1
|
Xiao S, Yang Z, Lin Z, Chen L, Liao W, Wang J, Gao C, Lu J, Song Y, Su S, Jiang G. Spontaneous Brain Activity Abnormalities in Patients With Temporal Lobe Epilepsy: A Meta-Analysis of 1474 Patients. J Magn Reson Imaging 2024. [PMID: 39215606 DOI: 10.1002/jmri.29568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Abnormalities in resting-state functional brain activity have been detected in patients with temporal lobe epilepsy (TLE). The results of individual neuroimaging studies of TLE, however, are frequently inconsistent due to small and heterogeneous samples, analytical flexibility, and publication bias toward positive findings. PURPOSE To investigate the most consistent regions of resting-state functional brain activity abnormality in patients with TLE through a quantitative meta-analysis of published neuroimaging data. STUDY TYPE Meta-analysis. SUBJECTS Exactly 1474 TLE patients (716 males and 758 females) from 31 studies on resting-state functional brain activity were included in this study. FIELD STRENGTH/SEQUENCE Studies utilizing 1.5 T or 3 T MR scanners were included for meta-analysis. Resting-state functional MRI using gradient echo-planar imaging, T1-weighted imaging. ASSESSMENT PubMed, Web of Science, Chinese National Knowledge Infrastructure, and WanFang databases were searched to identify studies investigating amplitude of low-frequency fluctuation (ALFF), fractional ALFF (fALFF), and regional homogeneity (ReHo) at the whole-brain level between patients with TLE and healthy controls (HCs). STATISTICAL TESTS Seed-based d Mapping with Permutation of Subject Images, standard randomization tests and meta-regression analysis were used. Results were significant if P < 0.05 with family-wise error corrected. RESULTS Patients with TLE displayed resting-state functional brain activity which was a significant increase in the right hippocampus, and significant decrease in the right angular gurus and right precuneus. Additionally, the meta-regression analysis demonstrated that age (P = 0.231), sex distribution (P = 0.376), and illness duration (P = 0.184), did not show significant associations with resting state functional brain activity in patients with TLE. DATA CONCLUSION Common alteration patterns of spontaneous brain activity were identified in the right hippocampus and default-model network regions in patients with TLE. These findings may contribute to understanding of the underlying mechanism for potentially effective intervention of TLE. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE Stage 2.
Collapse
Affiliation(s)
- Shu Xiao
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Department of Radiology, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Zibin Yang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Zitao Lin
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Liqing Chen
- Department of Catheter Intervention, Maoming Maonan District People's Hospital, Maoming, China
| | - Weiming Liao
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Jurong Wang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Cuihua Gao
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Jianjun Lu
- Department of Neurosurgery, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yang Song
- Siemens Healthineers Ltd, Shanghai, China
| | - Sulian Su
- Department of Radiology, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Guihua Jiang
- Department of Medical Imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Department of Radiology, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| |
Collapse
|
2
|
Guarino A, Pignata P, Lovisari F, Asth L, Simonato M, Soukupova M. Cognitive comorbidities in the rat pilocarpine model of epilepsy. Front Neurol 2024; 15:1392977. [PMID: 38872822 PMCID: PMC11171745 DOI: 10.3389/fneur.2024.1392977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
Patients with epilepsy are prone to cognitive decline, depression, anxiety and other behavioral disorders. Cognitive comorbidities are particularly common and well-characterized in people with temporal lobe epilepsy, while inconsistently addressed in epileptic animals. Therefore, the aim of this study was to ascertain whether there is good evidence of cognitive comorbidities in animal models of epilepsy, in particular in the rat pilocarpine model of temporal lobe epilepsy. We searched the literature published between 1990 and 2023. The association of spontaneous recurrent seizures induced by pilocarpine with cognitive alterations has been evaluated by using various tests: contextual fear conditioning (CFC), novel object recognition (NOR), radial and T-maze, Morris water maze (MWM) and their variants. Combination of results was difficult because of differences in methodological standards, in number of animals employed, and in outcome measures. Taken together, however, the analysis confirmed that pilocarpine-induced epilepsy has an effect on cognition in rats, and supports the notion that this is a valid model for assessment of cognitive temporal lobe epilepsy comorbidities in preclinical research.
Collapse
Affiliation(s)
- Annunziata Guarino
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Paola Pignata
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Francesca Lovisari
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Laila Asth
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Diespirov GP, Postnikova TY, Griflyuk AV, Kovalenko AA, Zaitsev AV. Alterations in the Properties of the Rat Hippocampus Glutamatergic System in the Lithium-Pilocarpine Model of Temporal Lobe Epilepsy. BIOCHEMISTRY (MOSCOW) 2023; 88:353-363. [PMID: 37076282 DOI: 10.1134/s0006297923030057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Status epilepticus (SE) triggers many not yet fully understood pathological changes in the nervous system that can lead to the development of epilepsy. In this work, we studied the effects of SE on the properties of excitatory glutamatergic transmission in the hippocampus in the lithium-pilocarpine model of temporal lobe epilepsy in rats. The studies were performed 1 day (acute phase), 3 and 7 days (latent phase), and 30 to 80 days (chronic phase) after SE. According to RT-qPCR data, expression of the genes coding for the AMPA receptor subunits GluA1 and GluA2 was downregulated in the latent phase, which may lead to the increased proportion of calcium-permeable AMPA receptors that play an essential role in the pathogenesis of many CNS diseases. The efficiency of excitatory synaptic neurotransmission in acute brain slices was decreased in all phases of the model, as determined by recording field responses in the CA1 region of the hippocampus in response to the stimulation of Schaffer collaterals by electric current of different strengths. However, the frequency of spontaneous excitatory postsynaptic potentials increased in the chronic phase, indicating an increased background activity of the glutamatergic system in epilepsy. This was also evidenced by a decrease in the threshold current causing hindlimb extension in the maximal electroshock seizure threshold test in rats with temporal lobe epilepsy compared to the control animals. The results suggest a series of functional changes in the properties of glutamatergic system associated with the epilepsy development and can be used to develop the antiepileptogenic therapy.
Collapse
Affiliation(s)
- Georgy P Diespirov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Tatyana Y Postnikova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Alexandra V Griflyuk
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Anna A Kovalenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Aleksey V Zaitsev
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, 194223, Russia.
| |
Collapse
|
4
|
Ren Z, Zhao Y, Han X, Yue M, Wang B, Zhao Z, Wen B, Hong Y, Wang Q, Hong Y, Zhao T, Wang N, Zhao P. An objective model for diagnosing comorbid cognitive impairment in patients with epilepsy based on the clinical-EEG functional connectivity features. Front Neurosci 2023; 16:1060814. [PMID: 36711136 PMCID: PMC9878185 DOI: 10.3389/fnins.2022.1060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Objective Cognitive impairment (CI) is a common disorder in patients with epilepsy (PWEs). Objective assessment method for diagnosing CI in PWEs would be beneficial in reality. This study proposed to construct a diagnostic model for CI in PWEs using the clinical and the phase locking value (PLV) functional connectivity features of the electroencephalogram (EEG). Methods PWEs who met the inclusion and exclusion criteria were divided into a cognitively normal (CON) group (n = 55) and a CI group (n = 76). The 23 clinical features and 684 PLV EEG features at the time of patient visit were screened and ranked using the Fisher score. Adaptive Boosting (AdaBoost) and Gradient Boosting Decision Tree (GBDT) were used as algorithms to construct diagnostic models of CI in PWEs either with pure clinical features, pure PLV EEG features, or combined clinical and PLV EEG features. The performance of these models was assessed using a five-fold cross-validation method. Results GBDT-built model with combined clinical and PLV EEG features performed the best with accuracy, precision, recall, F1-score, and an area under the curve (AUC) of 90.11, 93.40, 89.50, 91.39, and 0.95%. The top 5 features found to influence the model performance based on the Fisher scores were the magnetic resonance imaging (MRI) findings of the head for abnormalities, educational attainment, PLV EEG in the beta (β)-band C3-F4, seizure frequency, and PLV EEG in theta (θ)-band Fp1-Fz. A total of 12 of the top 5% of features exhibited statistically different PLV EEG features, while eight of which were PLV EEG features in the θ band. Conclusion The model constructed from the combined clinical and PLV EEG features could effectively identify CI in PWEs and possess the potential as a useful objective evaluation method. The PLV EEG in the θ band could be a potential biomarker for the complementary diagnosis of CI comorbid with epilepsy.
Collapse
Affiliation(s)
- Zhe Ren
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| | - Yibo Zhao
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| | - Xiong Han
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China,*Correspondence: Xiong Han,
| | - Mengyan Yue
- Department of Rehabilitation, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bin Wang
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zongya Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, China
| | - Bin Wen
- School of Life Sciences and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yang Hong
- Department of Neurology, People’s Hospital of Henan University, Zhengzhou, Henan, China
| | - Qi Wang
- Department of Neurology, Zhengzhou University People’s Hospital, Zhengzhou, Henan, China
| | - Yingxing Hong
- Department of Neurology, People’s Hospital of Henan University, Zhengzhou, Henan, China
| | - Ting Zhao
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Na Wang
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pan Zhao
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Wu N, Sun T, Wu X, Chen H, Zhang Z. Modulation of GABA B receptors in the insula bidirectionally affects associative memory of epilectic rats in both spatial and non-spatial operant tasks. Front Behav Neurosci 2023; 16:1042227. [PMID: 36688127 PMCID: PMC9846148 DOI: 10.3389/fnbeh.2022.1042227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Background Stimulation of gamma-aminobutyric acid (GABA) activity through GABA receptor agonists is the basic mechanism of many anticonvulsant drugs. Nevertheless, many of these GABergic drugs have adverse cognitive effects. We previously found that GABAB receptors (GABABRs) in the insula regulate operant associative memory in healthy rats. The present study aimed at investigating the effects of GABABR modulation in the insula on operant associative memory in epileptic rats, along with the underlying mechanisms. Methods The lithium-pilocarpine model of temporal lobe epilepsy (TLE) was established in male Sprague-Dawley rats. A 22-gauge stainless-steel guide cannula was surgically implanted into the granular insula cortex of the epileptic rats. Baclofen (125 ng/μl, 1 μl), CGP35348 (12.5 μg/μl, 1 μl), or saline (1 μl) was slowly infused through the guide cannula. The Intellicage automated behavioral testing system was used to evaluate operant associative memory of the epileptic rats, including non-spatial operant tasks (basic nosepoke learning and skilled nosepoke learning) and spatial operant tasks (chamber position learning). The expression of the GABABR subunits GB1 and GB2 in the insula was examined by immunofluorescence and Western blotting. Results The Intellicage tests demonstrated that baclofen significantly impaired basic nosepoke learning, skilled nosepoke learning and chamber position learning of the epileptic rats, while CGP35348 boosted these functions. Immunofluorescence staining revealed that GB1 and GB2 were expressed in the insula of the epileptic rats, and Western blotting analysis showed that baclofen enhanced while CGP35348 inhibited the expression of these subunits. Conclusion GABABRs in the insula bidirectionally regulate both spatial and non-spatial operant associative memory of epileptic rats. Effects of GABABRs on cognition should be taken into account when evaluating new possible treatments for people with epilepsy.
Collapse
Affiliation(s)
- Nan Wu
- Department of Neurosurgery, Tianjin Children’s Hospital (Children’s Hospital of Tianjin University), Tianjin, China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xin Wu
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Hongguang Chen
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Zhen Zhang
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China,*Correspondence: Zhen Zhang,
| |
Collapse
|
6
|
Novak A, Vizjak K, Rakusa M. Cognitive Impairment in People with Epilepsy. J Clin Med 2022; 11:267. [PMID: 35012007 PMCID: PMC8746065 DOI: 10.3390/jcm11010267] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/18/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
People with epilepsy frequently have cognitive impairment. The majority of cognitive problems is influenced by a variety of interlinked factors, including the early onset of epilepsy and the frequency, intensity and duration of seizures, along with the anti-epileptic drug treatment. With a systematic review, we investigate significant factors about the cognitive impairment in epilepsy. Most cognitive problems in adult people with epilepsy include memory, attention and executive function deficits. However, which cognitive area is mainly affected highly depends on the location of epileptic activity. Moreover, modifications in signalling pathways and neuronal networks have an essential role in both the pathophysiology of epilepsy and in the mechanism responsible for cognitive impairment. Additionally, studies have shown that the use of polytherapy in the treatment of epilepsy with anti-epileptic drugs (AEDs) heightens the risk for cognitive impairment. It can be challenging to distinguish the contribution of each factor, because they are often closely intertwined.
Collapse
Affiliation(s)
| | | | - Martin Rakusa
- Department of Neurologic Diseases, University Medical Centre Maribor, 2000 Maribor, Slovenia; (A.N.); (K.V.)
| |
Collapse
|
7
|
Dyomina AV, Kovalenko AA, Zakharova MV, Postnikova TY, Griflyuk AV, Smolensky IV, Antonova IV, Zaitsev AV. MTEP, a Selective mGluR5 Antagonist, Had a Neuroprotective Effect but Did Not Prevent the Development of Spontaneous Recurrent Seizures and Behavioral Comorbidities in the Rat Lithium-Pilocarpine Model of Epilepsy. Int J Mol Sci 2022; 23:ijms23010497. [PMID: 35008924 PMCID: PMC8745728 DOI: 10.3390/ijms23010497] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023] Open
Abstract
Metabotropic glutamate receptors (mGluRs) are expressed predominantly on neurons and glial cells and are involved in the modulation of a wide range of signal transduction cascades. Therefore, different subtypes of mGluRs are considered a promising target for the treatment of various brain diseases. Previous studies have demonstrated the seizure-induced upregulation of mGluR5; however, its functional significance is still unclear. In the present study, we aimed to clarify the effect of treatment with the selective mGluR5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP) on epileptogenesis and behavioral impairments in rats using the lithium–pilocarpine model. We found that the administration of MTEP during the latent phase of the model did not improve survival, prevent the development of epilepsy, or attenuate its manifestations in rats. However, MTEP treatment completely prevented neuronal loss and partially attenuated astrogliosis in the hippocampus. An increase in excitatory amino acid transporter 2 expression, which has been detected in treated rats, may prevent excitotoxicity and be a potential mechanism of neuroprotection. We also found that MTEP administration did not prevent the behavioral comorbidities such as depressive-like behavior, motor hyperactivity, reduction of exploratory behavior, and cognitive impairments typical in the lithium–pilocarpine model. Thus, despite the distinct neuroprotective effect, the MTEP treatment was ineffective in preventing epilepsy.
Collapse
|
8
|
Nour MM, Liu Y, Arumuham A, Kurth-Nelson Z, Dolan RJ. Impaired neural replay of inferred relationships in schizophrenia. Cell 2021; 184:4315-4328.e17. [PMID: 34197734 PMCID: PMC8357425 DOI: 10.1016/j.cell.2021.06.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/09/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022]
Abstract
An ability to build structured mental maps of the world underpins our capacity to imagine relationships between objects that extend beyond experience. In rodents, such representations are supported by sequential place cell reactivations during rest, known as replay. Schizophrenia is proposed to reflect a compromise in structured mental representations, with animal models reporting abnormalities in hippocampal replay and associated ripple activity during rest. Here, utilizing magnetoencephalography (MEG), we tasked patients with schizophrenia and control participants to infer unobserved relationships between objects by reorganizing visual experiences containing these objects. During a post-task rest session, controls exhibited fast spontaneous neural reactivation of presented objects that replayed inferred relationships. Replay was coincident with increased ripple power in hippocampus. Patients showed both reduced replay and augmented ripple power relative to controls, convergent with findings in animal models. These abnormalities are linked to impairments in behavioral acquisition and subsequent neural representation of task structure.
Collapse
Affiliation(s)
- Matthew M Nour
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK; Wellcome Centre for Human Neuroimaging (WCHN), University College London, London WC1N 3AR, UK; Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 8AF, UK.
| | - Yunzhe Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Atheeshaan Arumuham
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, London SE5 8AF, UK
| | - Zeb Kurth-Nelson
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK; Deepmind, London NC1 4AG, UK
| | - Raymond J Dolan
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, London WC1B 5EH, UK; Wellcome Centre for Human Neuroimaging (WCHN), University College London, London WC1N 3AR, UK; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; BIH Visiting Professor, Stiftung Charité, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin, Berlin, Germany
| |
Collapse
|
9
|
Zheng JJ, Zhang TY, Liu HT, Huang ZX, Teng JM, Deng JX, Zhong JG, Qian X, Sheng XW, Ding JQ, He SQ, Zhao X, Ji WD, Qi DF, Li W, Zhang M. Cytisine Exerts an Anti-Epileptic Effect via α7nAChRs in a Rat Model of Temporal Lobe Epilepsy. Front Pharmacol 2021; 12:706225. [PMID: 34248648 PMCID: PMC8263902 DOI: 10.3389/fphar.2021.706225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Temporal lobe epilepsy (TLE) is a common chronic neurological disease that is often invulnerable to anti-epileptic drugs. Increasing data have demonstrated that acetylcholine (ACh) and cholinergic neurotransmission are involved in the pathophysiology of epilepsy. Cytisine, a full agonist of α7 nicotinic acetylcholine receptors (α7nAChRs) and a partial agonist of α4β2nAChRs, has been widely applied for smoking cessation and has shown neuroprotection in neurological diseases. However, whether cytisine plays a role in treating TLE has not yet been determined. Experimental Approach: In this study, cytisine was injected intraperitoneally into pilocarpine-induced epileptic rats for three weeks. Alpha-bungarotoxin (α-bgt), a specific α7nAChR antagonist, was used to evaluate the mechanism of action of cytisine. Rats were assayed for the occurrence of seizures and cognitive function by video surveillance and Morris water maze. Hippocampal injuries and synaptic structure were assessed by Nissl staining and Golgi staining. Furthermore, levels of glutamate, γ-aminobutyric acid (GABA), ACh, and α7nAChRs were measured. Results: Cytisine significantly reduced seizures and hippocampal damage while improving cognition and inhibiting synaptic remodeling in TLE rats. Additionally, cytisine decreased glutamate levels without altering GABA levels, and increased ACh levels and α7nAChR expression in the hippocampi of TLE rats. α-bgt antagonized the above-mentioned effects of cytisine treatment. Conclusion and Implications: Taken together, these findings indicate that cytisine exerted an anti-epileptic and neuroprotective effect in TLE rats via activation of α7nAChRs, which was associated with a decrease in glutamate levels, inhibition of synaptic remodeling, and improvement of cholinergic transmission in the hippocampus. Hence, our findings not only suggest that cytisine represents a promising anti-epileptic drug, but provides evidence of α7nAChRs as a novel therapeutic target for TLE.
Collapse
Affiliation(s)
- Jing-Jun Zheng
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Pharmacy, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Teng-Yue Zhang
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hong-Tao Liu
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ze-Xin Huang
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing-Mei Teng
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jing-Xian Deng
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jia-Gui Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xu Qian
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xin-Wen Sheng
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ji-Qiang Ding
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shu-Qiao He
- Department of Pharmacy, Maoming People's Hospital, Maoming, China
| | - Xin Zhao
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wei-Dong Ji
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - De-Feng Qi
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hop-ital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, China
| | - Wei Li
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Mei Zhang
- Key Laboratory of Molecular Target and Clinical Pharmacology, Department of Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Lu CW, Lin TY, Pan TL, Wang PW, Chiu KM, Lee MY, Wang SJ. Asiatic Acid Prevents Cognitive Deficits by Inhibiting Calpain Activation and Preserving Synaptic and Mitochondrial Function in Rats with Kainic Acid-Induced Seizure. Biomedicines 2021; 9:biomedicines9030284. [PMID: 33802221 PMCID: PMC8001422 DOI: 10.3390/biomedicines9030284] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cognitive impairment is not only associated with seizures but also reported as an adverse effect of antiepileptic drugs. Thus, new molecules that can ameliorate seizures and maintain satisfactory cognitive function should be developed. The antiepileptic potential of asiatic acid, a triterpene derived from the medicinal herb Centella asiatica, has already been demonstrated; however, its role in epilepsy-related cognitive deficits is yet to be determined. In this study, we evaluated the effects of asiatic acid on cognitive deficits in rats with kainic acid (KA)-induced seizure and explored the potential mechanisms underlying these effects. Our results revealed that asiatic acid administrated intraperitoneally 30 min prior to KA (15 mg/kg) injection ameliorated seizures and significantly improved KA-induced memory deficits, as demonstrated by the results of the Morris water maze test. In addition, asiatic acid ameliorated neuronal damage, inhibited calpain activation, and increased protein kinase B (AKT) activation in the hippocampus of KA-treated rats. Asiatic acid also increased the levels of synaptic proteins and the number of synaptic vesicles as well as attenuated mitochondrial morphology damage in the hippocampus of KA-treated rats. Furthermore, proteomic and Western blot analyses of hippocampal synaptosomes revealed that asiatic acid reversed KA-induced changes in mitochondria function-associated proteins, including lipoamide dehydrogenase, glutamate dehydrogenase 1 (GLUD1), ATP synthase (ATP5A), and mitochondrial deacetylase sirtuin-3 (SIRT3). Our data suggest that asiatic acid can prevent seizures and improve cognitive impairment in KA-treated rats by reducing hippocampal neuronal damage through the inhibition of calpain activation and the elevation of activated AKT, coupled with an increase in synaptic and mitochondrial function.
Collapse
Affiliation(s)
- Cheng-Wei Lu
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (C.-W.L.); (T.-Y.L.)
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Tzu-Yu Lin
- Department of Anesthesiology, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (C.-W.L.); (T.-Y.L.)
- Department of Mechanical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 33302, Taiwan;
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33375, Taiwan
| | - Pei-Wen Wang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan;
| | - Kuan-Ming Chiu
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-M.C.); (M.-Y.L.)
- Department of Nursing, Oriental Institute of Technology, New Taipei 22060, Taiwan
- Department of Photonics Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Ming-Yi Lee
- Division of Cardiovascular Surgery, Cardiovascular Center, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan; (K.-M.C.); (M.-Y.L.)
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City 24205, Taiwan
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Correspondence: ; Tel.: +886-(2)-29053465; Fax: +886-(2)-29052096
| |
Collapse
|
11
|
Singh TB, Aisikaer A, He C, Wu Y, Chen H, Ni H, Song Y, Yin J. The Assessment of Brain Functional Changes in the Temporal Lobe Epilepsy Patient with Cognitive Impairment by Resting-state Functional Magnetic Resonance Imaging. J Clin Imaging Sci 2020; 10:50. [PMID: 32874755 PMCID: PMC7451150 DOI: 10.25259/jcis_55_2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives The objective of the study was to detect functional changes in the brain of cognitive impairment-temporal lobe epilepsy (CI-TLE) patient and to sort out the possible mechanism involved in CI in CI-TLE patients using resting-state functional magnetic resonance imaging (RS-fMRI). Material and Methods Fifty-eight TLE cases were included, which was divided into 44 TLE patients without CI (cognitive not impairment [CNI]-TLE) and 14 TLE patients with CI (CI-TLE). The normal control (NC) group consisted of 40 participants. RS-fMRI data preprocessing was carried out in statistical parametric mapping (SPM) software. The data were realigned, coregistered, normalized, and finally smoothened and then were taken for amplitude of low-frequency fluctuation (ALFF) calculation in RS-fMRI data analysis toolkit (REST) software. For data analysis, voxel-wise two-sample t-test was carried out between TLE group and NC group; CI-TLE group and cognitive not impairment-TLE (CNI-TLE) group in SPM software, a cluster >10 voxels and P < 0.01 was considered to be significant. Results Compared to NC, the TLE patients showed increased ALFF activation mostly in parahippocampal gyrus (PG), frontal lobe, midbrain, pons, insula, inferior temporal gyrus, and anterior cingulate gyrus (ACG) while decreased ALFF value was seen in posterior cingulate gyrus, cuneus, cerebellum posterior lobe, inferior parietal lobule (IPL), and superior temporal gyrus. Compared to CNI-TLE, CI-TLE patients showed increased ALFF in middle temporal gyrus (MTG), cuneus, ACG, IPL, middle frontal gyrus (MFG), superior frontal gyrus (SFG), cerebellum posterior lobe, and decreased ALFF cluster in the corpus callosum and MFG. Conclusion Between TLE and NC, we found increased ALFF activation in PG, frontal lobe, thalamus, insula, midbrain, and pons in TLE patient. Between CI and CNI TLE, area of executive control network and default model network, especially in MTG, ACG, IPL, MFG, and SFG, had increased ALFF value in CI-TLE patient. Activation of these areas should be because of the decompensation mechanism.
Collapse
Affiliation(s)
| | - Aikedan Aisikaer
- Department of Radiology, Tianjin First Central Hospital, Nankai, China
| | - Che He
- Department of Radiology, Tianjin First Central Hospital, Nankai, China
| | - Yalin Wu
- Department of Radiology, Tianjin First Central Hospital, Nankai, China
| | - Hong Chen
- Department of Radiology, Tianjin First Central Hospital, Nankai, China
| | - Hongyan Ni
- Department of Radiology, Tianjin First Central Hospital, Nankai, China
| | - Yijun Song
- Department of Radiology, Tianjin Medical University General Hospital, Heping, Tianjin
| | - Jianzhong Yin
- Department of Radiology, Tianjin First Central Hospital, Nankai, China
| |
Collapse
|
12
|
Qin L, Jiang W, Zheng J, Zhou X, Zhang Z, Liu J. Alterations Functional Connectivity in Temporal Lobe Epilepsy and Their Relationships With Cognitive Function: A Longitudinal Resting-State fMRI Study. Front Neurol 2020; 11:625. [PMID: 32793090 PMCID: PMC7385240 DOI: 10.3389/fneur.2020.00625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/28/2020] [Indexed: 01/04/2023] Open
Abstract
Background: Cognitive impairments in temporal lobe epilepsy (TLE) patients has been described as a chronically progressive feature of the disease. However, how severe recurrent seizures modify neuronal circuits in the human brain and subsequently degrade cognitive function, remains largely unknown. Here, we aimed to investigate longitudinal alterations by functional magnetic resonance imaging (fMRI) in TLE patients and to assess how those alterations are related to cognitive function performance. Methods: Sixteen TLE patients and 20 normal controls (NCs) were recruited for a study to observe longitudinal alterations in resting-state functional connectivity (FC) and to estimate alertness, orientation, and executive function both at baseline and at a follow-up time ~3 years later. Results: TLE patients, compared with NCs, showed impaired executive function, intrinsic alertness, and phasic alertness and exhibited lengthened reaction time (RT) in the spatial cue and center cue conditions at baseline. The orienting function of TLE patients was declined at follow-up compared to the baseline. Cross-sectional analysis demonstrated that TLE patients displayed significantly greater positive correlation than NCs between the right dorsolateral prefrontal cortex (DLPFC) and the right inferior parietal lobule (IPL) and right superior frontal gyrus (SFG). Furthermore, among TLE patients, the longitudinal study revealed a decrease in correlation between the right DLPFC and the right SFG compared to the baseline. In addition, there was a significant negative correlation between the longitudinal change in FC and the change in orienting function in TLE subjects. Conclusions: Abnormal connectivity between the DLPFC and the SFG suggests the potential of longitudinal resting-state fMRI to delineate regions relevant to cognitive dysfunction for disease progression.
Collapse
Affiliation(s)
- Lu Qin
- Department of Neurology, Liuzhou Workers' Hospital/The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Wenyu Jiang
- Department of Neurology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jinou Zheng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhao Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinping Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
13
|
Barry JM, Mahoney JM, Holmes GL. Coordination of hippocampal theta and gamma oscillations relative to spatial active avoidance reflects cognitive outcome after febrile status epilepticus. Behav Neurosci 2020; 134:562-576. [PMID: 32628031 DOI: 10.1037/bne0000388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cognitive deficits may arise from a variety of genetic alterations and neurological insults that impair neural coding mechanisms and the routing of neural information underpinning learning and memory. Slow and medium gamma oscillations underpin memory recall and sensorimotor processing and represent dynamic inputs at CA1 synapses. Febrile status epilepticus (FSE) can lead to increased risk for temporal lobe epilepsy and enduring cognitive impairments. In a rodent model, we assessed how FSE alters hippocampal CA1 signals relative to spatial task performance and serve as a readout of synaptic input efficacy. The power of theta (5-12 Hz), slow gamma (30-50 Hz), and medium gamma (70-90 Hz) differentially interact with respect to cognitive demands during active avoidance behavior on a rotating arena. Successful avoidance was characterized by slow gamma that was largest several seconds before or after peak acceleration. Peak acceleration coincides with peak theta oscillations, followed within approximately 1 s by peak medium gamma. FSE animals showing impairment in the task maintained the profiles of theta and medium gamma associated with increased sensorimotor processing following peak acceleration but did not exhibit the same slow gamma profile associated with epochs of memory retrieval. While CA1 synapses from entorhinal cortex were functionally unaffected by FSE, communication via synapses from CA3 may have been impaired, leading to both temporal discoordination and poor memory retrieval. These findings demonstrate theta/gamma profiles can serve as both physiological biomarkers for memory retrieval or encoding deficits and synapse level treatment targets that could attenuate cognitive comorbidities associated with early life seizures. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
|
14
|
Clarkson C, Smeal RM, Hasenoehrl MG, White JA, Rubio ME, Wilcox KS. Ultrastructural and functional changes at the tripartite synapse during epileptogenesis in a model of temporal lobe epilepsy. Exp Neurol 2020; 326:113196. [PMID: 31935368 DOI: 10.1016/j.expneurol.2020.113196] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/10/2020] [Indexed: 12/27/2022]
Abstract
The persistent unresponsiveness of many of the acquired epilepsies to traditional antiseizure medications has motivated the search for prophylactic drug therapies that could reduce the incidence of epilepsy in this at risk population. These studies are based on the idea of a period of epileptogenesis that can follow a wide variety of brain injuries. Epileptogenesis is hypothesized to involve changes in the brain not initially associated with seizures, but which result finally in seizure prone networks. Understanding these changes will provide crucial clues for the development of prophylactic drugs. Using the repeated low-dose kainate rat model of epilepsy, we have studied the period of epileptogenesis following status epilepticus, verifying the latent period with continuous EEG monitoring. Focusing on ultrastructural properties of the tripartite synapse in the CA1 region of hippocampus we found increased astrocyte ensheathment around both the presynaptic and postsynaptic elements, reduced synaptic AMPA receptor subunit and perisynaptic astrocyte GLT-1 expression, and increased number of docked vesicles at the presynaptic terminal. These findings were associated with an increase in frequency of the mEPSCs observed in patch clamp recordings of CA1 pyramidal cells. The results suggest a complex set of changes, some of which have been associated with increasingly excitable networks such as increased vesicles and mEPSC frequency, and some associated with compensatory mechanisms, such as increased astrocyte ensheathment. The diversity of ultrastructural and electrophysiological changes observed during epileptogeneiss suggests that potential drug targets for this period should be broadened to include all components of the tripartite synapse.
Collapse
Affiliation(s)
- Cheryl Clarkson
- Dept. of Neurobiology, Univ. of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America
| | - Roy M Smeal
- Dept. of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT 84112, United States of America
| | - Meredith G Hasenoehrl
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84112, United States of America
| | - John A White
- Dept. of Biomedical Engineering, Boston University, Boston, MA 02215, United States of America
| | - Maria E Rubio
- Dept. of Neurobiology, Univ. of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States of America; Dept. of Otolaryngology, Univ. of Pittsburgh, Pittsburgh, PA 15261, United States of America.
| | - Karen S Wilcox
- Dept. of Pharmacology & Toxicology, University of Utah, Salt Lake City, UT 84112, United States of America; Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT 84112, United States of America.
| |
Collapse
|
15
|
Yang H, Zhang R, Jia C, Chen M, Yin W, Wei L, Jiao H. Neuronal protective effect of Songling Xuemaikang capsules alone and in combination with carbamazepine on epilepsy in kainic acid-kindled rats. PHARMACEUTICAL BIOLOGY 2019; 57:22-28. [PMID: 30724642 PMCID: PMC6366425 DOI: 10.1080/13880209.2018.1563619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/19/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
CONTEXT Epilepsy is a common life-threatening neurological disorder that is often drug-resistant and associated with cognitive impairment. The traditional Chinese patent medicine Songling Xuemaikang capsules (SXC) is clinically used for epilepsy therapy and alleviation of cognitive impairment. OBJECTIVE This study investigates the neuronal protective effect of SXC combined with carbamazepine (CBZ) on epilepsy and cognitive impairment in kainic acid-kindled SD rats. MATERIALS AND METHODS Kainic acid-kindled rats were established by injection of 0.45 μg kainic acid and randomly divided into 5 groups (n = 14): saline (sham-operated), control, CBZ, SXC and CBZ + SXC combined group. Rats in the treatment groups received CBZ (50 mg/kg/d), SXC (600 mg/kg/d) or combined CBZ (50 mg/kg/d) + SXC (600 mg/kg/d) via intragastric injection for 60 days. Epileptic behaviours, cognitive impairment, neuronal apoptosis and expression of p-Akt, Akt and caspase-9 were measured, and the alleviation of cognitive damage and neuronal apoptosis was analyzed. RESULTS The combined administration of SXC and CBZ significantly decreased the frequency of seizures (1.2 ± 0.3) and the number of episodes (1.3 ± 0.5) above stage III (p < 0.05). Neuronal apoptosis was improved (p < 0.01), and cognitive damage was ameliorated (p < 0.05).The level of p-Akt was enhanced (p < 0.01) whereas the expression of caspase-9 was evidently inhibited (p < 0.01) in the combined group. CONCLUSIONS The present findings confirm that the combined use of SXC with CBZ can effectively control epileptic seizures, alleviate damage to hippocampal neurons and protect against cognitive impairment. The mechanism of action might be related to the upregulation of p-Akt and inhibition of caspase-9 expression.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Rui Zhang
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Chen Jia
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Mengyu Chen
- College of Pharmacy, Lanzhou University, Lanzhou, China
| | - Wen Yin
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Liming Wei
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| | - Haisheng Jiao
- Department of Pharmacy, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
16
|
Zamudio SR, Pichardo-Macías LA, Díaz-Villegas V, Flores-Navarrete IL, Guzmán-Velázquez S. Subchronic cerebrolysin treatment alleviates cognitive impairments and dendritic arborization alterations of granular neurons in the hippocampal dentate gyrus of rats with temporal lobe epilepsy. Epilepsy Behav 2019; 97:96-104. [PMID: 31207446 DOI: 10.1016/j.yebeh.2019.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 11/15/2022]
Abstract
Temporal lobe epilepsy (TLE) is one of the most frequent forms of focal epilepsy; patients with this condition, in addition to exhibiting complex seizures, also exhibit cognitive deficits. In the temporal lobe, the hippocampus, a structure relevant to learning and memory processes, is particularly affected by epilepsy. In animal models of TLE induced by pilocarpine, learning and memory deficiencies associated with changes in synaptic plasticity of the hippocampus have been reported. Cerebrolysin (CBL) is a biologically active mixture of low molecular weight peptides with neuroprotective and neurotrophic effects. The objective of the present study was to determine whether subchronic CBL treatment of rats in the chronic phase of TLE reduces the number and intensity of seizures, and whether CBL treatment can improve cognitive deficits (learning and spatial memory) and dendritic morphology in granular dentate neurons of the hippocampus. Temporal lobe epilepsy (lithium-pilocarpine model) was induced in male Wistar rats (weight, 250-300 g). Two epileptic groups were studied, in which CBL (538 mg/kg) or vehicle was administered intraperitoneally for 5 consecutive days per week for 3 weeks. Respective controls were also included in the study. At the end of treatment, the Barnes maze test (BMT) was used to assess spatial navigational learning and memory. The dendritic morphology of the dentate gyrus was also evaluated using the Golgi-Cox staining method. Results of this study did not support an antiepileptic effect of CBL. Epileptic animals treated with this agent exhibited secondarily generalized seizures similar in frequency and intensity to those of epileptic animals treated only with vehicle. However, when analyzing dendritic morphology of hippocampal granular neurons in these animals, CBL appeared to attenuate dendritic deterioration caused by epilepsy, which was associated with improved cognitive performance of the CBL-treated animals in the BMT compared with vehicle-treated epileptic rats. In conclusion, although CBL did not exert an anticonvulsant effect against secondarily generalized seizures, it can be proposed for use as an add-on therapy in epilepsy management to prevent neuronal alterations, and to improve memory and learning processes.
Collapse
Affiliation(s)
- Sergio R Zamudio
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico.
| | - Luz A Pichardo-Macías
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Verónica Díaz-Villegas
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Itzel L Flores-Navarrete
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Sonia Guzmán-Velázquez
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| |
Collapse
|
17
|
Qian X, Wang ZR, Zheng JJ, Ding JQ, Zhong JG, Zhang TY, Li W, Zhang M. Baicalein improves cognitive deficits and hippocampus impairments in temporal lobe epilepsy rats. Brain Res 2019; 1714:111-118. [PMID: 30817901 DOI: 10.1016/j.brainres.2019.02.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/20/2019] [Accepted: 02/23/2019] [Indexed: 11/16/2022]
Abstract
Temporal lobe epilepsy (TLE) is a chronic neurological disorder that is a refractory disease. Baicalein possesses various pharmacological activities, including neuroprotection in neurodegenerative disease. However, whether baicalein is protective in the treatment of TLE is not determined. Therefore, the present study investigated the role of baicalein in the treatment of TLE. Baicalein was injected intraperitoneally to TLE rats for two weeks after the onset of spontaneous recurrent seizures (SRS). Rats were observed for the occurrence of SRS, and cognitive and hippocampus injuries were evaluated. Oxidative stress and inflammatory cytokines were measured. Corticosterone and its receptor, actin-associated protein F-actin and cofilin-1 were investigated in the brains of epileptic rats. Baicalein significantly improved cognition and reduced hippocampus damage and mossy fibre sprouting in TLE rats without obvious SRS suppression. Baicalein produced excellent anti-oxidative and anti-inflammatory effects in TLE rats. Baicalein restored the disruption of the glucocorticoid signal pathway and actin-associated protein in TLE rats. These results suggest that the neuroprotective effects of baicalein on cognition and the hippocampus are associated with the suppression of oxidative stress and inflammation and the regulation of the glucocorticoid pathway and actin-associated protein in TLE rats. This evidence supports the use of baicalein as an adjuvant agent for epilepsy treatment.
Collapse
Affiliation(s)
- Xu Qian
- Department of Clinical Pharmacology, School of Pharmaceutical Science, Guangzhou Medical University and Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou, Guangdong, China
| | - Zhao-Rui Wang
- Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Jing-Jun Zheng
- Department of Clinical Pharmacology, School of Pharmaceutical Science, Guangzhou Medical University and Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou, Guangdong, China
| | - Ji-Qiang Ding
- Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Jia-Gui Zhong
- Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Teng-Yue Zhang
- Department of Clinical Pharmacology, School of Pharmaceutical Science, Guangzhou Medical University and Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou, Guangdong, China
| | - Wei Li
- Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China.
| | - Mei Zhang
- Department of Clinical Pharmacology, School of Pharmaceutical Science, Guangzhou Medical University and Key Laboratory of Molecular Target & Clinical Pharmacology, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Sun C, Fu J, Qu Z, Li D, Si P, Qiao Q, Zhang W, Xue Y, Zhen J, Wang W. Chronic mild hypoxia promotes hippocampal neurogenesis involving Notch1 signaling in epileptic rats. Brain Res 2019; 1714:88-98. [PMID: 30768929 DOI: 10.1016/j.brainres.2019.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 01/08/2023]
Abstract
Cognitive impairment is one of the most common and disabling co-morbidities of epilepsy. It is therefore imperative to find novel treatment approaches to rescue cognitive function among epilepsy patients. Adult neurogenesis is strongly implicated in cognitive function, and mild hypoxia is known to promote the proliferation and differentiation of both embryonic and adult neural stem cells (NSCs). In the present study, we investigated the effect of mild hypoxia on cognitive function and hippocampal neurogenesis of rats with pilocarpine-induced chronic epilepsy. Chronic epilepsy induced marked spatial learning and memory deficits in the Morris water maze that were rescued by consecutively 28 days mild hypoxia exposure (6 h/d at 3000 m altitude equivalent) during the chronic phase. Moreover, mild hypoxia reversed the suppression of hippocampal neurogenesis and the downregulation of NT-3 and BDNF expression in hippocampus and cortex of epileptic rats. Mild hypoxia in vitro also promoted hippocampus-derived NSC proliferation and neuronal differentiation. In addition, mild hypoxia enhanced Notch1 and Hes1 expression, suggesting that Notch1 signaling may be involved in neuroprotection of hypoxia. Our data may help to pave the way for identifying new therapeutic targets for rescuing cognition conflicts in epileptic patients by using hypoxia to promote hippocampus neurogenesis.
Collapse
Affiliation(s)
- Can Sun
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Jian Fu
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Zhenzhen Qu
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Dongxiao Li
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Peipei Si
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Qi Qiao
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Wenlin Zhang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Yan Xue
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Junli Zhen
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China.
| | - Weiping Wang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China.
| |
Collapse
|
19
|
Over-expression of 5-HT6 Receptor and Activated Jab-1/p-c-Jun Play Important Roles in Pilocarpine-Induced Seizures and Learning-Memory Impairment. J Mol Neurosci 2019; 67:388-399. [DOI: 10.1007/s12031-018-1238-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
|
20
|
Pluripotent stem cell-derived interneuron progenitors mature and restore memory deficits but do not suppress seizures in the epileptic mouse brain. Stem Cell Res 2018; 33:83-94. [DOI: 10.1016/j.scr.2018.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 08/27/2018] [Accepted: 10/03/2018] [Indexed: 01/11/2023] Open
|
21
|
Ferreira ES, Vieira LG, Moraes DM, Amorim BO, Malheiros JM, Hamani C, Covolan L. Long-Term Effects of Anterior Thalamic Nucleus Deep Brain Stimulation on Spatial Learning in the Pilocarpine Model of Temporal Lobe Epilepsy. Neuromodulation 2017; 21:160-167. [PMID: 28960670 DOI: 10.1111/ner.12688] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/29/2017] [Accepted: 07/25/2017] [Indexed: 01/20/2023]
Abstract
INTRODUCTION AND OBJECTIVES Cognitive impairment is a significant comorbidity of temporal lobe epilepsy that is associated with extensive hippocampal cell loss. Deep brain stimulation (DBS) of the anterior thalamic nucleus (ANT) has been used for the treatment of refractory partial seizures. In the pilocarpine model of epilepsy, ANT DBS applied during status epilepticus (SE) reduces hippocampal inflammation and apoptosis. When given to chronic epileptic animals it reduces hippocampal excitability and seizure frequency. Here, we tested whether ANT DBS delivered during SE and the silent phase of the pilocarpine model would reduce cognitive impairment when animals became chronically epileptic. MATERIALS AND METHODS SE was induced by a systemic pilocarpine injection (320 mg/kg). Immediately after SE onset, rats were assigned to receive DBS during the first six hours of SE (n = 8; DBSa group) or during SE + the silent period (i.e., 6 h/day until the animals developed the first spontaneous recurrent seizure; n = 10; DBSs group). Four months following SE, animals underwent water maze testing and histological evaluation. Nonstimulated chronic epileptic animals (n = 13; PCTL group) and age-matched naïve rats (n = 11, CTL group) were used as controls. Results were analyzed by repeated-measures analyses of variance (RM_ANOVA) and one-way ANOVAs, followed by Newman-Keuls post hoc tests. RESULTS Although all groups learned the spatial task, epileptic animals with or without DBS spent significantly less time in the platform quadrant, denoting a spatial memory deficit (p < 0.02). Despite these negative behavioral results, we found that animals given DBS had a significantly higher number of cells in the CA1 region and dentate gyrus. Mossy fiber sprouting was similar among all epileptic groups. CONCLUSIONS Despite lesser hippocampal neuronal loss, ANT DBS delivered either during SE or during SE and the silent phase of the pilocarpine model did not mitigate memory deficits in chronic epileptic rats.
Collapse
Affiliation(s)
- Elenn Soares Ferreira
- Department of de Physiology, Universidade Federal de São Paulo, São Paulo, Sao Paulo, Brazil
| | - Laís Gabrielle Vieira
- Department of de Physiology, Universidade Federal de São Paulo, São Paulo, Sao Paulo, Brazil
| | - Daniela Macedo Moraes
- Department of de Physiology, Universidade Federal de São Paulo, São Paulo, Sao Paulo, Brazil
| | - Beatriz O Amorim
- Department of de Physiology, Universidade Federal de São Paulo, São Paulo, Sao Paulo, Brazil
| | | | - Clement Hamani
- Behavioural Neurobiology Laboratory, Centre for Addiction and Mental Health, Toronto, Canada.,Division of Neurosurgery, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Luciene Covolan
- Department of de Physiology, Universidade Federal de São Paulo, São Paulo, Sao Paulo, Brazil
| |
Collapse
|
22
|
Ivanov AD, Zaitsev AV. NMDAR-independent hippocampal long-term depression impairment after status epilepticus in a lithium-pilocarpine model of temporal lobe epilepsy. Synapse 2017; 71. [PMID: 28432779 DOI: 10.1002/syn.21982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/29/2017] [Accepted: 04/13/2017] [Indexed: 11/07/2022]
Abstract
Temporal lobe epilepsy is usually associated with cognitive decline and memory deficits. Despite numerous existing studies on various animal models, the mechanisms of these deficits remain largely unclear. A specific form of long-term synaptic efficacy changes-long-term depression (LTD)-is thought to play an important role in memory formation and learning. However, extremely little is known about the possible alteration of LTD induction and dynamics after a status epilepticus (SE). In this work, we investigated the acute and delayed effects of lithium-pilocarpine-induced SE on NMDAR-dependent and NMDAR-independent hippocampal LTD in vitro. We found that SE affected the NMDAR-dependent and NMDAR-independent forms of LTD in different manners. The NMDAR-dependent form of LTD was almost intact 3 days after SE, but it switched from a predominantly presynaptic to a more postsynaptic locus of expression. In contrast, the NMDAR-independent LTD in the hippocampal Schaffer collaterals-CA1 synapses was fully abolished 3 days after SE. Our results emphasize the role of non-NMDA-dependent synaptic plasticity changes in the processes of epileptogenesis and the potential for therapy development.
Collapse
Affiliation(s)
- Andrey D Ivanov
- Neurophysiology of Learning Laboratory, Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences (IHNA), Moscow, Russia
| | - Aleksey V Zaitsev
- Molecular Mechanisms of Neuronal Interactions Laboratory, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences (IEPhB), Saint Petersburg, Russia.,Institute of Experimental Medicine, Federal Almazov North-West Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
23
|
Han T, Qin Y, Mou C, Wang M, Jiang M, Liu B. Seizure induced synaptic plasticity alteration in hippocampus is mediated by IL-1β receptor through PI3K/Akt pathway. Am J Transl Res 2016; 8:4499-4509. [PMID: 27830035 PMCID: PMC5095344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 10/02/2016] [Indexed: 06/06/2023]
Abstract
Seizures, which result from synchronized aberrant firing of neuronal populations, can cause long-term sequelae, such as epilepsy, cognitive and behavioral issues, in which the synaptic plasticity alteration may play an important role. Long-term potentiation (LTP) is a persistent increase in synaptic strength and is essential for learning and memory. In the present study, we first examined the alteration of cognitive impairments and synaptic plasticity in mice with seizures, then explored the underlying mechanism involving pro-inflammatory factors and PI3K/Akt pathway. The results demonstrated that: (1) PTZ-induced seizure impairs learning and memory in mice, indicated by Morris water maze test; (2) PTZ-induced seizure decreased LTP; (3) the mRNA expression of IL-1β, IL-6 and TNF-α in the hippocampus were increased in mice with seizures; (4) LTP was increased by IL-1β receptor antagonist anakinra, but not inhibitors of IL-6 or TNF-α receptor; (5) Antagonist of IL-1β receptor rescues deficits in learning and memory of mice with seizures through PI3K/Akt pathway. It is concluded that the IL-1β induced by PTZ-induced seizures may impair the synaptic plasticity alteration in hippocampus as well as learning and memory ability by PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Tao Han
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University 9677 Jingshi Road, Jinan, Shandong 250021, China
| | - Yanyu Qin
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University 9677 Jingshi Road, Jinan, Shandong 250021, China
| | - Chenzhi Mou
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University 9677 Jingshi Road, Jinan, Shandong 250021, China
| | - Min Wang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University 9677 Jingshi Road, Jinan, Shandong 250021, China
| | - Meng Jiang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University 9677 Jingshi Road, Jinan, Shandong 250021, China
| | - Bin Liu
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University 9677 Jingshi Road, Jinan, Shandong 250021, China
| |
Collapse
|
24
|
Gelinas JN, Khodagholy D, Thesen T, Devinsky O, Buzsáki G. Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy. Nat Med 2016; 22:641-8. [PMID: 27111281 PMCID: PMC4899094 DOI: 10.1038/nm.4084] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/14/2016] [Indexed: 12/15/2022]
Abstract
Interactions between the hippocampus and cortex are critical for memory. Interictal epileptiform discharges (IEDs) identify epileptic brain regions and can impair memory, but how they interact with physiological patterns of network activity is mostly undefined. We show in a rat model of temporal lobe epilepsy that spontaneous hippocampal IEDs correlate with impaired memory consolidation and are precisely coordinated with spindle oscillations in the prefrontal cortex during NREM sleep. This coordination surpasses the normal physiological ripple-spindle coupling and is accompanied by decreased ripple occurrence. IEDs also induce spindles during REM sleep and wakefulness, behavioral states that do not naturally express these oscillations, by generating a cortical ‘DOWN’ state. We confirm a similar correlation of temporofrontal IEDs with spindles over anatomically restricted cortical regions in a pilot clinical examination of four subjects with focal epilepsy. These findings imply that IEDs may impair memory via misappropriation of physiological mechanisms for hippocampal-cortical coupling, suggesting a target to treat memory impairment in epilepsy.
Collapse
Affiliation(s)
- Jennifer N Gelinas
- The Neuroscience Institute, New York University, School of Medicine, New York, New York, USA
| | - Dion Khodagholy
- The Neuroscience Institute, New York University, School of Medicine, New York, New York, USA
| | - Thomas Thesen
- Department of Neurology, Comprehensive Epilepsy Center, New York University, School of Medicine, New York, New York, USA
| | - Orrin Devinsky
- Department of Neurology, Comprehensive Epilepsy Center, New York University, School of Medicine, New York, New York, USA
| | - György Buzsáki
- The Neuroscience Institute, New York University, School of Medicine, New York, New York, USA.,Center for Neural Science, New York University, School of Medicine, New York, New York, USA
| |
Collapse
|
25
|
Holley AJ, Lugo JN. Effects of an acute seizure on associative learning and memory. Epilepsy Behav 2016; 54:51-7. [PMID: 26655449 PMCID: PMC4724501 DOI: 10.1016/j.yebeh.2015.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 01/31/2023]
Abstract
Past studies have demonstrated that inducing several seizures or continuous seizures in neonatal or adult rats results in impairments in learning and memory. The impact of a single acute seizure on learning and memory has not been investigated in mice. In this study, we exposed adult 129SvEvTac mice to the inhalant flurothyl until a behavioral seizure was induced. Our study consisted of 4 experiments where we examined the effect of one seizure before or after delay fear conditioning. We also included a separate cohort of animals that was tested in the open field after a seizure to rule out changes in locomotor activity influencing the results of memory tests. Mice that had experienced a single seizure 1h, but not 6h, prior to training showed a significant impairment in associative conditioning to the conditioned stimulus when compared with controls 24h later. There were no differences in freezing one day later for animals that experienced a single seizure 1h after associative learning. We also found that an acute seizure reduced activity levels in an open-field test 2h but not 24h later. These findings suggest that an acute seizure occurring immediately before learning can have an effect on the recall of events occurring shortly after that seizure. In contrast, an acute seizure occurring shortly after learning appears to have little or no effect on long-term memory. These findings have implications for understanding the acute effects of seizures on the acquisition of new knowledge.
Collapse
Affiliation(s)
- Andrew J. Holley
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76798, USA,Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA
| |
Collapse
|
26
|
Abstract
The challenges to individuals with epilepsy extend far beyond the seizures. Co-morbidities in epilepsy are very common and are often more problematic to individuals than the seizures themselves. In this review, the pathophysiological mechanisms of cognitive impairment are discussed. While aetiology of the epilepsy has a significant influence on cognition, there is increasing evidence that prolonged or recurrent seizures can cause or exacerbate cognitive impairment. Alterations in signalling pathways and neuronal network function play a major role in both the pathophysiology of epilepsy and the epilepsy comorbidities. However, the biological underpinnings of cognitive impairment can be distinct from the pathophysiological processes that cause seizures.
Collapse
|
27
|
Korczyn AD, Schachter SC, Amlerova J, Bialer M, van Emde Boas W, Brázdil M, Brodtkorb E, Engel J, Gotman J, Komárek V, Leppik IE, Marusic P, Meletti S, Metternich B, Moulin CJA, Muhlert N, Mula M, Nakken KO, Picard F, Schulze-Bonhage A, Theodore W, Wolf P, Zeman A, Rektor I. Third International Congress on Epilepsy, Brain and Mind: Part 1. Epilepsy Behav 2015; 50:116-37. [PMID: 26276417 PMCID: PMC5256665 DOI: 10.1016/j.yebeh.2015.06.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/24/2015] [Indexed: 12/12/2022]
Abstract
Epilepsy is both a disease of the brain and the mind. Here, we present the first of two papers with extended summaries of selected presentations of the Third International Congress on Epilepsy, Brain and Mind (April 3-5, 2014; Brno, Czech Republic). Epilepsy in history and the arts and its relationships with religion were discussed, as were overviews of epilepsy and relevant aspects of social cognition, handedness, accelerated forgetting and autobiographical amnesia, and large-scale brain networks.
Collapse
Affiliation(s)
- Amos D Korczyn
- Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Steven C Schachter
- Consortia for Improving Medicine with Innovation and Technology, Harvard Medical School, Boston, MA, USA.
| | - Jana Amlerova
- Department of Neurology, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| | - Meir Bialer
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Walter van Emde Boas
- Department of EEG, Dutch Epilepsy Clinics Foundation (SEIN), Heemstede, The Netherlands; Epilepsy Monitoring Unit, Dutch Epilepsy Clinics Foundation (SEIN), Heemstede, The Netherlands
| | - Milan Brázdil
- Masaryk University, Brno Epilepsy Center, St. Anne's Hospital and School of Medicine, Brno, Czech Republic; Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Eylert Brodtkorb
- Department of Neurology and Clinical Neurophysiology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway; Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Jean Gotman
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Vladmir Komárek
- Department of Paediatric Neurology, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| | - Ilo E Leppik
- MINCEP Epilepsy Care, University of Minnesota, Minneapolis, MN, USA; College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Petr Marusic
- Department of Neurology, Charles University, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| | - Stefano Meletti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Chris J A Moulin
- Laboratory for the Study of Learning and Development, University of Bourgogne, Dijon, France
| | - Nils Muhlert
- School of Psychology and Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, UK
| | - Marco Mula
- Epilepsy Group, Atkinson Morley Regional Neuroscience Centre, St. George's Hospital, London, UK; Institute of Medical and Biomedical Sciences, St. George's University of London, London, UK
| | - Karl O Nakken
- National Centre for Epilepsy, Oslo University Hospital, Norway
| | - Fabienne Picard
- Department of Neurology, University Hospital and Medical School of Geneva, Switzerland
| | | | - William Theodore
- Clinical Epilepsy Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Peter Wolf
- Danish Epilepsy Centre Filadelfia, Dianalund, Denmark; Department of Clinical Medicine, Neurological Service, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Adam Zeman
- University of Exeter Medical School, St. Luke's Campus, Exeter, UK
| | - Ivan Rektor
- Masaryk University, Brno Epilepsy Center, St. Anne's Hospital and School of Medicine, Brno, Czech Republic; Central European Institute of Technology (CEITEC), Brno, Czech Republic
| |
Collapse
|
28
|
Abstract
The establishment of memories involves reactivation of waking neuronal activity patterns and strengthening of associated neural circuits during slow-wave sleep (SWS), a process known as "cellular consolidation" (Dudai and Morris, 2013). Reactivation of neural activity patterns during waking behaviors that occurs on a timescale of seconds to minutes is thought to constitute memory recall (O'Keefe and Nadel, 1978), whereas consolidation of memory traces may be revealed and served by correlated firing (reactivation) that appears during sleep under conditions suitable for synaptic modification (Buhry et al., 2011). Although reactivation has been observed in human neuronal recordings (Gelbard-Sagiv et al., 2008; Miller et al., 2013), reactivation during sleep has not, likely because data are difficult to obtain and the effect is subtle. Seizures, however, provide intense and synchronous, yet sparse activation (Bower et al., 2012) that could produce a stronger consolidation effect if seizures activate learning-related mechanisms similar to those activated by learned tasks. Continuous wide-bandwidth recordings from patients undergoing intracranial monitoring for drug-resistant epilepsy revealed reactivation of seizure-related neuronal activity during subsequent SWS, but not wakefulness. Those neuronal assemblies that were most strongly activated during seizures showed the largest correlation changes, suggesting that consolidation selectively strengthened neuronal circuits activated by seizures. These results suggest that seizures "hijack" physiological learning mechanisms and also suggest a novel epilepsy therapy targeting neuronal dynamics during post-seizure sleep.
Collapse
|