1
|
Ramos JMJ. Rapid decay of spatial memory acquired in rats with ventral hippocampus lesions. Behav Brain Res 2022; 431:113962. [PMID: 35697178 DOI: 10.1016/j.bbr.2022.113962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022]
Abstract
Several memory consolidation theories have proposed that following a learning situation the hippocampus gradually stabilizes labile recent memories into long-lasting remote memories. Most work in this field has focused on the dorsal hippocampus (DHip), giving little consideration to a possible contribution by the ventral hippocampus (VHip), particularly when spatial paradigms are used. However, in recent years a growing number of studies have suggested the existence of a functional continuum, related to spatial processing and navigation, along the dorsoventral hippocampal axis. For this reason, in the present study we compare the effect of DHip vs. VHip lesions on long-term spatial memory retention. Using a four-arm plus-shaped maze, rats with lesions in the DHip, VHip or sham-lesioned learned to criterion a place discrimination task based on allothetic cues. During two retraining phases (2 days and 24 days after learning) retention of the spatial information learned during the acquisition phase was evaluated. The main findings revealed no deficit 2 days after learning, but 24 days after learning both lesioned groups showed a profound impairment compared to control animals (expt. 1). In contrast, when rats learned a cue-guided navigation task in the acquisition phase, both lesioned groups performed the two retention tests, 2 days and 24 days after learning, at the same level as the control group (expt. 2). These results suggest not only that the DHip is vital, but also that normal VHip activity is critical during the post-learning period in order for a recent spatial memory to become a stable long-term memory.
Collapse
Affiliation(s)
- Juan M J Ramos
- Department of Psychobiology and Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada 18071, Spain.
| |
Collapse
|
2
|
Ramos JMJ, Morón I. Ventral hippocampus lesions and allocentric spatial memory in the radial maze: Anterograde and retrograde deficits. Behav Brain Res 2022; 417:113620. [PMID: 34624425 DOI: 10.1016/j.bbr.2021.113620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/17/2021] [Accepted: 10/03/2021] [Indexed: 12/25/2022]
Abstract
Although the dorsal hippocampus (DHip) has been clearly implicated in spatial learning and memory, there is currently debate as to whether the ventral hippocampus (VHip) is also necessary in allocentric-based navigation tasks. To differentiate between these two subregions of the hippocampal dorsoventral axis, we examined the effect of neurotoxic lesions to the DHip and VHip in different learning situations, using a four-arm plus-shaped maze. In experiment 1 a spatial reference memory task was used, with results showing an acquisition deficit in DHip-lesioned rats but perfect learning in VHip-lesioned rats. However, in experiment 2 an acquisition deficit was found in VHip-lesioned rats using a doubly marked training protocol. In this case the position of the goal arm during training was marked simultaneously by the extramaze constellation of stimuli around the maze and an intramaze cue. The main results indicated that DHip and VHip groups presented significantly more allocentric errors in the probe test than the control rats. In experiments 3 and 4, animals with their brains still intact learned, respectively, a spatial reference memory task or a purely cue-guided navigation task, and DHip and VHip lesions were made 2-3 days after reaching learning criterion. Results indicated a profound retrograde deficit in both lesioned groups but only with regard to allocentric information. So, depending on the training protocol used, our results point to increased integration and cooperation throughout the hippocampal dorsoventral axis when allocentric learning and memory is involved. These data support the existence of a functional continuum from the dorsal to the ventral hippocampus.
Collapse
Affiliation(s)
- Juan M J Ramos
- Department of Psychobiology and Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada 18071, Spain.
| | - Ignacio Morón
- Department of Psychobiology and Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada 18071, Spain
| |
Collapse
|
3
|
Lee SL(T, Lew D, Wickenheisser V, Markus EJ. Interdependence between dorsal and ventral hippocampus during spatial navigation. Brain Behav 2019; 9:e01410. [PMID: 31571397 PMCID: PMC6790314 DOI: 10.1002/brb3.1410] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/15/2019] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION The hippocampus is linked to the formation and retrieval of episodic memories and spatial navigation. In rats, it is an elongated structure divided into dorsal (septal) and ventral (temporal) regions paralleling the respective division in the posterior and anterior hippocampus in humans. The dorsal hippocampus has been suggested to be more important for spatial processing and the ventral to processing anxiety-based behaviors. Far less is known regarding the degree to which these different regions interact during information processing. The anatomical connectivity suggests a flow of information between the dorsal and ventral regions; conversely, there are also commissural connections to the contralateral hippocampus. The current study examined the extent to which information from the dorsal hippocampus interacts with processing in the ipsilateral and contralateral ventral hippocampus following the acquisition of a spatial task. METHODS Rats were well-trained on a spatial reference version of the water maze, followed by muscimol inactivation of different hippocampal subregions in a within-animal repeated design. Various combinations of bilateral, ipsilateral, and contralateral infusions were used. RESULTS Combined dorsal and ventral inactivation produced a severe impairment in spatial performance. Inactivation of only the dorsal or ventral regions resulted in intermediate impairment with performance levels falling between controls and combined inactivation. Performance was impaired during contralateral inactivation and was almost equivalent to bilateral dorsal and ventral hippocampus inactivation, while ipsilateral inactivation resulted in little impairment. CONCLUSIONS Taken together, results indicate that for spatial processing, the hippocampus functions as a single integrated structure along the longitudinal axis.
Collapse
Affiliation(s)
- Shang Lin (Tommy) Lee
- Behavioral Neuroscience DivisionDepartment of Psychological SciencesUniversity of ConnecticutStorrsCTUSA
| | - Dana Lew
- Behavioral Neuroscience DivisionDepartment of Psychological SciencesUniversity of ConnecticutStorrsCTUSA
| | - Victoria Wickenheisser
- Behavioral Neuroscience DivisionDepartment of Psychological SciencesUniversity of ConnecticutStorrsCTUSA
| | - Etan J. Markus
- Behavioral Neuroscience DivisionDepartment of Psychological SciencesUniversity of ConnecticutStorrsCTUSA
| |
Collapse
|
4
|
Formation of a morphine-conditioned place preference does not change the size of evoked potentials in the ventral hippocampus-nucleus accumbens projection. Sci Rep 2019; 9:5206. [PMID: 30914714 PMCID: PMC6435809 DOI: 10.1038/s41598-019-41568-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
In opioid addiction, cues and contexts associated with drug reward can be powerful triggers for drug craving and relapse. The synapses linking ventral hippocampal outputs to medium spiny neurons of the accumbens may be key sites for the formation and storage of associations between place or context and reward, both drug-related and natural. To assess this, we implanted rats with electrodes in the accumbens shell to record synaptic potentials evoked by electrical stimulation of the ventral hippocampus, as well as continuous local-field-potential activity. Rats then underwent morphine-induced (10 mg/kg) conditioned-place-preference training, followed by extinction. Morphine caused an acute increase in the slope and amplitude of accumbens evoked responses, but no long-term changes were evident after conditioning or extinction of the place preference, suggesting that the formation of this type of memory does not lead to a net change in synaptic strength in the ventral hippocampal output to the accumbens. However, analysis of the local field potential revealed a marked sensitization of theta- and high-gamma-frequency activity with repeated morphine administration. This phenomenon may be linked to the behavioral changes—such as psychomotor sensitization and the development of drug craving—that are associated with chronic use of addictive drugs.
Collapse
|
5
|
Stubbendorff C, Hale E, Cassaday HJ, Bast T, Stevenson CW. Dopamine D1-like receptors in the dorsomedial prefrontal cortex regulate contextual fear conditioning. Psychopharmacology (Berl) 2019; 236:1771-1782. [PMID: 30656366 PMCID: PMC6602997 DOI: 10.1007/s00213-018-5162-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/21/2018] [Indexed: 11/29/2022]
Abstract
RATIONALE Dopamine D1 receptor (D1R) signalling is involved in contextual fear conditioning. The D1R antagonist SCH23390 impairs the acquisition of contextual fear when administered systemically or infused locally into the dorsal hippocampus or basolateral amygdala. OBJECTIVES We determined if state dependency may account for the impairment in contextual fear conditioning caused by systemic SCH23390 administration. We also examined if the dorsomedial prefrontal cortex (dmPFC), nucleus accumbens (NAc), and ventral hippocampus (VH) are involved in mediating the effect of systemic SCH23390 treatment on contextual fear conditioning. METHODS In experiment 1, SCH23390 (0.1 mg/kg) or vehicle was given before contextual fear conditioning and/or retrieval. In experiment 2, SCH23390 (2.5 μg/0.5 uL) or vehicle was infused locally into dmPFC, NAc, or VH before contextual fear conditioning, and retrieval was tested drug-free. Freezing was quantified as a measure of contextual fear. RESULTS In experiment 1, SCH23390 given before conditioning or before both conditioning and retrieval decreased freezing at retrieval, whereas SCH23390 given only before retrieval had no effect. In experiment 2, SCH23390 infused into dmPFC before conditioning decreased freezing at retrieval, while infusion of SCH23390 into NAc or VH had no effect. CONCLUSIONS The results of experiment 1 confirm those of previous studies indicating that D1Rs are required for the acquisition but not retrieval of contextual fear and rule out state dependency as an explanation for these findings. Moreover, the results of experiment 2 provide evidence that dmPFC is also part of the neural circuitry through which D1R signalling regulates contextual fear conditioning.
Collapse
Affiliation(s)
- Christine Stubbendorff
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Ed Hale
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Helen J. Cassaday
- School of Psychology@Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD UK ,School of Neuroscience@Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Tobias Bast
- School of Psychology@Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD UK ,School of Neuroscience@Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Carl W. Stevenson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| |
Collapse
|
6
|
Hippocampal Lateralization and Synaptic Plasticity in the Intact Rat: No Left-Right Asymmetry in Electrically Induced CA3-CA1 Long-Term Potentiation. Neuroscience 2018; 397:147-158. [PMID: 30513373 PMCID: PMC6347473 DOI: 10.1016/j.neuroscience.2018.11.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/23/2018] [Accepted: 11/28/2018] [Indexed: 12/24/2022]
Abstract
The hippocampus is not a unitary, homogeneous brain area. Anatomical and functional specialization is evident along the septotemporal axis of the structure, and between the left and right hemispheres. In the mouse brain, a left-right asymmetry has been discovered in the plasticity of CA3-CA1 projections originating in the left versus right hippocampus. Presynaptic afferents originating in the left hemisphere-including both uncrossed Schaffer collaterals, and crossed commissural projections to the contralateral CA1-form small, plastic synapses, whereas afferents originating in right CA3 contact larger, less plastic, synapses. Studies using optogenetic techniques to selectively activate fibers originating from one hemisphere in ex vivo slices have revealed that projections originating from left CA3 exhibit a far greater capacity for long-term potentiation (LTP) of synaptic strength than those originating on the right. However, corresponding data from rats are currently unavailable, leaving open the question of species differences in hippocampal symmetry. In the current study, we reanalyzed data from our previous in vivo LTP work to address this issue. We analyzed plasticity in independent Schaffer collateral and commissural projections to CA1 originating from left and right CA3 in male Lister-hooded rats. However, we found no differences in the magnitude and duration of LTP induced in either crossed or uncrossed pathways following high-frequency tetanization of left versus right CA3. This contrast with previous findings may stem from methodological differences between in vivo electrical and ex vivo optogenetic approaches, but may reflect a genuine species difference in the organization and laterality of the rodent CA3-CA1 system.
Collapse
|
7
|
Contreras M, Pelc T, Llofriu M, Weitzenfeld A, Fellous JM. The ventral hippocampus is involved in multi-goal obstacle-rich spatial navigation. Hippocampus 2018; 28:853-866. [PMID: 30067283 DOI: 10.1002/hipo.22993] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 05/06/2018] [Accepted: 05/31/2018] [Indexed: 11/06/2022]
Abstract
A large body of evidence shows that the hippocampus is necessary for successful spatial navigation. Various studies have shown anatomical and functional differences between the dorsal (DHC) and ventral (VHC) portions of this structure. The DHC is primarily involved in spatial navigation and contains cells with small place fields. The VHC is primarily involved in context and emotional encoding contains cells with large place fields and receives major projections from the medial prefrontal cortex. In the past, spatial navigation experiments have used relatively simple tasks that may not have required a strong coordination along the dorsoventral hippocampal axis. In this study, we tested the hypothesis that the DHC and VHC may be critical for goal-directed navigation in obstacle-rich environments. We used a learning task in which animals memorize the location of a set of rewarded feeders, and recall these locations in the presence of small or large obstacles. We report that bilateral DHC or VHC inactivation impaired spatial navigation in both large and small obstacle conditions. Importantly, this impairment did not result from a deficit in the spatial memory for the set of feeders (i.e., recognition of the goal locations) because DHC or VHC inactivation did not affect recall performance when there was no obstacle on the maze. We also show that the behavioral performance of the animals was correlated with several measures of maze complexity and that these correlations were significantly affected by inactivation only in the large object condition. These results suggest that as the complexity of the environment increases, both DHC and VHC are required for spatial navigation.
Collapse
Affiliation(s)
- Marco Contreras
- Department of Psychology, University of Arizona, Tucson, Arizona
| | - Tatiana Pelc
- Department of Psychology, University of Arizona, Tucson, Arizona
| | - Martin Llofriu
- Department of Computer Science and Engineering, University of South Florida, Tampa, Florida
| | - Alfredo Weitzenfeld
- Department of Computer Science and Engineering, University of South Florida, Tampa, Florida
| | - Jean-Marc Fellous
- Department of Psychology, University of Arizona, Tucson, Arizona.,Department of Applied Mathematics, University of Arizona, Tucson, Arizona
| |
Collapse
|
8
|
Finnie PSB, Gamache K, Protopoulos M, Sinclair E, Baker AG, Wang SH, Nader K. Cortico-hippocampal Schemas Enable NMDAR-Independent Fear Conditioning in Rats. Curr Biol 2018; 28:2900-2909.e5. [PMID: 30197087 DOI: 10.1016/j.cub.2018.07.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/08/2018] [Accepted: 07/11/2018] [Indexed: 01/28/2023]
Abstract
The neurobiology of memory formation has been studied primarily in experimentally naive animals, but the majority of learning unfolds on a background of prior experience. Considerable evidence now indicates that the brain processes initial and subsequent learning differently. In rodents, a first instance of contextual fear conditioning requires NMDA receptor (NMDAR) activation in the dorsal hippocampus, but subsequent conditioning to another context does not. This shift may result from a change in molecular plasticity mechanisms or in the information required to learn the second task. To clarify how related events are encoded, it is critical to identify which aspect of a first task engages NMDAR-independent learning and the brain regions that maintain this state. Here, we show in rats that the requirement for NMDARs in hippocampus depends neither on prior exposure to context nor footshock alone but rather on the procedural similarity between two conditioning tasks. Importantly, NMDAR-independent learning requires the memory of the first task to remain hippocampus dependent. Furthermore, disrupting memory maintenance in the anterior cingulate cortex after the first task also reinstates NMDAR dependency. These results reveal cortico-hippocampal interactions supporting experience-dependent learning.
Collapse
Affiliation(s)
- Peter S B Finnie
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Karine Gamache
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Maria Protopoulos
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Elizabeth Sinclair
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Andrew G Baker
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada
| | - Szu-Han Wang
- Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Chancellor's Building GU507c, Edinburgh EH16 4SB, UK.
| | - Karim Nader
- Psychology Department, McGill University, 1205 Avenue Drive Penfield, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
9
|
Crestani AP, Sierra RO, Machado A, Haubrich J, Scienza KM, de Oliveira Alvares L, Quillfeldt JA. Hippocampal plasticity mechanisms mediating experience-dependent learning change over time. Neurobiol Learn Mem 2018; 150:56-63. [PMID: 29501525 DOI: 10.1016/j.nlm.2018.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/02/2018] [Accepted: 02/19/2018] [Indexed: 01/15/2023]
Abstract
The requirement of NMDA receptor (NMDAR) activity for memory formation is well described. However, the plasticity mechanisms for memory can be modified by experience, such that a future similar learning becomes independent of NMDARs. This effect has often been reported in learning events conducted with a few days interval. In this work, we asked whether the NMDAR-independency is permanent or the brain regions and plasticity mechanisms of experience-dependent learning may change over time. Considering that contextual memories undergo a gradual reorganization over time, becoming progressively independent from the hippocampus and dependent upon cortical regions, we investigated the brain regions mediating a new related learning conducted at a remote time-point, when the first memory was already cortically established. First, we demonstrated that anterior cingulate cortex was not able to support a learning subsequent to a previous systems-level consolidated memory; it did require at least one functional subregion of the hippocampus (ventral or dorsal). Moreover, after replicating findings showing that a few days interval between trainings induces a NMDAR-independent learning, we managed to show that a learning following a longer interval once again becomes dependent on NMDARs in the hippocampus. These findings suggest that while the previous memory grows independent from the hippocampus over time, an experience-dependent learning following a systems-consolidated memory once again engages the hippocampus and a NMDAR-dependent plasticity mechanism.
Collapse
Affiliation(s)
- Ana Paula Crestani
- Psychobiology and Neurocomputation Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Neurosciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Rodrigo Ordoñez Sierra
- Psychobiology and Neurocomputation Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Neurosciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriano Machado
- Psychobiology and Neurocomputation Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Neurosciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Josué Haubrich
- Psychobiology and Neurocomputation Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Neurosciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Krislei Martin Scienza
- Psychobiology and Neurocomputation Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Neurosciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas de Oliveira Alvares
- Neurosciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil; Neurobiology of Memory Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jorge Alberto Quillfeldt
- Psychobiology and Neurocomputation Lab, Biophysics Department, Bioscience Institute, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil; Neurosciences Graduate Program, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
10
|
Riaz S, Schumacher A, Sivagurunathan S, Van Der Meer M, Ito R. Ventral, but not dorsal, hippocampus inactivation impairs reward memory expression and retrieval in contexts defined by proximal cues. Hippocampus 2017; 27:822-836. [PMID: 28449268 DOI: 10.1002/hipo.22734] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 12/12/2022]
Abstract
The hippocampus (HPC) has been widely implicated in the contextual control of appetitive and aversive conditioning. However, whole hippocampal lesions do not invariably impair all forms of contextual processing, as in the case of complex biconditional context discrimination, leading to contention over the exact nature of the contribution of the HPC in contextual processing. Moreover, the increasingly well-established functional dissociation between the dorsal (dHPC) and ventral (vHPC) subregions of the HPC has been largely overlooked in the existing literature on hippocampal-based contextual memory processing in appetitively motivated tasks. Thus, the present study sought to investigate the individual roles of the dHPC and the vHPC in contextual biconditional discrimination (CBD) performance and memory retrieval. To this end, we examined the effects of transient post-acquisition pharmacological inactivation (using a combination of GABAA and GABAB receptor agonists muscimol and baclofen) of functionally distinct subregions of the HPC (CA1/CA3 subfields of the dHPC and vHPC) on CBD memory retrieval. Additional behavioral assays including novelty preference, light-dark box and locomotor activity test were also performed to confirm that the respective sites of inactivation were functionally silent. We observed robust deficits in CBD performance and memory retrieval following inactivation of the vHPC, but not the dHPC. Our data provides novel insight into the differential roles of the ventral and dorsal HPC in reward contextual processing, under conditions in which the context is defined by proximal cues.
Collapse
Affiliation(s)
- Sadia Riaz
- Department of Psychology (Scarborough), University of Toronto, Toronto, Canada
| | - Anett Schumacher
- Department of Psychology (Scarborough), University of Toronto, Toronto, Canada
| | | | | | - Rutsuko Ito
- Department of Psychology (Scarborough), University of Toronto, Toronto, Canada.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Sosa M, Gillespie AK, Frank LM. Neural Activity Patterns Underlying Spatial Coding in the Hippocampus. Curr Top Behav Neurosci 2016; 37:43-100. [PMID: 27885550 DOI: 10.1007/7854_2016_462] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The hippocampus is well known as a central site for memory processing-critical for storing and later retrieving the experiences events of daily life so they can be used to shape future behavior. Much of what we know about the physiology underlying hippocampal function comes from spatial navigation studies in rodents, which have allowed great strides in understanding how the hippocampus represents experience at the cellular level. However, it remains a challenge to reconcile our knowledge of spatial encoding in the hippocampus with its demonstrated role in memory-dependent tasks in both humans and other animals. Moreover, our understanding of how networks of neurons coordinate their activity within and across hippocampal subregions to enable the encoding, consolidation, and retrieval of memories is incomplete. In this chapter, we explore how information may be represented at the cellular level and processed via coordinated patterns of activity throughout the subregions of the hippocampal network.
Collapse
Affiliation(s)
- Marielena Sosa
- Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California, San Francisco, USA
| | | | - Loren M Frank
- Kavli Institute for Fundamental Neuroscience and Department of Physiology, University of California, San Francisco, USA. .,Howard Hughes Medical Institute, Maryland, USA.
| |
Collapse
|
12
|
Long LL, Bunce JG, Chrobak JJ. Theta variation and spatiotemporal scaling along the septotemporal axis of the hippocampus. Front Syst Neurosci 2015; 9:37. [PMID: 25852496 PMCID: PMC4360780 DOI: 10.3389/fnsys.2015.00037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/23/2015] [Indexed: 01/03/2023] Open
Abstract
Hippocampal theta has been related to locomotor speed, attention, anxiety, sensorimotor integration and memory among other emergent phenomena. One difficulty in understanding the function of theta is that the hippocampus (HPC) modulates voluntary behavior at the same time that it processes sensory input. Both functions are correlated with characteristic changes in theta indices. The current review highlights a series of studies examining theta local field potential (LFP) signals across the septotemporal or longitudinal axis of the HPC. While the theta signal is coherent throughout the entirety of the HPC, the amplitude, but not the frequency, of theta varies significantly across its three-dimensional expanse. We suggest that the theta signal offers a rich vein of information about how distributed neuronal ensembles support emergent function. Further, we speculate that emergent function across the long axis varies with respect to spatiotemporal scale. Thus, septal HPC processes details of the proximal spatiotemporal environment while more temporal aspects process larger spaces and wider time-scales. The degree to which emergent functions are supported by the synchronization of theta across the septotemporal axis is an open question. Our working model is that theta synchrony serves to bind ensembles representing varying resolutions of spatiotemporal information at interdependent septotemporal areas of the HPC. Such synchrony and cooperative interactions along the septotemporal axis likely support memory formation and subsequent consolidation and retrieval.
Collapse
Affiliation(s)
- Lauren L Long
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut Storrs, CT, USA
| | - Jamie G Bunce
- Neural Systems Lab, Department of Health Sciences, Boston University Boston, MA, USA
| | - James J Chrobak
- Behavioral Neuroscience Division, Department of Psychology, University of Connecticut Storrs, CT, USA
| |
Collapse
|
13
|
Schlichting ML, Preston AR. Memory integration: neural mechanisms and implications for behavior. Curr Opin Behav Sci 2015; 1:1-8. [PMID: 25750931 DOI: 10.1016/j.cobeha.2014.07.005] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Everyday behaviors require a high degree of flexibility, in which prior knowledge is applied to inform behavior in new situations. Such flexibility is thought to be supported in part by memory integration, a process whereby related memories become interconnected in the brain through recruitment of overlapping neuronal populations. Recent advances in cognitive and behavioral neuroscience highlight the importance of a hippocampal-medial prefrontal circuit in memory integration. Emerging evidence suggests that abstracted representations in medial prefrontal cortex guide reactivation of related memories during new encoding events, thus promoting hippocampal integration of related experiences. Moreover, recent work indicates that integrated memories are called upon during novel situations to facilitate a host of behaviors, from spatial navigation to imagination.
Collapse
Affiliation(s)
- Margaret L Schlichting
- Department of Psychology, The University of Texas at Austin, 1 University Station A8000, Austin, TX 78712, United States ; Center for Learning and Memory, The University of Texas at Austin, 1 University Station C7000, Austin, TX 78712, United States
| | - Alison R Preston
- Department of Psychology, The University of Texas at Austin, 1 University Station A8000, Austin, TX 78712, United States ; Center for Learning and Memory, The University of Texas at Austin, 1 University Station C7000, Austin, TX 78712, United States ; Department of Neuroscience, The University of Texas at Austin, 1 University Station C7000, Austin, TX 78712, United States
| |
Collapse
|