1
|
Xu Y, Zhang J, Yu L, Zhang W, Zhang Y, Shi Y, Zhang S, Li C, Tian J. Engeletin alleviates depression-like phenotype by increasing synaptic plasticity via the BDNF-TrkB-mTORC1 signalling pathway. J Cell Mol Med 2023; 27:3928-3938. [PMID: 37799103 PMCID: PMC10718134 DOI: 10.1111/jcmm.17975] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 09/16/2023] [Indexed: 10/07/2023] Open
Abstract
Major depressive disorder (MDD) is a severe mental disorder associated with high rates of morbidity and mortality. Current first-line pharmacotherapies for MDD are based on enhancement of monoaminergic neurotransmission, but these antidepressants are still insufficient and produce significant side-effects. Consequently, the development of novel antidepressants and therapeutic targets is desired. Engeletin, a natural Smilax glabra rhizomilax derivative, is a compound with proven efficacy in treating ischemic stroke, yet its therapeutic effects and mechanisms for depression remain unexplored. The effects of engeletin were assessed in the forced swimming test (FST) and tail suspension test (TST) in mice. Engeletin was also investigated in the chronic restraint stress (CRS) mouse model of depression with fluoxetine (FLX) as the positive control. Changes in prefrontal cortex (PFC) spine density, synaptic plasticity-linked protein expressions and the brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB)- mammalian target of rapamycin complex 1 (mTORC1) signalling pathway after chronic stress and engeletin treatment were then investigated. The TrkB and mTORC1 selective inhibitors, ANA-12 and rapamycin, respectively, were utilized to assess the engeletin's antidepressive mechanisms. Our data shows that engeletin exhibited antidepressant-like activity in the FST and TST in mice without affecting locomotor activity. Furthermore, it exhibited efficiency against the depression of CRS model. Moreover, it enhanced the BDNF-TrkB-mTORC1 pathway in the PFC during CRS and altered the reduction in dendritic spine density and levels of synaptic plasticity-linked protein induced by CRS. In conclusion, engeletin has antidepressant activity via activation of the BDNF-TrkB-mTORC1 signalling pathway and upregulation of PFC synaptic plasticity.
Collapse
Affiliation(s)
- Yangyang Xu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiP. R. China
- Department of PharmacyBinzhou Medical University HospitalBinzhouP. R. China
| | - Jie Zhang
- Department of RadiologyBinzhou Medical University HospitalBinzhouP. R. China
| | - Linyao Yu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiP. R. China
| | - Wei Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiP. R. China
| | - Yingtian Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiP. R. China
| | - Yaoqin Shi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiP. R. China
| | - Shuping Zhang
- College of Basic MedicineBinzhou Medical UniversityYantaiP. R. China
| | - Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiP. R. China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiP. R. China
| |
Collapse
|
2
|
Sustained Hyperammonemia Activates NF-κB in Purkinje Neurons Through Activation of the TrkB-PI3K-AKT Pathway by Microglia-Derived BDNF in a Rat Model of Minimal Hepatic Encephalopathy. Mol Neurobiol 2023; 60:3071-3085. [PMID: 36790604 DOI: 10.1007/s12035-023-03264-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
Chronic hyperammonemia is a main contributor to the cognitive and motor impairment in patients with hepatic encephalopathy. Sustained hyperammonemia induces the TNFα expression in Purkinje neurons, mediated by NF-κB activation. The aims were the following: (1) to assess if enhanced TrkB activation by BDNF is responsible for enhanced NF-κB activation in Purkinje neurons in hyperammonemic rats, (2) to assess if this is associated with increased content of NF-κB modulated proteins such as TNFα, HMGB1, or glutaminase I, (3) to assess if these changes are due to enhanced activation of the TNFR1-S1PR2-CCR2-BDNF-TrkB pathway, (4) to analyze if increased activation of NF-κB is mediated by the PI3K-AKT pathway. It is shown that, in the cerebellum of hyperammonemic rats, increased BDNF levels enhance TrkB activation in Purkinje neurons leading to activation of PI3K, which enhances phosphorylation of AKT and of IκB, leading to increased nuclear translocation of NF-κB which enhances TNFα, HMGB1, and glutaminase I content. To assess if the changes are due to enhanced activation of the TNFR1-S1PR2-CCR2 pathway, we blocked TNFR1 with R7050, S1PR2 with JTE-013, and CCR2 with RS504393. These changes are reversed by blocking TrkB, PI3K, or the TNFR1-SP1PR2-CCL2-CCR2-BDNF-TrkB pathway at any step. In hyperammonemic rats, increased levels of BDNF enhance TrkB activation in Purkinje neurons, leading to activation of the PI3K-AKT-IκB-NF-κB pathway which increased the content of glutaminase I, HMGB1, and TNFα. Enhanced activation of this TrkB-PI3K-AKT-NF-κB pathway would contribute to impairing the function of Purkinje neurons and motor function in hyperammonemic rats and likely in cirrhotic patients with minimal or clinical hepatic encephalopathy.
Collapse
|
3
|
Feng JH, Li L, Lv XY, Xiong F, Hu XL, Wang H. Protective Effects of 4-Trifluoromethyl-( E)-cinnamoyl]- L-4- F-phenylalanine Acid against Chronic Cerebral Hypoperfusion Injury through Promoting Brain-Derived Neurotrophic Factor-Mediated Neurogenesis. ACS Chem Neurosci 2022; 13:3057-3067. [PMID: 36245095 DOI: 10.1021/acschemneuro.2c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Vascular dementia (VaD), one of the major consequences after stroke, is the second reason for the cognitive decline in aged people. Chronic cerebral hypoperfusion (CCH) is considered as the main cause for cognitive impairment in VaD patients. In our previous study, a synthetic compound, 4-trifluoromethyl-(E)-cinnamoyl]-L-4-F-phenylalanine acid (AE-18), has been proven to decrease infarct volume and to recover the insufficient blood supply after ischemia-reperfusion in rats, which was reminded that AE-18 may possess the ameliorative effect in CCH. In this study, the bilateral common carotid artery occlusion was performed to establish the CCH model in rats to evaluate the effect and mechanisms of AE-18 in CCH. Results showed that AE-18 (5 and 10 mg/kg, i.g.) could recover the learning and memory and increase the number of neurons in the hippocampus, which may be attributed to its neurogenesis effects and its recovery of cerebral blood flow in CCH rats. In addition, the in vitro studies showed that AE-18 promoted neuronal proliferation, induced differentiation of Neuro-2a cells into a neuron-like morphology, and accelerated the establishment of axon-dendrite polarization of primary hippocampal neurons through upregulating brain-derived neurotrophic factor via the PI3K/Akt/CREB pathway. In conclusion, AE-18 is a promising candidate for the treatment of cognitive decline after CCH injury by restoring blood supply to the brain and promoting neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Jia-Hao Feng
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lun Li
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xian-Yu Lv
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomaterials and Devices, Southeast University, Nanjing 210009, People's Republic of China
| | - Xiao-Long Hu
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
4
|
Arenas YM, Martínez-García M, Llansola M, Felipo V. Enhanced BDNF and TrkB Activation Enhance GABA Neurotransmission in Cerebellum in Hyperammonemia. Int J Mol Sci 2022; 23:ijms231911770. [PMID: 36233065 PMCID: PMC9570361 DOI: 10.3390/ijms231911770] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022] Open
Abstract
Background: Hyperammonemia is a main contributor to minimal hepatic encephalopathy (MHE) in cirrhotic patients. Hyperammonemic rats reproduce the motor incoordination of MHE patients, which is due to enhanced GABAergic neurotransmission in the cerebellum as a consequence of neuroinflammation. In hyperammonemic rats, neuroinflammation increases BDNF by activating the TNFR1–S1PR2–CCR2 pathway. (1) Identify mechanisms enhancing GABAergic neurotransmission in hyperammonemia; (2) assess the role of enhanced activation of TrkB; and (3) assess the role of the TNFR1–S1PR2–CCR2–BDNF pathway. In the cerebellum of hyperammonemic rats, increased BDNF levels enhance TrkB activation in Purkinje neurons, leading to increased GAD65, GAD67 and GABA levels. Enhanced TrkB activation also increases the membrane expression of the γ2, α2 and β3 subunits of GABAA receptors and of KCC2. Moreover, enhanced TrkB activation in activated astrocytes increases the membrane expression of GAT3 and NKCC1. These changes are reversed by blocking TrkB or the TNFR1–SP1PR2–CCL2–CCR2–BDNF–TrkB pathway. Hyperammonemia-induced neuroinflammation increases BDNF and TrkB activation, leading to increased synthesis and extracellular GABA, and the amount of GABAA receptors in the membrane and chloride gradient. These factors enhance GABAergic neurotransmission in the cerebellum. Blocking TrkB or the TNFR1–SP1PR2–CCL2–CCR2–BDNF–TrkB pathway would improve motor function in patients with hepatic encephalopathy and likely with other pathologies associated with neuroinflammation.
Collapse
|
5
|
Arenas YM, Balzano T, Ivaylova G, Llansola M, Felipo V. The S1PR2‐CCL2‐BDNF‐TrkB pathway mediates neuroinflammation and motor incoordination in hyperammonaemia. Neuropathol Appl Neurobiol 2022; 48:e12799. [DOI: 10.1111/nan.12799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/21/2021] [Accepted: 02/05/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Yaiza M. Arenas
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe Valencia Spain
| | - Tiziano Balzano
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe Valencia Spain
| | - Gergana Ivaylova
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe Valencia Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe Valencia Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe Valencia Spain
| |
Collapse
|
6
|
Jung S, Kayser EB, Johnson SC, Li L, Worstman HM, Sun GX, Sedensky MM, Morgan PG. Tetraethylammonium chloride reduces anaesthetic-induced neurotoxicity in Caenorhabditis elegans and mice. Br J Anaesth 2022; 128:77-88. [PMID: 34857359 PMCID: PMC8787783 DOI: 10.1016/j.bja.2021.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/30/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND If anaesthetics cause permanent cognitive deficits in some children, the implications are enormous, but the molecular causes of anaesthetic-induced neurotoxicity, and consequently possible therapies, are still debated. Anaesthetic exposure early in development can be neurotoxic in the invertebrate Caenorhabditis elegans causing endoplasmic reticulum (ER) stress and defects in chemotaxis during adulthood. We screened this model organism for compounds that alleviated neurotoxicity, and then tested these candidates for efficacy in mice. METHODS We screened compounds for alleviation of ER stress induction by isoflurane in C. elegans assayed by induction of a green fluorescent protein (GFP) reporter. Drugs that inhibited ER stress were screened for reduction of the anaesthetic-induced chemotaxis defect. Compounds that alleviated both aspects of neurotoxicity were then blindly tested for the ability to inhibit induction of caspase-3 by isoflurane in P7 mice. RESULTS Isoflurane increased ER stress indicated by increased GFP reporter fluorescence (240% increase, P<0.001). Nine compounds reduced induction of ER stress by isoflurane by 90-95% (P<0.001 in all cases). Of these compounds, tetraethylammonium chloride and trehalose also alleviated the isoflurane-induced defect in chemotaxis (trehalose by 44%, P=0.001; tetraethylammonium chloride by 23%, P<0.001). In mouse brain, tetraethylammonium chloride reduced isoflurane-induced caspase staining in the anterior cortical (-54%, P=0.007) and hippocampal regions (-46%, P=0.002). DISCUSSION Tetraethylammonium chloride alleviated isoflurane-induced neurotoxicity in two widely divergent species, raising the likelihood that it may have therapeutic value. In C. elegans, ER stress predicts isoflurane-induced neurotoxicity, but is not its cause.
Collapse
Affiliation(s)
- Sangwook Jung
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Ernst-Bernhard Kayser
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, Seattle, WA, USA; Department of Neurology, University of Washington, Seattle, WA, USA
| | - Li Li
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, Seattle, WA, USA
| | - Hailey M Worstman
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Grace X Sun
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Margaret M Sedensky
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, Seattle, WA, USA
| | - Philip G Morgan
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Anesthesiology and Pain Medicine, Seattle, WA, USA.
| |
Collapse
|
7
|
Ravalia AS, Lau J, Barron JC, Purchase SLM, Southwell AL, Hayden MR, Nafar F, Parsons MP. Super-resolution imaging reveals extrastriatal synaptic dysfunction in presymptomatic Huntington disease mice. Neurobiol Dis 2021; 152:105293. [PMID: 33556538 DOI: 10.1016/j.nbd.2021.105293] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/14/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Synaptic structure and function are compromised prior to cell death and symptom onset in a variety of neurodegenerative diseases. In Huntington disease (HD), a CAG repeat expansion in the gene encoding the huntingtin protein results in a presymptomatic stage that typically spans multiple decades and is followed by striking degeneration of striatal tissue and the progression of debilitating motor symptoms. Many lines of evidence demonstrate that the HD presymptomatic window is associated with injurious effects to striatal synapses, many of which appear to be prerequisites to subsequent cell death. While the striatum is the most vulnerable region in the HD brain, it is widely recognized that HD is a brain-wide disease, affecting numerous extrastriatal regions that contribute to debilitating non-motor symptoms including cognitive dysfunction. Currently, we have a poor understanding of the synaptic integrity, or lack thereof, in extrastriatal regions in the presymptomatic HD brain. If early therapeutic intervention seeks to maintain healthy synaptic function, it is important to understand early HD-associated synaptopathy at a brain-wide, rather than striatal-exclusive, level. Here, we focused on the hippocampus as this structure is generally thought to be affected only in manifest HD despite the subtle cognitive deficits known to emerge in prodromal HD. We used super-resolution microscopy and multi-electrode array electrophysiology as sensitive measures of excitatory synapse structure and function, respectively, in the hippocampus of presymptomatic heterozygous HD mice (Q175FDN model). We found clear evidence for enhanced AMPA receptor subunit clustering and hyperexcitability well before the onset of a detectable HD-like behavioral phenotype. In addition, activity-dependent re-organization of synaptic protein nanostructure, and functional measures of synaptic plasticity were impaired in presymptomatic HD mice. These data demonstrate that synaptic abnormalities in the presymptomatic HD brain are not exclusive to the striatum, and highlight the need to better understand the region-dependent complexities of early synaptopathy in the HD brain.
Collapse
Affiliation(s)
- Adam S Ravalia
- Division of Biomedical Science, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - James Lau
- Division of Biomedical Science, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Jessica C Barron
- Division of Biomedical Science, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Stephanie L M Purchase
- Division of Biomedical Science, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Amber L Southwell
- University of Central Florida, College of Medicine, Burnett School of Biomedical Sciences, Orlando, FL, USA
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Firoozeh Nafar
- Division of Biomedical Science, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada
| | - Matthew P Parsons
- Division of Biomedical Science, Faculty of Medicine, Memorial University, St. John's, NL A1B 3V6, Canada.
| |
Collapse
|
8
|
Wan J, Shen CM, Wang Y, Wu QZ, Wang YL, Liu Q, Sun YM, Cao JP, Wu YQ. Repeated exposure to propofol in the neonatal period impairs hippocampal synaptic plasticity and the recognition function of rats in adulthood. Brain Res Bull 2021; 169:63-72. [PMID: 33450329 DOI: 10.1016/j.brainresbull.2021.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/09/2022]
Abstract
Anesthesia of neonates with propofol induces persistent behavioral abnormalities in adulthood. Although propofol-triggered apoptosis of neurons in the developing brain may contribute to the development of cognitive deficits, the mechanism of neurotoxicity induced by neonatal exposure to propofol remains unclear. In this study, the effects of neonatal propofol anesthesia on synaptic plasticity and neurocognitive function were investigated. Postnatal day 7 (PND-7) Sprague-Dawley rats were intraperitoneally injected with fat emulsion or 20, 40 or 60 mg/kg propofol for three consecutive days. The expression of brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B (TrkB) and postsynaptic density protein 95 (PSD-95) in the rat hippocampus at PND-10 and PND-12 was measured by Western blotting. The number of dendritic branches, total dendritic length and dendritic spine density were observed by Golgi-Cox staining 24 h and 72 h after the last propofol administration. Long-term potentiation (LTP) was measured electrophysiologically in hippocampus of PND-60 rats to evaluate the synaptic function. The learning and memory abilities of rats were evaluated by Morris water maze (MWM) experiments, Novel object recognition test (NORT) and Object location test (OLT) at PND-60. Our results showed that neonatal exposure to propofol significantly inhibited the expression of BDNF, TrkB and PSD-95 in the rat hippocampus. The number of dendritic branches, total dendritic length and dendritic spine density of neurons in the rat hippocampus were markedly reduced after neonatal propofol anesthesia. LTP was significantly diminished in hippocampus of PND-60 rats after repeated exposure to propofol in the neonatal period. Morris water maze experiments showed that repeated neonatal exposure to propofol significantly prolonged the escape latency and decreased the time spent in the target quadrant and the number of platform crossings. NORT and OLT showed that repeated neonatal exposure to propofol markedly reduced the Investigation Time for novel object or location. All of the results above indicate that repeated exposure to propofol in the neonatal period can impair hippocampal synaptic plasticity and the recognition function of rats in adulthood.
Collapse
Affiliation(s)
- Jie Wan
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Chu-Meng Shen
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Yu Wang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Qing-Zi Wu
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Yi-Lei Wang
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Yi-Man Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China
| | - Jun-Ping Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, PR China.
| |
Collapse
|
9
|
Xiao L, Sharma VK, Toulabi L, Yang X, Lee C, Abebe D, Peltekian A, Arnaoutova I, Lou H, Loh YP. Neurotrophic factor-α1, a novel tropin is critical for the prevention of stress-induced hippocampal CA3 cell death and cognitive dysfunction in mice: comparison to BDNF. Transl Psychiatry 2021; 11:24. [PMID: 33414376 PMCID: PMC7791060 DOI: 10.1038/s41398-020-01112-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/15/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
Stress leads to brain pathology including hippocampal degeneration, cognitive dysfunction, and potential mood disorders. Hippocampal CA3, a most stress-vulnerable region, consists of pyramidal neurons that regulate cognitive functions e.g. learning and memory. These CA3 neurons express high levels of the neuroprotective protein, neurotrophic factor-α1 (NF-α1), also known as carboxypeptidase E (CPE), and receive contacts from granule cell projections that release BDNF which has neuroprotective activity. Whether NF-α1-CPE and/or BDNF are critical in protecting these CA3 neurons against severe stress-induced cell death is unknown. Here we show that social combined with the physical stress of maternal separation, ear tagging, and tail snipping at weaning in 3-week-old mice lacking NF-α1-CPE, led to complete hippocampal CA3 degeneration, despite having BDNF and active phosphorylated TrkB receptor levels similar to WT animals. Mice administered TrkB inhibitor, ANA12 which blocked TrkB phosphorylation showed no degeneration of the CA3 neurons after the weaning stress paradigm. Furthermore, transgenic knock-in mice expressing CPE-E342Q, an enzymatically inactive form, replacing NF-α1-CPE, showed no CA3 degeneration and exhibited normal learning and memory after the weaning stress, unlike NF-α1-CPE-KO mice. Mechanistically, we showed that radio-labeled NF-α1-CPE bound HT22 hippocampal cells in a saturable manner and with high affinity (Kd = 4.37 nM). Subsequently, treatment of the HT22cpe-/- cells with NF-α1-CPE or CPE-E342Q equivalently activated ERK signaling and increased BCL2 expression to protect these neurons against H2O2-or glutamate-induced cytotoxicity. Our findings show that NF-α1-CPE is more critical compared to BDNF in protecting CA3 pyramidal neurons against stress-induced cell death and cognitive dysfunction, independent of its enzymatic activity.
Collapse
Affiliation(s)
- Lan Xiao
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Vinay Kumar Sharma
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Leila Toulabi
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Xuyu Yang
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Cheol Lee
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Daniel Abebe
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Areg Peltekian
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Irina Arnaoutova
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Hong Lou
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Y. Peng Loh
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
10
|
BDNF Activates Postsynaptic TrkB Receptors to Induce Endocannabinoid Release and Inhibit Presynaptic Calcium Influx at a Calyx-Type Synapse. J Neurosci 2020; 40:8070-8087. [PMID: 32948677 PMCID: PMC7574661 DOI: 10.1523/jneurosci.2838-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 09/03/2020] [Accepted: 09/13/2020] [Indexed: 12/26/2022] Open
Abstract
Brain-derived neurotropic factor (BDNF) has been shown to play critical roles in neural development, plasticity, and neurodegenerative diseases. The main function of BDNF in the brain is widely accepted to be synaptic regulation. However, how BDNF modulates synaptic transmission, especially the underlying signaling cascades between presynaptic and postsynaptic neurons, remains controversial. Brain-derived neurotropic factor (BDNF) has been shown to play critical roles in neural development, plasticity, and neurodegenerative diseases. The main function of BDNF in the brain is widely accepted to be synaptic regulation. However, how BDNF modulates synaptic transmission, especially the underlying signaling cascades between presynaptic and postsynaptic neurons, remains controversial. In the present study, we investigated the actions of BDNF at rat calyx-type synapses of either sex by measuring the excitatory postsynaptic current (EPSC) and presynaptic calcium current and capacitance changes. We found that BDNF inhibits the EPSC, presynaptic calcium influx, and exocytosis/endocytosis via activation of the presynaptic cannabinoid Type 1 receptors (CB1Rs). Inhibition of the CB1Rs abolished the BDNF-induced presynaptic inhibition, whereas CB1R agonist mimicked the effect of BDNF. Exploring the underlying signaling cascade, we found that BDNF specifically activates the postsynaptic TrkB receptors, inducing the release of endocannabinoids via the PLCγ/DGL pathway and retrogradely activating presynaptic CB1Rs. We also reported the involvement of AC/PKA in modulating vesicle endocytosis, which may account for the BDNF-induced calcium-dependent and -independent regulation of endocytosis. Thus, our study provides new insights into the BDNF/endocannabinoid-associated modulation of neurotransmission in physiological and pathologic processes. SIGNIFICANCE STATEMENT BDNF plays critical roles in the modulation of synaptic strength. However, how BDNF regulates synaptic transmission and its underlying signaling cascade(s) remains elusive. By measuring EPSC and the presynaptic calcium current and capacitance changes at rat calyces, we found that BDNF inhibits synaptic transmission via BDNF-TrkB-eCB signaling pathway. Activation of postsynaptic TrkB receptors induces endocannabinoid release via the PLCγ/DGL pathway, retrogradely activating the presynaptic CB1Rs, inhibiting the AC/PKA, and suppressing calcium influx. Our findings provide a comprehensive understanding of BDNF/endocannabinoid-associated modulation of neuronal activities.
Collapse
|
11
|
Lama A, Pirozzi C, Annunziata C, Morgese MG, Senzacqua M, Severi I, Calignano A, Trabace L, Giordano A, Meli R, Mattace Raso G. Palmitoylethanolamide counteracts brain fog improving depressive-like behaviour in obese mice: Possible role of synaptic plasticity and neurogenesis. Br J Pharmacol 2020; 178:845-859. [PMID: 32346865 DOI: 10.1111/bph.15071] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/28/2020] [Accepted: 04/17/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE High-fat diet (HFD)-induced obesity is accompanied by metabolic and neurochemical changes that have been associated with depression. Recent studies indicate that palmitoylethanolamide (PEA) exerts metabolic effects and holds neuroprotective potential. However, studies on HFD exposure in mice which investigate the effects of PEA on monoamine system and synaptic plasticity are limited. EXPERIMENTAL APPROACH In C57Bl/6J male mice, obesity was established by HFD feeding for 12 weeks. Then, mice were treated with ultra-micronized PEA (30 mg·kg-1 daily p.o.) or vehicle for 7 weeks along with HFD. Mice receiving chow diet and vehicle served as controls. Thereafter, depressive-, anhedonic-like behaviour and cognitive performance were measured. Monoamine analyses were performed on brain areas (nucleus accumbens, Nac; prefrontal cortex, PFC; hippocampus), and markers of synaptic plasticity and neurogenesis were evaluated in hippocampus. KEY RESULTS PEA limited depressive- and anhedonic-like behaviour, and cognitive deficits induced by HFD. PEA induced an increase in 5-HT levels in PFC, and a reduction of dopamine and 5-HT turnover in Nac and PFC, respectively. Moreover, PEA increased dopamine levels in the hippocampus and PFC. At a molecular level, PEA restored brain-derived neurotrophic factor signalling pathway in hippocampus and PFC, indicating an improvement of synaptic plasticity. In particular, PEA counteracted the reduction of glutamatergic synaptic density induced by HFD in the stratum radiatum of the CA1 of the hippocampus, where it also exhibited neurogenesis-promoting abilities. CONCLUSION AND IMPLICATIONS PEA may represent an adjuvant therapy to limit depressive-like behaviours and memory deficit, affecting monoamine homeostasis, synaptic plasticity and neurogenesis. LINKED ARTICLES This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Collapse
Affiliation(s)
- Adriano Lama
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Claudio Pirozzi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Chiara Annunziata
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Martina Senzacqua
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Antonio Calignano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Giordano
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Rosaria Meli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | | |
Collapse
|
12
|
Zhang HH, Meng SQ, Guo XY, Zhang JL, Zhang W, Chen YY, Lu L, Yang JL, Xue YX. Traumatic Stress Produces Delayed Alterations of Synaptic Plasticity in Basolateral Amygdala. Front Psychol 2019; 10:2394. [PMID: 31708835 PMCID: PMC6824323 DOI: 10.3389/fpsyg.2019.02394] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
Acute traumatic event exposure is a direct cause of post-traumatic stress disorder (PTSD). Amygdala is suggested to be associated with the development of PTSD. In our previous findings, different activation patterns of GABAergic neurons and glutamatergic neurons in early or late stages after stress were found. However, the neural plastic mechanism underlying the role of basolateral amygdala (BLA) in post-traumatic stress disorder remains unclear. Therefore, this study mainly aimed at investigating time-dependent morphologic and electrophysiological changes in BLA during the development of PTSD. We used single prolonged stress (SPS) procedure to establish PTSD model of rats. The rats showed no alterations in anxiety behavior as well as in dendritic spine density or synaptic transmission in BLA 1 day after SPS. However, 10 days after SPS, rats showed enhancement of anxiety behavior, and spine density and frequency of miniature excitatory and inhibitory postsynaptic currents in BLA. Our results suggested that after traumatic stress, BLA displayed delayed increase in both spinogenesis and synaptic transmission, which seemed to facilitate the development of PTSD.
Collapse
Affiliation(s)
- Huan-Huan Zhang
- Department of Psychiatry, Tianjin Medical University, Tianjin, China
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shi-Qiu Meng
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Xin-Yi Guo
- Department of Psychiatry, Tianjin Medical University, Tianjin, China
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-Liang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, China
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy and Purdue Institute for Integrative Neuroscience, West Lafayette, IN, United States
| | - Wen Zhang
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Ya-Yun Chen
- National Institute on Drug Dependence, Peking University, Beijing, China
| | - Lin Lu
- National Institute on Drug Dependence, Peking University, Beijing, China
- Peking University Sixth Hospital/Peking University Institute of Mental Health, Peking University, Beijing, China
| | - Jian-Li Yang
- Department of Psychiatry, Tianjin Medical University, Tianjin, China
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence, Peking University, Beijing, China
| |
Collapse
|
13
|
Yousuf H, Smies CW, Hafenbreidel M, Tuscher JJ, Fortress AM, Frick KM, Mueller D. Infralimbic Estradiol Enhances Neuronal Excitability and Facilitates Extinction of Cocaine Seeking in Female Rats via a BDNF/TrkB Mechanism. Front Behav Neurosci 2019; 13:168. [PMID: 31417375 PMCID: PMC6684748 DOI: 10.3389/fnbeh.2019.00168] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/11/2019] [Indexed: 11/13/2022] Open
Abstract
Women are more susceptible to developing cocaine dependence than men, but paradoxically, are more responsive to treatment. The potent estrogen, 17β-estradiol (E2), mediates these effects by augmenting cocaine seeking but also promoting extinction of cocaine seeking through E2's memory-enhancing functions. Although we have previously shown that E2 facilitates extinction, the neuroanatomical locus of action and underlying mechanisms are unknown. Here we demonstrate that E2 infused directly into the infralimbic-medial prefrontal cortex (IL-mPFC), a region critical for extinction consolidation, enhances extinction of cocaine seeking in ovariectomized (OVX) female rats. Using patch-clamp electrophysiology, we show that E2 may facilitate extinction by potentiating intrinsic excitability of IL-mPFC neurons. Because the mnemonic effects of E2 are known to be regulated by brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin-related kinase B (TrkB), we examined whether BDNF/TrkB signaling was necessary for E2-induced enhancement of excitability and extinction. We found that E2-mediated increases in excitability of IL-mPFC neurons were abolished by Trk receptor blockade. Moreover, blockade of TrkB signaling impaired E2-facilitated extinction of cocaine seeking in OVX female rats. Thus, E2 enhances IL-mPFC neuronal excitability in a TrkB-dependent manner to support extinction of cocaine seeking. Our findings suggest that pharmacological enhancement of E2 or BDNF/TrkB signaling during extinction-based therapies would improve therapeutic outcome in cocaine-addicted women.
Collapse
Affiliation(s)
- Hanna Yousuf
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Chad W Smies
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Madalyn Hafenbreidel
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Jennifer J Tuscher
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Ashley M Fortress
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Karyn M Frick
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Devin Mueller
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, United States.,Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
14
|
Levy MJF, Boulle F, Steinbusch HW, van den Hove DLA, Kenis G, Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology (Berl) 2018; 235:2195-2220. [PMID: 29961124 PMCID: PMC6061771 DOI: 10.1007/s00213-018-4950-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023]
Abstract
Depression is a major health problem with a high prevalence and a heavy socioeconomic burden in western societies. It is associated with atrophy and impaired functioning of cortico-limbic regions involved in mood and emotion regulation. It has been suggested that alterations in neurotrophins underlie impaired neuroplasticity, which may be causally related to the development and course of depression. Accordingly, mounting evidence suggests that antidepressant treatment may exert its beneficial effects by enhancing trophic signaling on neuronal and synaptic plasticity. However, current antidepressants still show a delayed onset of action, as well as lack of efficacy. Hence, a deeper understanding of the molecular and cellular mechanisms involved in the pathophysiology of depression, as well as in the action of antidepressants, might provide further insight to drive the development of novel fast-acting and more effective therapies. Here, we summarize the current literature on the involvement of neurotrophic factors in the pathophysiology and treatment of depression. Further, we advocate that future development of antidepressants should be based on the neurotrophin theory.
Collapse
Affiliation(s)
- Marion J F Levy
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Fabien Boulle
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Harry W Steinbusch
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Daniël L A van den Hove
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg, Germany
| | - Gunter Kenis
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands
| | - Laurence Lanfumey
- Centre de Psychiatrie et Neurosciences (Inserm U894), Université Paris Descartes, 102-108 rue de la santé, 75014, Paris, France.
- EURON-European Graduate School of Neuroscience, Maastricht, The Netherlands.
| |
Collapse
|
15
|
Frankiensztajn LM, Gur-Pollack R, Wagner S. A combinatorial modulation of synaptic plasticity in the rat medial amygdala by oxytocin, urocortin3 and estrogen. Psychoneuroendocrinology 2018; 92:95-102. [PMID: 29674171 DOI: 10.1016/j.psyneuen.2018.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/07/2018] [Accepted: 04/09/2018] [Indexed: 12/14/2022]
Abstract
The medial nucleus of the amygdala (MeA) plays a pivotal role in a variety of mammalian social behaviors. Specifically, activity of the hypothalamic pro-social neuropeptide oxytocin in the MeA was shown to be crucial for social recognition memory. The MeA is also a hub of neuroendocrine activity and expresses a large number of receptors of neuropeptides and hormones. These include oxytocin receptor, estrogen receptor alpha and corticotropin-releasing factor (CRF) receptor type 2 (CRFR2). In a previous study we found that intracerebroventricular (ICV) oxytocin application to anesthetized rats promotes long-term depression (LTD) of the MeA response to electrical stimulation of its main sensory input, the accessory olfactory bulb (AOB). We also reported that this type of synaptic plasticity contributes to long-term social recognition memory. Here we used similar methodology to examine the possibility that various neuromodulators pose a combinatorial effect on synaptic plasticity in the MeA. We found that ICV administration of the CRF-related peptide urocortin3 fifteen minutes before oxytocin, caused long-term potentiation (LTP), via CRFR2 activation. Similarly, ICV administration of 17β-estradiol forty-five minutes before oxytocin induced LTP, which was blocked by an antagonist of the estrogen receptors alpha and beta. Notably, none of these two neuromodulators had any effect on its own, suggesting that they both turn the oxytocin-mediated synaptic plasticity from LTD to LTP. Finally, we found that application of 17β-estradiol, forty-five minutes before urocortin3 also caused LTP in the MeA response to AOB stimulation, even without oxytocin application. We suggest that the combinatorial modulation of the bidirectional synaptic plasticity in the AOB-MeA pathway by oxytocin, 17β-estradiol and urocotin-3 serves to modify social information processing according to the animal's internal state.
Collapse
Affiliation(s)
- Linoy Mia Frankiensztajn
- Sagol Department of Neurobiology, The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa 3498838, Israel
| | - Rotem Gur-Pollack
- Sagol Department of Neurobiology, The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa 3498838, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, The Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa 3498838, Israel.
| |
Collapse
|
16
|
Paeonol promotes hippocampal synaptic transmission: The role of the Kv2.1 potassium channel. Eur J Pharmacol 2018; 827:227-237. [PMID: 29550337 DOI: 10.1016/j.ejphar.2018.03.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 03/09/2018] [Accepted: 03/14/2018] [Indexed: 12/30/2022]
Abstract
Paeonol is a major constituent of the Chinese herb Moutan cortex radices. Recent studies report that paeonol has neuroprotective effects and improves impaired learning and memory. However, its underlying mechanisms by which paeonol contributes to synaptic transmission remain unclear. In this study, we found that paeonol increased the frequency of miniature excitatory postsynaptic currents (mEPSCs) and spontaneous excitatory postsynaptic currents (sEPSCs), but had no effect on the amplitude in rat hippocampal CA1 neurons. Similarly, the acetylcholinesterase (AChE) inhibitor rivastigmine increased the frequency of mEPSCs, but had no effect upon amplitude in rat hippocampal neurons. Rivastigmine also inhibited the delayed outward K+ currents in rat hippocampal CA1 neurons, but had no effect in nucleus ambiguus (NA) neurons. The Kv2 blocker guangxitoxin-1E increased the frequency of both mEPSCs and sEPSCs of rat hippocampal CA1 neurons, without affecting their amplitude. Our results suggest that paeonol and rivastigmine enhance spontaneous presynaptic transmitter release, which may be associated with the inhibition of the hippocampal Kv2 current and with therapeutic potential in neurotransmitter deficits found in Alzheimer's disease (AD). Moreover, our data also show that paeonol protects against Aβ25-35-induced impairment of long-term potentiation (LTP) in mouse hippocampal neurons. However, guangxitoxin-1E failed to potentiate the evoked field excitatory postsynaptic potentials (fEPSPs), LTP and Aβ25-35-induced impairment of LTP. These results indicate that paeonol may has the potential to improve learning and memory in AD. Interestingly, this effect is not involved in the inhibition of the hippocampal Kv2 current.
Collapse
|
17
|
|
18
|
Winick-Ng W, Rylett RJ. Into the Fourth Dimension: Dysregulation of Genome Architecture in Aging and Alzheimer's Disease. Front Mol Neurosci 2018. [PMID: 29541020 PMCID: PMC5835833 DOI: 10.3389/fnmol.2018.00060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by synapse dysfunction and cognitive impairment. Understanding the development and progression of AD is challenging, as the disease is highly complex and multifactorial. Both environmental and genetic factors play a role in AD pathogenesis, highlighted by observations of complex DNA modifications at the single gene level, and by new evidence that also implicates changes in genome architecture in AD patients. The four-dimensional structure of chromatin in space and time is essential for context-dependent regulation of gene expression in post-mitotic neurons. Dysregulation of epigenetic processes have been observed in the aging brain and in patients with AD, though there is not yet agreement on the impact of these changes on transcription. New evidence shows that proteins involved in genome organization have altered expression and localization in the AD brain, suggesting that the genomic landscape may play a critical role in the development of AD. This review discusses the role of the chromatin organizers and epigenetic modifiers in post-mitotic cells, the aging brain, and in the development and progression of AD. How these new insights can be used to help determine disease risk and inform treatment strategies will also be discussed.
Collapse
Affiliation(s)
- Warren Winick-Ng
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - R Jane Rylett
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| |
Collapse
|
19
|
Hu S, Shi J, Xiong W, Li W, Fang L, Feng H. Oxiracetam or fastigial nucleus stimulation reduces cognitive injury at high altitude. Brain Behav 2017; 7:e00762. [PMID: 29075554 PMCID: PMC5651378 DOI: 10.1002/brb3.762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/04/2017] [Accepted: 06/07/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Cognitive impairment is common in people travelling to high altitude. Oxiracetam and electrical stimulation of cerebellar fastigial nucleus may have beneficial impacts. This study was to investigate the effects of preconditioning with Oxiracetam or fastigial nucleus stimulation (FNS) on cognitive decline following the ascension to high altitude. METHODS The study was conducted on 60 male military voluntary members who were divided into control group, Oxiracetam group, and fastigial nucleus stimulation group. Transcranial doppler sonography, auditory evoked potential, electroencephalogram (EEG), and cognitive assessments were performed. RESULTS People could still suffer cognitive dysfunction at 4,000 m high altitude despite that they have lived at 1,800 m altitude for several years. The 4,000 m altitude environment also prolonged P300 and N200 latencies. Both Oxiracetam and FNS improved cognitive function, reduced the prolonged latencies of Event Related Potentials (P300 and N200), decreased the average velocity of brain arteries, and enhanced EEG power spectral entropy at 4,000 m altitude. CONCLUSIONS Neurophysiological evidences suggest the underlying mechanism of cognitive impairments. Both Oxiracetam and FNS can reduce cognitive decline post arrival at high altitude. They could be a potential pretreatment method for cognitive dysfunction resulted from high altitude.
Collapse
Affiliation(s)
- ShengLi Hu
- Department of Neurosurgery Southwest Hospital Collaborative Innovation Center for Brain Science Third Military Medical University Chong Qing China
| | - JianTao Shi
- Department of Neurosurgery Southwest Hospital Collaborative Innovation Center for Brain Science Third Military Medical University Chong Qing China
| | - Wei Xiong
- Department of Respiration Southwest Hospital Collaborative Innovation Center for Brain Science Third Military Medical University Chong Qing China
| | - WeiNa Li
- Department of Neurosurgery Southwest Hospital Collaborative Innovation Center for Brain Science Third Military Medical University Chong Qing China
| | - LiChao Fang
- Department of Laboratory Medicine Southwest Hospital Collaborative Innovation Center for Brain Science Third Military Medical University Chong Qing China
| | - Hua Feng
- Department of Neurosurgery Southwest Hospital Collaborative Innovation Center for Brain Science Third Military Medical University Chong Qing China
| |
Collapse
|
20
|
Hypertension-induced synapse loss and impairment in synaptic plasticity in the mouse hippocampus mimics the aging phenotype: implications for the pathogenesis of vascular cognitive impairment. GeroScience 2017; 39:385-406. [PMID: 28664509 DOI: 10.1007/s11357-017-9981-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/30/2017] [Indexed: 12/22/2022] Open
Abstract
Strong epidemiological and experimental evidence indicates that hypertension has detrimental effects on the cerebral microcirculation and thereby promotes accelerated brain aging. Hypertension is an independent risk factor for both vascular cognitive impairment (VCI) and Alzheimer's disease (AD). However, the pathophysiological link between hypertension-induced cerebromicrovascular injury (e.g., blood-brain barrier disruption, increased microvascular oxidative stress, and inflammation) and cognitive decline remains elusive. The present study was designed to characterize neuronal functional and morphological alterations induced by chronic hypertension and compare them to those induced by aging. To achieve that goal, we induced hypertension in young C57BL/6 mice by chronic (4 weeks) infusion of angiotensin II. We found that long-term potentiation (LTP) of performant path synapses following high-frequency stimulation of afferent fibers was decreased in hippocampal slices obtained from hypertensive mice, mimicking the aging phenotype. Hypertension and advanced age were associated with comparable decline in synaptic density in the stratum radiatum of the mouse hippocampus. Hypertension, similar to aging, was associated with changes in mRNA expression of several genes involved in regulation of neuronal function, including down-regulation of Bdnf, Homer1, and Dlg4, which may have a role in impaired synaptic plasticity. Collectively, hypertension impairs synaptic plasticity, reduces synaptic density, and promotes dysregulation of genes involved in synaptic function in the mouse hippocampus mimicking the aging phenotype. These hypertension-induced neuronal alterations may impair establishment of memories in the hippocampus and contribute to the pathogenesis and clinical manifestation of both vascular cognitive impairment (VCI) and Alzheimer's disease (AD).
Collapse
|
21
|
Bastos FC, Corceiro VN, Lopes SA, de Almeida JG, Matias CM, Dionisio JC, Mendes PJ, Sampaio Dos Aidos FDS, Quinta-Ferreira RM, Quinta-Ferreira ME. Effect of tolbutamide on tetraethylammonium-induced postsynaptic zinc signals at hippocampal mossy fiber-CA3 synapses. Can J Physiol Pharmacol 2017; 95:1058-1063. [PMID: 28654763 DOI: 10.1139/cjpp-2016-0379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The application of tetraethylammonium (TEA), a blocker of voltage-dependent potassium channels, can induce long-term potentiation (LTP) in the synaptic systems CA3-CA1 and mossy fiber-CA3 pyramidal cells of the hippocampus. In the mossy fibers, the depolarization evoked by extracellular TEA induces a large amount of glutamate and also of zinc release. It is considered that zinc has a neuromodulatory role at the mossy fiber synapses, which can, at least in part, be due to the activation of presynaptic ATP-dependent potassium (KATP) channels. The aim of this work was to study properties of TEA-induced zinc signals, detected at the mossy fiber region, using the permeant form of the zinc indicator Newport Green. The application of TEA caused a depression of those signals that was partially blocked by the KATP channel inhibitor tolbutamide. After the removal of TEA, the signals usually increased to a level above baseline. These results are in agreement with the idea that intense zinc release during strong synaptic events triggers a negative feedback action. The zinc depression, caused by the LTP-evoking chemical stimulation, turns into potentiation after TEA washout, suggesting the existence of a correspondence between the observed zinc potentiation and TEA-evoked mossy fiber LTP.
Collapse
Affiliation(s)
- Fatima C Bastos
- a Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal
| | - Vanessa N Corceiro
- a Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal
| | - Sandra A Lopes
- a Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal
| | - José G de Almeida
- b Department of Life Sciences, University of Coimbra, P-3000-456 Coimbra, Portugal
| | - Carlos M Matias
- c CNC - Center for Neurosciences and Cell Biology, University of Coimbra, P-3004-504 Coimbra, Portugal.,d UTAD - University of Trás-os-montes and Alto Douro, P-5000-801 Vila Real, Portugal
| | - Jose C Dionisio
- c CNC - Center for Neurosciences and Cell Biology, University of Coimbra, P-3004-504 Coimbra, Portugal.,e Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Paulo J Mendes
- a Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal.,f LIP - Laboratory of Instrumentation and Experimental Particles Physics, P-3004-516 Coimbra, Portugal
| | | | - Rosa M Quinta-Ferreira
- h CIEPQPF - Research Centre of Chemical Process Engineering and Forest Products, Department of Chemical Engineering, University of Coimbra, P-3030-790 Coimbra, Portugal
| | - M Emilia Quinta-Ferreira
- a Department of Physics, University of Coimbra, P-3004-516 Coimbra, Portugal.,c CNC - Center for Neurosciences and Cell Biology, University of Coimbra, P-3004-504 Coimbra, Portugal
| |
Collapse
|
22
|
Yao XL, Yao ZH, Li L, Nie L, Zhang SF. Oxiracetam can improve cognitive impairment after chronic cerebral hypoperfusion in rats. Psychiatry Res 2016; 246:284-292. [PMID: 27741481 DOI: 10.1016/j.psychres.2016.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/10/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) induces cognitive deficits. Although CCH can be improved, cognitive impairment is not improved accordingly. To date, many studies have focused on investigating the pathophysiological mechanisms of CCH; however, the treatment of the induced cognitive impairment remains ineffective. Thus, the mechanisms underlying cognitive impairment after CCH and potential agents for treating this impairment need to be explored further. Oxiracetam is a nootropic drug that improves clinical outcomes for some central nervous system (CNS) disorders. Whether it can improve cognitive impairment after CCH is unknown. In this study, we used behavioural methods, electrophysiology, biochemistry, histopathological staining and transmission electron microscope to investigate rat's cognitive impairment by CCH, and found that Oxiracetam could improve CCH-induced cognitive impairment and prevent deficits of neural plasticity, white matter lesions, and synaptic ultrastructure. These results suggest that Oxiracetam may be effective as a potential agent against CCH-induced cognitive impairment.
Collapse
Affiliation(s)
- Xiao-Li Yao
- Department of Neurology, Central hospital of Zhengzhou, #195 Tongbo Road, Zhengzhou, China; Department of Neurology, Renmin hospital of Wuhan University, #238 Jiefang Road, Wuhan, China
| | - Zhao-Hui Yao
- Department of Geriatrics, Renmin hospital of Wuhan University, #238 Jiefang Road, Wuhan, China; Department of Neurology, Renmin hospital of Wuhan University, #238 Jiefang Road, Wuhan, China.
| | - Li Li
- Department of Geriatrics, Renmin hospital of Wuhan University, #238 Jiefang Road, Wuhan, China; Department of Neurology, Renmin hospital of Wuhan University, #238 Jiefang Road, Wuhan, China
| | - Li Nie
- Department of Geriatrics, Renmin hospital of Wuhan University, #238 Jiefang Road, Wuhan, China; Department of Neurology, Renmin hospital of Wuhan University, #238 Jiefang Road, Wuhan, China
| | - Shao-Feng Zhang
- Department of Geriatrics, Renmin hospital of Wuhan University, #238 Jiefang Road, Wuhan, China; Department of Neurology, Renmin hospital of Wuhan University, #238 Jiefang Road, Wuhan, China
| |
Collapse
|
23
|
BDNF mRNA abundance regulated by antidromic action potentials and AP-LTD in hippocampus. Neurosci Lett 2016; 635:97-102. [PMID: 27760383 DOI: 10.1016/j.neulet.2016.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 02/07/2023]
Abstract
Action-potential-induced LTD (AP-LTD) is a form of synaptic plasticity that reduces synaptic strength in CA1 hippocampal neurons firing antidromically during sharp-wave ripples. This firing occurs during slow-wave sleep and quiet moments of wakefulness, which are periods of offline replay of neural sequences learned during encoding sensory information. Here we report that rapid and persistent down-regulation of different mRNA transcripts of the BDNF gene accompanies AP-LTD, and that AP-LTD is abolished in mice with the BDNF gene knocked out in CA1 hippocampal neurons. These findings increase understanding of the mechanism of AP-LTD and the cellular mechanisms of memory consolidation.
Collapse
|
24
|
The Small-Molecule TrkB Agonist 7, 8-Dihydroxyflavone Decreases Hippocampal Newborn Neuron Death After Traumatic Brain Injury. J Neuropathol Exp Neurol 2015; 74:557-67. [PMID: 25933388 DOI: 10.1097/nen.0000000000000199] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Previous studies in rodents have shown that after a moderate traumatic brain injury (TBI) with a controlled cortical impact (CCI) device, the adult-born immature granular neurons in the dentate gyrus are the most vulnerable cell type in the hippocampus. There is no effective approach for preventing immature neuron death after TBI. We found that tyrosine-related kinase B (TrkB), a receptor of brain-derived neurotrophic factor (BDNF), is highly expressed in adult-born immature neurons. We determined that the small molecule imitating BDNF, 7, 8-dihydroxyflavone (DHF), increased phosphorylation of TrkB in immature neurons both in vitro and in vivo. Pretreatment with DHF protected immature neurons from excitotoxicity-mediated death in vitro, and systemic administration of DHF before moderate CCI injury reduced the death of adult-born immature neurons in the hippocampus 24 hours after injury. By contrast, inhibiting BDNF signaling using the TrkB antagonist ANA12 attenuated the neuroprotective effects of DHF. These data indicate that DHF may be a promising chemical compound that promotes immature neuron survival after TBI through activation of the BDNF signaling pathway.
Collapse
|
25
|
Zhu G, Li J, He L, Wang X, Hong X. MPTP-induced changes in hippocampal synaptic plasticity and memory are prevented by memantine through the BDNF-TrkB pathway. Br J Pharmacol 2015; 172:2354-68. [PMID: 25560396 DOI: 10.1111/bph.13061] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 12/11/2014] [Accepted: 12/18/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Mild cognitive deficit in early Parkinson's disease (PD) has been widely studied. Here we have examined the effects of memantine in preventing memory deficit in experimental PD models and elucidated some of the underlying mechanisms. EXPERIMENTAL APPROACHES I.p. injection of 1-methyl-4- phenyl-1,2,3,6-tetrahydro pyridine (MPTP) in C57BL/6 mice was used to produce models of PD. We used behavioural tasks to test memory. In vitro, we used slices of hippocampus, with electrophysiological, Western blotting, real time PCR, elisa and immunochemical techniques. KEY RESULTS Following MPTP injection, long-term memory was impaired and these changes were prevented by pre-treatment with memantine. In hippocampal slices from MPTP treated mice, long-term potentiation (LTP) -induced by θ burst stimulation (10 bursts, 4 pulses) was decreased, while long-term depression (LTD) induced by low-frequency stimulation (1 Hz, 900 pulses) was enhanced, compared with control values. A single dose of memantine (i.p., 10 mg·kg(-1) ) reversed the decreased LTP and the increased LTD in this PD model. Activity-dependent changes in tyrosine kinase receptor B (TrkB), ERK and brain-derived neurotrophic factor (BDNF) expression were decreased in slices from mice after MPTP treatment. These effects were reversed by pretreatment with memantine. Incubation of slices in vitro with 1-methyl-4-phenylpyridinium (MPP(+) ) decreased depolarization-induced expression of BDNF. This effect was prevented by pretreatment of slices with memantine or with calpain inhibitor III, suggesting the involvement of an overactivated calcium signalling pathway. CONCLUSIONS AND IMPLICATIONS Memantine should be useful in preventing loss of memory and hippocampal synaptic plasticity in PD models.
Collapse
Affiliation(s)
- Guoqi Zhu
- Key Laboratory of Xin'An Medicine, Ministry of Education, Anhui University of Traditional Chinese Medicine, Hefei, China
| | | | | | | | | |
Collapse
|
26
|
Smith PA. BDNF: No gain without pain? Neuroscience 2014; 283:107-23. [DOI: 10.1016/j.neuroscience.2014.05.044] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/16/2014] [Accepted: 05/21/2014] [Indexed: 12/22/2022]
|
27
|
Paula-Lima AC, Adasme T, Hidalgo C. Contribution of Ca2+ release channels to hippocampal synaptic plasticity and spatial memory: potential redox modulation. Antioxid Redox Signal 2014; 21:892-914. [PMID: 24410659 DOI: 10.1089/ars.2013.5796] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SIGNIFICANCE Memory is an essential human cognitive function. Consequently, to unravel the cellular and molecular mechanisms responsible for the synaptic plasticity events underlying memory formation, storage and loss represents a major challenge of present-day neuroscience. RECENT ADVANCES This review article first describes the wide-ranging functions played by intracellular Ca2+ signals in the activity-dependent synaptic plasticity processes underlying hippocampal spatial memory, and next, it focuses on how the endoplasmic reticulum Ca2+ release channels, the ryanodine receptors, and the inositol 1,4,5-trisphosphate receptors contribute to these processes. We present a detailed examination of recent evidence supporting the key role played by Ca2+ release channels in synaptic plasticity, including structural plasticity, and the formation/consolidation of spatial memory in the hippocampus. CRITICAL ISSUES Changes in cellular oxidative state particularly affect the function of Ca2+ release channels and alter hippocampal synaptic plasticity and the associated memory processes. Emphasis is placed in this review on how defective Ca2+ release, presumably due to increased levels of reactive oxygen species, may cause the hippocampal functional defects that are associated to aging and Alzheimer's disease (AD). FUTURE DIRECTIONS Additional studies should examine the precise molecular mechanisms by which Ca2+ release channels contribute to hippocampal synaptic plasticity and spatial memory formation/consolidation. Future studies should test whether redox-modified Ca2+ release channels contribute toward generating the intracellular Ca2+ signals required for sustained synaptic plasticity and hippocampal spatial memory, and whether loss of redox balance and oxidative stress, by altering Ca2+ release channel function, presumably contribute to the abnormal memory processes that occur during aging and AD.
Collapse
Affiliation(s)
- Andrea C Paula-Lima
- 1 Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile , Santiago, Chile
| | | | | |
Collapse
|