have negative effects on MMPs. In addition to their role in glioblastoma development, MMPs influence neurological diseases such as epilepsy, schizophrenia, autism spectrum disorder, brain damage, pain, neurodegeneration, and Alzheimer's and Parkinson's. To help shed light on the potential of MMPs as a therapeutic target for neurodegenerative diseases, this review summarizes their regulation, mode of action, and participation in brain physiological plasticity and pathological damage. Finally, by employing different MMP-based nanotools and inhibitors, MMPs may also be utilized to map the anatomical and functional connectome of the brain, analyze its secretome, and treat neurodegenerative illnesses.
Collapse
Affiliation(s)
- Krishnendu Ganguly
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Krishnendu Adhikary
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Arup Acharjee
- Molecular Omics Laboratory, Department of Zoology, University of Allahabad, Allahabad, Uttar Pradesh, India.
| | - Papia Acharjee
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | | | - Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India.
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia; Department of Clinical Pharmacy, Shaqra University, Saudi Arabia.
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
3
|
Perera TH, Howell SM, Smith Callahan LA. Manipulation of Extracellular Matrix Remodeling and Neurite Extension by Mouse Embryonic Stem Cells Using IKVAV and LRE Peptide Tethering in Hyaluronic Acid Matrices. Biomacromolecules 2019; 20:3009-3020. [PMID: 31306008 DOI: 10.1021/acs.biomac.9b00578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cellular remodeling of the matrix has recently emerged as a key factor in promoting neural differentiation. Most strategies to manipulate matrix remodeling focus on proteolytically cleavable cross-linkers, leading to changes in tethered biochemical signaling and matrix properties. Using peptides that are not the direct target of enzymatic degradation will likely reduce changes in the matrix and improve control of biological behavior. In this study, laminin-derived peptides, IKVAV and LRE, tethered to independent sites in hyaluronic acid matrices using Michael addition and strain-promoted azide-alkyne cycloaddition are sufficient to manipulate hyaluronic acid degradation, gelatinase expression, and protease expression, while promoting neurite extension through matrix metalloprotease-dependent mechanisms in mouse embryonic stem cells encapsulated in hyaluronic acid matrices using an oxidation-reduction reaction initiated gelation. This study provides the foundation for a new strategy to stimulate matrix remodeling that is not dependent on enzymatic cleavage targets.
Collapse
Affiliation(s)
- T Hiran Perera
- Vivian L. Smith Department of Neurosurgery , McGovern Medical School at the University of Texas Health Science Center at Houston McGovern Medical School , Houston , Texas 77030 , United States.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine , McGovern Medical School at the University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States
| | - Skyler M Howell
- Vivian L. Smith Department of Neurosurgery , McGovern Medical School at the University of Texas Health Science Center at Houston McGovern Medical School , Houston , Texas 77030 , United States.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine , McGovern Medical School at the University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States
| | - Laura A Smith Callahan
- Vivian L. Smith Department of Neurosurgery , McGovern Medical School at the University of Texas Health Science Center at Houston McGovern Medical School , Houston , Texas 77030 , United States.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine , McGovern Medical School at the University of Texas Health Science Center at Houston , Houston , Texas 77030 , United States.,Graduate School of Biomedical Sciences , MD Anderson Cancer Center UTHealth , Houston , Texas 77030 , United States
| |
Collapse
|
4
|
Moussa C, Hebron M, Huang X, Ahn J, Rissman RA, Aisen PS, Turner RS. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer's disease. J Neuroinflammation 2017; 14:1. [PMID: 28086917 PMCID: PMC5234138 DOI: 10.1186/s12974-016-0779-0] [Citation(s) in RCA: 469] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022] Open
Abstract
Background Treatment of mild-moderate Alzheimer’s disease (AD) subjects (N = 119) for 52 weeks with the SIRT1 activator resveratrol (up to 1 g by mouth twice daily) attenuates progressive declines in CSF Aβ40 levels and activities of daily living (ADL) scores. Methods For this retrospective study, we examined banked CSF and plasma samples from a subset of AD subjects with CSF Aβ42 <600 ng/ml (biomarker-confirmed AD) at baseline (N = 19 resveratrol-treated and N = 19 placebo-treated). We utilized multiplex Xmap technology to measure markers of neurodegenerative disease and metalloproteinases (MMPs) in parallel in CSF and plasma samples. Results Compared to the placebo-treated group, at 52 weeks, resveratrol markedly reduced CSF MMP9 and increased macrophage-derived chemokine (MDC), interleukin (IL)-4, and fibroblast growth factor (FGF)-2. Compared to baseline, resveratrol increased plasma MMP10 and decreased IL-12P40, IL12P70, and RANTES. In this subset analysis, resveratrol treatment attenuated declines in mini-mental status examination (MMSE) scores, change in ADL (ADCS-ADL) scores, and CSF Aβ42 levels during the 52-week trial, but did not alter tau levels. Conclusions Collectively, these data suggest that resveratrol decreases CSF MMP9, modulates neuro-inflammation, and induces adaptive immunity. SIRT1 activation may be a viable target for treatment or prevention of neurodegenerative disorders. Trial registration ClinicalTrials.gov NCT01504854
Collapse
Affiliation(s)
- Charbel Moussa
- Department of Neurology, Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, National Parkinson's Foundation Center of Excellence, Georgetown University Medical Center, 4000 Reservoir Road, NW, Washington DC, 20057, USA.
| | - Michaeline Hebron
- Department of Neurology, Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, National Parkinson's Foundation Center of Excellence, Georgetown University Medical Center, 4000 Reservoir Road, NW, Washington DC, 20057, USA
| | - Xu Huang
- Department of Neurology, Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, National Parkinson's Foundation Center of Excellence, Georgetown University Medical Center, 4000 Reservoir Road, NW, Washington DC, 20057, USA
| | - Jaeil Ahn
- Department of Neurology, Memory Disorders Program, Translational Neurotherapeutics Program, Georgetown University, Washington DC, USA
| | - Robert A Rissman
- Department of Biostatistics, Georgetown University Medical Center, 4000 Reservoir Road, NW, Washington DC, 20057, USA
| | - Paul S Aisen
- Alzheimer's Therapeutic Research Institute (ATRI), University of Southern California, San Diego, CA, USA
| | - R Scott Turner
- Alzheimer's Disease Cooperative Study (ADCS), Department of Neurosciences, University of California, La Jolla, San Diego, CA, USA
| |
Collapse
|
5
|
Li N, Li X, Li L, Zhang P, Qiao M, Zhao Q, Song L, Yu Z. Original Research: The expression of MMP2 and MMP9 in the hippocampus and cerebral cortex of newborn mice under maternal lead exposure. Exp Biol Med (Maywood) 2016; 241:1811-8. [PMID: 27190262 DOI: 10.1177/1535370216647808] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/30/2016] [Indexed: 11/15/2022] Open
Abstract
The current study focused on the MMP2 and MMP9 expression in cerebral cortex and hippocampus of newborn mice under maternal lead exposure. Lead exposure was initiated from gestation to weaning. Lead acetate was dissolved in deionized water with concentration of 0.1, 0.2, and 0.5% and was absorbed through daily drinking. On day 21 after birth, lead in blood and tissue levels was examined by Graphite Furnace Atomic Absorption Spectrum (GFAAS). The protein expressions of MMP2 and MMP9 in hippocampus and cerebral cortex tissues were tested by western blotting and immunohistochemistry. Compared to the control group, blood, cerebral cortex, and hippocampus lead levels of newborn mice in 0.1, 0.2, and 0.5% lead exposure groups were markedly high (P < 0.05), and mice within the 0.2 and 0.5% lead exposure groups performed much worse than that of the control group in Water Maze test (P < 0.05). Compared with the control group, MMP2 and MMP9 expressions in hippocampus were up-regulated in the lead exposure groups (P < 0.05), and the MMP2 and MMP9 expressions in cerebral cortex were also higher (P < 0.05). The increased expression of MMP2 and MMP9 in the hippocampus and cerebral cortex may lead to the neurotoxicity in the context of maternal lead exposure.
Collapse
Affiliation(s)
- Ning Li
- Food Science and Technology College, Henan Agriculture University, Zhengzhou 450002, China
| | - Xing Li
- Public Health College of Zhengzhou University, Zhengzhou 450001, China
| | - Li Li
- Food Science and Technology College, Henan Agriculture University, Zhengzhou 450002, China
| | - Pingan Zhang
- Food Science and Technology College, Henan Agriculture University, Zhengzhou 450002, China
| | - Mingwu Qiao
- Food Science and Technology College, Henan Agriculture University, Zhengzhou 450002, China
| | - Qiuyan Zhao
- Food Science and Technology College, Henan Agriculture University, Zhengzhou 450002, China
| | - Lianjun Song
- Food Science and Technology College, Henan Agriculture University, Zhengzhou 450002, China
| | - Zengli Yu
- Public Health College of Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Vafadari B, Salamian A, Kaczmarek L. MMP-9 in translation: from molecule to brain physiology, pathology, and therapy. J Neurochem 2016; 139 Suppl 2:91-114. [PMID: 26525923 DOI: 10.1111/jnc.13415] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/13/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) is a member of the metzincin family of mostly extracellularly operating proteases. Despite the fact that all of these enzymes might be target promiscuous, with largely overlapping catalogs of potential substrates, MMP-9 has recently emerged as a major and apparently unique player in brain physiology and pathology. The specificity of MMP-9 may arise from its very local and time-restricted actions, even when released in the brain from cells of various types, including neurons, glia, and leukocytes. In fact, the quantity of MMP-9 is very low in the naive brain, but it is markedly activated at the levels of enzymatic activity, protein abundance, and gene expression following various physiological stimuli and pathological insults. Neuronal MMP-9 participates in synaptic plasticity by controlling the shape of dendritic spines and function of excitatory synapses, thus playing a pivotal role in learning, memory, and cortical plasticity. When improperly unleashed, MMP-9 contributes to a large variety of brain disorders, including epilepsy, schizophrenia, autism spectrum disorder, brain injury, stroke, neurodegeneration, pain, brain tumors, etc. The foremost mechanism of action of MMP-9 in brain disorders appears to be its involvement in immune/inflammation responses that are related to the enzyme's ability to process and activate various cytokines and chemokines, as well as its contribution to blood-brain barrier disruption, facilitating the extravasation of leukocytes into brain parenchyma. However, another emerging possibility (i.e., the control of MMP-9 over synaptic plasticity) should not be neglected. The translational potential of MMP-9 has already been recognized in both the diagnosis and treatment domains. The most striking translational aspect may be the discovery of MMP-9 up-regulation in a mouse model of Fragile X syndrome, quickly followed by human studies and promising clinical trials that have sought to inhibit MMP-9. With regard to diagnosis, suggestions have been made to use MMP-9 alone or combined with tissue inhibitor of matrix metalloproteinase-1 or brain-derived neurotrophic factor as disease biomarkers. MMP-9, through cleavage of specific target proteins, plays a major role in synaptic plasticity and neuroinflammation, and by those virtues contributes to brain physiology and a host of neurological and psychiatric disorders. This article is part of the 60th Anniversary special issue.
Collapse
|
7
|
Kadziela-Olech H, Cichocki P, Chwiesko J, Konstantynowicz J, Braszko JJ. Serum matrix metalloproteinase-9 levels and severity of symptoms in boys with attention deficit hyperactivity disorder ADHD/hyperkinetic disorder HKD. Eur Child Adolesc Psychiatry 2015; 24:55-63. [PMID: 24633733 PMCID: PMC4291510 DOI: 10.1007/s00787-014-0533-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 02/26/2014] [Indexed: 12/18/2022]
Abstract
The serum levels of matrix metalloproteinase-9 (MMP-9) in neuropsychiatric disorders of adults have been widely investigated. So far, no studies have been conducted on the relationship of MMP-9 and cognitive domains in children with two phenotype models, attention deficit/hyperactivity disorder and hyperkinetic disorder (ADHD/HKD). The aim of this research was to evaluate and test the hypothesis that serum MMP-9 levels are associated with the severity of symptoms in children with ADHD/HKD and to compare the results in two models of this disorder. The study group comprised 37 Caucasian boys aged 7-12 years with HKD, being a subset of the combined ADHD subtype. Intellectual functions were measured using Wechsler Intelligence Scale for Children-Revised. The analysis of serum concentrations of MMP-9 was based on a quantitative sandwich ELISA. The statistical regression analysis revealed a correlation between increased serum MMP-9 levels and severity of symptoms in the ADHD (β = 0.33; p = 0.043) and HKD (β = 0.34, p = 0.037) model. According to the results, elevated levels of serum MMP-9 in boys with HKD may be associated with clinical impulsivity domain (β = 0.38; p = 0.019).
Collapse
|
8
|
Chan JL, Reeves TM, Phillips LL. Osteopontin expression in acute immune response mediates hippocampal synaptogenesis and adaptive outcome following cortical brain injury. Exp Neurol 2014; 261:757-71. [PMID: 25151457 DOI: 10.1016/j.expneurol.2014.08.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/04/2014] [Accepted: 08/14/2014] [Indexed: 01/13/2023]
Abstract
Traumatic brain injury (TBI) produces axotomy, deafferentation and reactive synaptogenesis. Inflammation influences synaptic repair, and the novel brain cytokine osteopontin (OPN) has potential to support axon regeneration through exposure of its integrin receptor binding sites. This study explored whether OPN secretion and proteolysis by matrix metalloproteinases (MMPs) mediate the initial degenerative phase of synaptogenesis, targeting reactive neuroglia to affect successful repair. Adult rats received unilateral entorhinal cortex lesion (UEC) modeling adaptive synaptic plasticity. Over the first week postinjury, hippocampal OPN protein and mRNA were assayed and histology was performed. At 1-2d, OPN protein increased up to 51 fold, and was localized within activated, mobilized glia. OPN transcript also increased over 50 fold, predominantly within reactive microglia. OPN fragments known to be derived from MMP proteolysis were elevated at 1d, consistent with prior reports of UEC glial activation and enzyme production. Postinjury minocycline immunosuppression attenuated MMP-9 gelatinase activity, which was correlated with the reduction of neutrophil gelatinase-associated lipocalin (LCN2) expression, and reduced OPN fragment generation. The antibiotic also attenuated removal of synapsin-1 positive axons from the deafferented zone. OPN KO mice subjected to UEC had similar reduction of hippocampal MMP-9 activity, as well as lower synapsin-1 breakdown over the deafferented zone. MAP1B and N-cadherin, surrogates of cytoarchitecture and synaptic adhesion, were not affected. OPN KO mice with UEC exhibited time dependent cognitive deficits during the synaptogenic phase of recovery. This study demonstrates that OPN can mediate immune response during TBI synaptic repair, positively influencing synapse reorganization and functional recovery.
Collapse
Affiliation(s)
- Julie L Chan
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, P.O. Box 980709, Richmond, VA 23298, USA
| | - Thomas M Reeves
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, P.O. Box 980709, Richmond, VA 23298, USA
| | - Linda L Phillips
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, P.O. Box 980709, Richmond, VA 23298, USA.
| |
Collapse
|
9
|
Merson TD, Bourne JA. Endogenous neurogenesis following ischaemic brain injury: insights for therapeutic strategies. Int J Biochem Cell Biol 2014; 56:4-19. [PMID: 25128862 DOI: 10.1016/j.biocel.2014.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/18/2014] [Accepted: 08/04/2014] [Indexed: 01/19/2023]
Abstract
Ischaemic stroke is among the most common yet most intractable types of central nervous system (CNS) injury in the adult human population. In the acute stages of disease, neurons in the ischaemic lesion rapidly die and other neuronal populations in the ischaemic penumbra are vulnerable to secondary injury. Multiple parallel approaches are being investigated to develop neuroprotective, reparative and regenerative strategies for the treatment of stroke. Accumulating evidence indicates that cerebral ischaemia initiates an endogenous regenerative response within the adult brain that potentiates adult neurogenesis from populations of neural stem and progenitor cells. A major research focus has been to understand the cellular and molecular mechanisms that underlie the potentiation of adult neurogenesis and to appreciate how interventions designed to modulate these processes could enhance neural regeneration in the post-ischaemic brain. In this review, we highlight recent advances over the last 5 years that help unravel the cellular and molecular mechanisms that potentiate endogenous neurogenesis following cerebral ischaemia and are dissecting the functional importance of this regenerative mechanism following brain injury. This article is part of a Directed Issue entitled: Regenerative Medicine: the challenge of translation.
Collapse
Affiliation(s)
- Tobias D Merson
- Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, 30 Royal Parade, Parkville, VIC 3010, Australia.
| | - James A Bourne
- Australian Regenerative Medicine Institute, Monash University, Building 75, Level 1 North STRIP 1, Clayton, VIC 3800, Australia.
| |
Collapse
|
10
|
Verslegers M, Lemmens K, Van Hove I, Moons L. Matrix metalloproteinase-2 and -9 as promising benefactors in development, plasticity and repair of the nervous system. Prog Neurobiol 2013; 105:60-78. [PMID: 23567503 DOI: 10.1016/j.pneurobio.2013.03.004] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/01/2013] [Accepted: 03/28/2013] [Indexed: 11/16/2022]
Abstract
It has been 50 years since Gross and Lapiere discovered collagenolytic activity during tadpole tail metamorphosis, which was later on revealed as MMP-1, the founding member of the matrix metalloproteinases (MMPs). Currently, MMPs constitute a large group of endoproteases that are not only able to cleave all protein components of the extracellular matrix, but also to activate or inactivate many other signaling molecules, such as receptors, adhesion molecules and growth factors. Elevated MMP levels are associated with an increasing number of injuries and disorders, such as cancer, inflammation and auto-immune diseases. Yet, MMP upregulation has also been implicated in many physiological functions such as embryonic development, wound healing and angiogenesis and therefore, these proteinases are considered to be crucial mediators in many biological processes. Over the past decennia, MMP research has gained considerable attention in several pathologies, most prominently in the field of cancer metastasis, and more recent investigations also focus on the nervous system, with a striking emphasis on the gelatinases, MMP-2 and MMP-9. Unfortunately, the contribution of these gelatinases to neuropathological disorders, like multiple sclerosis and Alzheimer's disease, has overshadowed their potential as modulators of fundamental nervous system functions. Within this review, we wish to highlight the currently known or suggested actions of MMP-2 and MMP-9 in the developing and adult nervous system and their potential to improve repair or regeneration after nervous system injury.
Collapse
Affiliation(s)
- Mieke Verslegers
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | | | | | | |
Collapse
|
11
|
Kinoshita M, Nasu-Tada K, Fujishita K, Sato K, Koizumi S. Secretion of matrix metalloproteinase-9 from astrocytes by inhibition of tonic P2Y14-receptor-mediated signal(s). Cell Mol Neurobiol 2013; 33:47-58. [PMID: 22872320 DOI: 10.1007/s10571-012-9869-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 07/20/2012] [Indexed: 02/01/2023]
Abstract
Glial cells have various important roles in regulation of brain functions. For such events, extracellular nucleotides/P2 receptors have central roles. Although there have been huge amount of literature about activation of P2 receptors and glial functions, little is known about what happens in glia or the brain if glial P2 receptor is inhibited. Here we show that the inhibition of P2 receptors in astrocytes, the most abundant glial cells and cause a constitutive release of nucleotides, resulted in secretion of metalloproteinase-9 (MMP-9), a metal-dependent endopeptidase that degrades extracellular matrix molecules and is important in regulation of brain remodeling. When cultured astrocytes were treated with apyrase (ecto-nucleotidase), reactive blue 2 (P2 receptor antagonist), and pertussis toxin, they secreted MMP-9, suggesting that Gi-coupled P2Y receptor-mediated signals constitutively suppress the production of MMP-9. Among Gi-coupled P2Y receptors, we found that an inhibition of P2Y(14) receptor, a receptor for nucleotide-sugars such as UDP-glucose, is responsible for the production of MMP-9 by pharmacological and molecular biochemical analysis. As for the mechanisms, the inhibition of P2Y(14) receptors resulted in the release of tumor necrosis factor (TNF)-α which then acted on astrocytes to induce MMP-9. Taken together, our results suggest that the constitutive releases of nucleotide-sugars in astrocytes should play an important role in maintaining the normal status of the cell, through Gi-coupled P2Y(14) receptors, and when the signal is removed, the cells start to release TNF-α, which then acts on astrocytes in a feedback fashion to boost MMP-9 synthesis and secretion.
Collapse
Affiliation(s)
- Manao Kinoshita
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan
| | | | | | | | | |
Collapse
|
12
|
Sinno M, Biagioni S, Ajmone-Cat MA, Pafumi I, Caramanica P, Medda V, Tonti G, Minghetti L, Mannello F, Cacci E. The matrix metalloproteinase inhibitor marimastat promotes neural progenitor cell differentiation into neurons by gelatinase-independent TIMP-2-dependent mechanisms. Stem Cells Dev 2012; 22:345-58. [PMID: 23098139 DOI: 10.1089/scd.2012.0299] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Metalloproteinases (MMPs) and their endogenous inhibitors (TIMPs), produced in the brain by cells of non-neural and neural origin, including neural progenitors (NPs), are emerging as regulators of nervous system development and adult brain functions. In the present study, we explored whether MMP-2, MMP-9, and TIMP-2, abundantly produced in the brain, modulate NP developmental properties. We found that treatment of NPs, isolated from the murine fetal cerebral cortex or adult subventricular zone, with the clinically tested broad-spectrum MMP inhibitor Marimastat profoundly affected the NP differentiation fate. Marimastat treatment allowed for an enrichment of our cultures in neuronal cells, inducing NPs to generate higher percentage of neurons and a lower percentage of astrocytes, possibly affecting NP commitment. Consistently with its proneurogenic effect, Marimastat early downregulated the expression of Notch target genes, such as Hes1 and Hes5. MMP-2 and MMP-9 profiling on proliferating and differentiating NPs revealed that MMP-9 was not expressed under these conditions, whereas MMP-2 increased in the medium as pro-MMP-2 (72 kDa) during differentiation; its active form (62 kDa) was not detectable by gel zymography. MMP-2 silencing or administration of recombinant active MMP-2 demonstrated that MMP-2 does not affect NP neuronal differentiation, nor it is involved in the Marimastat proneurogenic effect. We also found that TIMP-2 is expressed in NPs and increases during late differentiation, mainly as a consequence of astrocyte generation. Endogenous TIMP-2 did not modulate NP neurogenic potential; however, the proneurogenic action of Marimastat was mediated by TIMP-2, as demonstrated by silencing experiments. In conclusion, our data exclude a major involvement of MMP-2 and MMP-9 in the regulation of basal NP differentiation, but highlight the ability of TIMP-2 to act as key effector of the proneurogenic response to an inducing stimulus such as Marimastat.
Collapse
Affiliation(s)
- Maddalena Sinno
- Department of Biology and Biotechnology Charles Darwin, Sapienza, University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Neural functions of matrix metalloproteinases: plasticity, neurogenesis, and disease. Biochem Res Int 2012; 2012:789083. [PMID: 22567285 PMCID: PMC3332068 DOI: 10.1155/2012/789083] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/08/2011] [Accepted: 01/29/2012] [Indexed: 11/24/2022] Open
Abstract
The brain changes in response to experience and altered environment. To do that, the nervous system often remodels the structures of neuronal circuits. This structural plasticity of the neuronal circuits appears to be controlled not only by intrinsic factors, but also by extrinsic mechanisms including modification of the extracellular matrix. Recent studies employing a range of animal models implicate that matrix metalloproteinases regulate multiple aspects of the neuronal development and remodeling in the brain. This paper aims to summarize recent advances of our knowledge on the neuronal functions of matrix metalloproteinases and discuss how they might relate in neuronal disease.
Collapse
|
14
|
Wójcik-Stanaszek L, Sypecka J, Szymczak P, Ziemka-Nalecz M, Khrestchatisky M, Rivera S, Zalewska T. The potential role of metalloproteinases in neurogenesis in the gerbil hippocampus following global forebrain ischemia. PLoS One 2011; 6:e22465. [PMID: 21799862 PMCID: PMC3143139 DOI: 10.1371/journal.pone.0022465] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 06/28/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) have recently been considered to be involved in the neurogenic response of adult neural stem/progenitor cells. However, there is a lack of information showing direct association between the activation of MMPs and the development of neuronal progenitor cells involving proliferation and/or further differentiation in vulnerable (Cornus Ammoni-CA1) and resistant (dentate gyrus-DG) to ischemic injury areas of the brain hippocampus. PRINCIPAL FINDINGS We showed that dynamics of MMPs activation in the dentate gyrus correlated closely with the rate of proliferation and differentiation of progenitor cells into mature neurons. In contrast, in the damaged CA1 pyramidal cells layer, despite the fact that some proliferating cells exhibited antigen specific characteristic of newborn neuronal cells, these did not attain maturity. This coincides with the low, near control-level, activity of MMPs. The above results are supported by our in vitro study showing that MMP inhibitors interfered with both the proliferation and differentiation of the human neural stem cell line derived from umbilical cord blood (HUCB-NSCs) toward the neuronal lineage. CONCLUSION Taken together, the spatial and temporal profiles of MMPs activity suggest that these proteinases could be an important component in neurogenesis-associated processes in post-ischemic brain hippocampus.
Collapse
Affiliation(s)
- Luiza Wójcik-Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Szymczak
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Malgorzata Ziemka-Nalecz
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Michel Khrestchatisky
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 6184, CNRS, Aix-Marseille University, Marseille, France
| | - Santiago Rivera
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 6184, CNRS, Aix-Marseille University, Marseille, France
| | - Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
15
|
Ohira K. Injury-induced neurogenesis in the mammalian forebrain. Cell Mol Life Sci 2011; 68:1645-56. [PMID: 21042833 PMCID: PMC11115059 DOI: 10.1007/s00018-010-0552-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/30/2010] [Accepted: 09/30/2010] [Indexed: 10/18/2022]
Abstract
It has been accepted that new neurons are added to the olfactory bulb and the hippocampal dentate gyrus throughout life in the healthy adult mammalian brain. Recent studies have clarified that brain insult raises the proliferation of neural stem cells/neural progenitor cells existing in the subventricular zone and the subgranular zone, which become sources of new neurons for the olfactory bulb and the dentate gyrus, respectively. Interestingly, convincing data has shown that brain insult invokes neurogenesis in various brain regions, such as the hippocampal cornu ammonis region, striatum, and cortex. These reports suggest that neural stem cells/neural progenitor cells, which can be activated by brain injury, might be broadly located in the adult brain or that new neurons may migrate widely from the neurogenic regions. This review focuses on brain insult-induced neurogenesis in the mammalian forebrain, especially in the neocortex.
Collapse
Affiliation(s)
- Koji Ohira
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
16
|
Shen LH, Xin H, Li Y, Zhang RL, Cui Y, Zhang L, Lu M, Zhang ZG, Chopp M. Endogenous tissue plasminogen activator mediates bone marrow stromal cell-induced neurite remodeling after stroke in mice. Stroke 2011; 42:459-64. [PMID: 21212396 DOI: 10.1161/strokeaha.110.593863] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND PURPOSE Bone marrow stromal cells (BMSC) decrease neurological deficits in rodents after stroke and concomitantly induce extensive neurite remodeling in the brain, which highly correlates with the improvement of neurological function. We investigated the effects of endogenous tissue plasminogen activator (tPA) on neurite remodeling after BMSC treatment. METHODS Adult C57BL/6 wild-type (WT) mice and tPA knockout (tPA(-/-)) mice were subjected to middle cerebral artery occlusion, followed by an injection of 1×10(6) BMSC (n=18) or phosphate-buffered saline (n=18) into the tail vein 24 hours later. Behavioral tests were performed at 3, 7, and 14 days after middle cerebral artery occlusion. Animals were euthanized at 14 days after stroke. RESULTS The effects of BMSC on functional recovery depended on presence or absence of tPA, even after adjusting for imbalanced stroke severity. BMSC significantly improve functional recovery in WT mice compared to WT controls but show no beneficial effect in the tPA(-/-) mice compared to tPA(-/-) controls. Axonal density and synaptophysin-positive areas along the ischemic boundary zone of the cortex and striatum in WT mice are significantly higher than in the tPA(-/-) mice. BMSC treatment significantly increases tPA protein level and activity only in WT mice. CONCLUSIONS Our results suggest that endogenous tPA promotes BMSC-induced neurite outgrowth and may contribute to functional recovery after stroke.
Collapse
Affiliation(s)
- Li Hong Shen
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lischper M, Beuck S, Thanabalasundaram G, Pieper C, Galla HJ. Metalloproteinase mediated occludin cleavage in the cerebral microcapillary endothelium under pathological conditions. Brain Res 2010; 1326:114-27. [DOI: 10.1016/j.brainres.2010.02.054] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 01/26/2010] [Accepted: 02/18/2010] [Indexed: 10/19/2022]
|