1
|
Morandi-Raikova A, Rosa-Salva O, Simdianova A, Vallortigara G, Mayer U. Hierarchical processing of feature, egocentric and relational information for spatial orientation in domestic chicks. J Exp Biol 2024; 227:jeb246447. [PMID: 38323420 DOI: 10.1242/jeb.246447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024]
Abstract
Animals can use different types of information for navigation. Domestic chicks (Gallus gallus) prefer to use local features as a beacon over spatial relational information. However, the role of egocentric navigation strategies is less understood. Here, we tested domestic chicks' egocentric and allocentric orientation abilities in a large circular arena. In experiment 1, we investigated whether domestic chicks possess a side bias during viewpoint-dependent egocentric orientation, revealing facilitation for targets on the chicks' left side. Experiment 2 showed that local features are preferred over viewpoint-dependent egocentric information when the two conflict. Lastly, in experiment 3, we found that in a situation where there is a choice between egocentric and allocentric spatial relational information provided by free-standing objects, chicks preferentially rely on egocentric information. We conclude that chicks orient according to a hierarchy of cues, in which the use of the visual appearance of an object is the dominant strategy, followed by viewpoint-dependent egocentric information and finally by spatial relational information.
Collapse
Affiliation(s)
- Anastasia Morandi-Raikova
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, TN, Italy
| | - Orsola Rosa-Salva
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, TN, Italy
| | - Aleksandra Simdianova
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, TN, Italy
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, TN, Italy
| | - Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto, TN, Italy
| |
Collapse
|
2
|
Sorrell CA, Burmeister SS. Orientation by environmental geometry and feature cues in the green and black poison frog (Dendrobates auratus). Anim Cogn 2023; 26:2023-2030. [PMID: 37698756 DOI: 10.1007/s10071-023-01820-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023]
Abstract
The ability to use environmental geometry when orienting in space reflects an animal's ability to use a global, allocentric framework. Therefore, understanding when and how animal's use geometry relative to other types of cues in the environment has interested comparative cognition researchers for decades. Yet, only two amphibians have been tested to date. We trained the poison frog Dendrobates auratus to find goal shelters in a rectangular arena, in the presence and absence of a feature cue, and assessed the relative influence of the two types of cues using probe trials. We chose D. auratus because the species has complex interactions with their physical and social environments, including parental care that requires navigating to and from distant locations. We found that, like many vertebrates, D. auratus are capable of using geometric information to relocate goals. In addition, the frogs preferentially used the more reliable feature cue when the location of the feature conflicted with the geometry of the arena. The frogs were equally successful at using the feature cue when it was proximal or distal to the goal shelter, consistent with prior studies that found that D. auratus can use distal cues in a flexible manner. Our results provide further evidence that amphibians can use environmental geometry during orientation. Future studies that examine when and how amphibians use geometry relative to other types of cues will contribute to a more complete picture of spatial cognition in this important, yet understudied, group.
Collapse
Affiliation(s)
- Cody A Sorrell
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Sabrina S Burmeister
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Lee SA. Navigational roots of spatial and temporal memory structure. Anim Cogn 2023; 26:87-95. [PMID: 36480071 DOI: 10.1007/s10071-022-01726-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022]
Abstract
Our minds are constantly in transit, from the present to the past to the future, across places we have and have not directly experienced. Nevertheless, memories of our mental time travel are not organized continuously and are adaptively chunked into contexts and episodes. In this paper, I will review evidence that suggests that spatial boundary representations play a critical role in providing structure to both our spatial and temporal memories. I will illustrate the intimate connection between hippocampal spatial mapping and temporal sequencing of episodic memory to propose that high-level cognitive processes like mental time travel and conceptual mapping are rooted in basic navigational mechanisms that we humans and nonhuman animals share. Our neuroscientific understanding of hippocampal function across species may provide new insight into the origins of even the most uniquely human cognitive abilities.
Collapse
Affiliation(s)
- Sang Ah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Gwanak-Ro 1, Gwanak-Gu, Seoul, 08826, Korea.
| |
Collapse
|
4
|
Gagliardo A, Pollonara E, Casini G, Bingman VP. Unilateral hippocampal lesions and the navigational performance of homing pigeons as revealed by GPS-tracking. ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2022.2152105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anna Gagliardo
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | | | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa 56126, Italy
| | - Verner P. Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green, OH 43403, USA
| |
Collapse
|
5
|
Morandi-Raikova A, Mayer U. Spatial cognition and the avian hippocampus: Research in domestic chicks. Front Psychol 2022; 13:1005726. [PMID: 36211859 PMCID: PMC9539314 DOI: 10.3389/fpsyg.2022.1005726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
In this review, we discuss the functional equivalence of the avian and mammalian hippocampus, based mostly on our own research in domestic chicks, which provide an important developmental model (most research on spatial cognition in other birds relies on adult animals). In birds, like in mammals, the hippocampus plays a central role in processing spatial information. However, the structure of this homolog area shows remarkable differences between birds and mammals. To understand the evolutionary origin of the neural mechanisms for spatial navigation, it is important to test how far theories developed for the mammalian hippocampus can also be applied to the avian hippocampal formation. To address this issue, we present a brief overview of studies carried out in domestic chicks, investigating the direct involvement of chicks' hippocampus homolog in spatial navigation.
Collapse
Affiliation(s)
| | - Uwe Mayer
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| |
Collapse
|
6
|
Inés Sotelo M, Bingman VP, Muzio RN. The medial pallium and the spatial encoding of geometric and visual cues in the terrestrial toad, Rhinella arenarum. Neurosci Lett 2022; 786:136801. [PMID: 35842209 DOI: 10.1016/j.neulet.2022.136801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
The medial pallium (MP) of amphibians is the homologue of the mammalian hippocampus, and previous research has implicated MP for locating a using the boundary geometry of an environment. MP-lesioned, sham-operated and intact control terrestrial toads, Rhinella arenarum, were trained to locate a goal in a rectangular arena with a visual feature cue placed on one of the short walls. Whereas the sham-operated and intact subjects successfully learned to locate the goal, the MP-lesioned toads showed no evidence of learning. The data support the hypothesis that the amphibian MP is involved when the boundary geometry of an environment is used to locate a goal, which is consistent with evidence from other vertebrate groups. Curious, however, is that the MP lesions also resulted in the toads' inability to locate the goal based on the visual feature cue. This result supports previous research and suggests that, in contrast to the hippocampal homologue of amniotes, the amphibian medial pallium plays a broader role in spatial learning processes.
Collapse
Affiliation(s)
- María Inés Sotelo
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina; Instituto de Investigaciones, Facultad de Psicología, Universidad de Buenos Aires (UBA), Argentina; Department of Psychology, College of Literature, Science and the Arts, University of Michigan, USA
| | - Verner P Bingman
- Department of Psychology and J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, USA
| | - Rubén N Muzio
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Argentina; Instituto de Investigaciones, Facultad de Psicología, Universidad de Buenos Aires (UBA), Argentina.
| |
Collapse
|
7
|
Morandi-Raikova A, Mayer U. Active exploration of an environment drives the activation of the hippocampus-amygdala complex of domestic chicks. J Exp Biol 2022; 225:275962. [PMID: 35815434 DOI: 10.1242/jeb.244190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
In birds, like in mammals, the hippocampus critically mediates spatial navigation through the formation of a spatial map. This study investigates the impact of active exploration of an environment on the hippocampus of young domestic chicks. Chicks that were free to actively explore the environment exhibited a significantly higher neural activation (measured by c-Fos expression), compared to those that passively observed the same environment from a restricted area. The difference was limited to the anterior and the dorsolateral parts of the intermediate hippocampus. Furthermore, the nucleus taeniae of the amygdala showed a higher c-Fos expression in the active exploration group than the passive observation group. In both brain regions, brain activation correlated with the number of locations that chicks visited during the test. This suggest that the increase of c-Fos expression in the hippocampus is related to increased firing rates of spatially coding neurons. Furthermore, our study indicates a functional linkage of the hippocampus and nucleus taeniae of the amygdala in processing spatial information. Overall, with the present study, we confirm that, in birds like in mammals, hippocampus and amygdala functions are linked and likely related to spatial representations.
Collapse
Affiliation(s)
- Anastasia Morandi-Raikova
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto (TN), Italy
| | - Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto (TN), Italy
| |
Collapse
|
8
|
Fujita T, Aoki N, Mori C, Fujita E, Matsushima T, Homma KJ, Yamaguchi S. Chick Hippocampal Formation Displays Subdivision- and Layer-Selective Expression Patterns of Serotonin Receptor Subfamily Genes. Front Physiol 2022; 13:882633. [PMID: 35464081 PMCID: PMC9024137 DOI: 10.3389/fphys.2022.882633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 12/23/2022] Open
Abstract
Hippocampal formation (HF) plays a key role in cognitive and emotional processing in mammals. In HF neural circuits, serotonin receptors (5-HTRs) modulate functions related to cognition and emotion. To understand the phylogenetic continuity of the neural basis for cognition and emotion, it is important to identify the neural circuits that regulate cognitive and emotional processing in animals. In birds, HF has been shown to be related to cognitive functions and emotion-related behaviors. However, details regarding the distribution of 5-HTRs in the avian brain are very sparse, and 5-HTRs, which are potentially involved in cognitive functions and emotion-related behaviors, are poorly understood. Previously, we showed that 5-HTR1B and 5-HTR3A were expressed in chick HF. To identify additional 5-HTRs that are potentially involved in cognitive and emotional functions in avian HF, we selected the chick orthologs of 5-HTR1D, 5-HTR1E, 5-HTR1F, 5-HTR2B, 5-HTR5A, and 5-HTR7 and performed in situ hybridization in the chick telencephalon. We found that 5-HTR1D, 5-HTR1E, 5-HTR5A, and 5-HTR7 were expressed in the chick HF, especially 5-HTR1D and 5-HTR1E, which showed subdivision- and layer-selective expression patterns, suggesting that the characteristic 5-HT regulation is involved in cognitive functions and emotion-related behaviors in these HF regions. These findings can facilitate the understanding of serotonin regulation in avian HF and the correspondence between the HF subdivisions of birds and mammals.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Eiko Fujita
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Toshiya Matsushima
- Department of Biology, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
- *Correspondence: Shinji Yamaguchi,
| |
Collapse
|
9
|
Space, feature, and risk sensitivity in homing pigeons (Columba livia): Broadening the conversation on the role of the avian hippocampus in memory. Learn Behav 2021; 50:99-112. [PMID: 34918206 DOI: 10.3758/s13420-021-00500-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 11/08/2022]
Abstract
David Sherry has been a pioneer in investigating the avian hippocampal formation (HF) and spatial memory. Following on his work and observations that HF is sensitive to the occurrence of reward (food), we were interested in carrying out an exploratory study to investigate possible HF involvement in the representation goal value and risk. Control sham-lesioned and hippocampal-lesioned pigeons were trained in an open field to locate one food bowl containing a constant two food pellets on all trials, and two variable bowls with one containing five pellets on 75% (High Variable) and another on 25% (Low Variable) of their respective trials (High-Variable and Low-Variable bowls were never presented together). One pairing of pigeons learned bowl locations (space); another bowl colors (feature). Trained to color, hippocampal-lesioned pigeons performed as rational agents in their bowl choices and were indistinguishable from the control pigeons, a result consistent with HF regarded as unimportant for non-spatial memory. By contrast, when trained to location, hippocampal-lesioned pigeons differed from the control pigeons. They made more first-choice errors to bowls that never contained food, consistent with a role of HF in spatial memory. Intriguingly, the hippocampal-lesioned pigeons also made fewer first choices to both variable bowls, suggesting that hippocampal lesions resulted in the pigeons becoming more risk averse. Acknowledging that the results are preliminary and further research is needed, the data nonetheless support the general hypothesis that HF-dependent memory representations of space capture properties of reward value and risk, properties that contribute to decision making when confronted with a choice.
Collapse
|
10
|
Light-incubation effects on lateralisation of single unit responses in the visual Wulst of domestic chicks. Brain Struct Funct 2021; 227:497-513. [PMID: 33783595 PMCID: PMC8844149 DOI: 10.1007/s00429-021-02259-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022]
Abstract
Since the ground-breaking discovery that in-egg light exposure triggers the emergence of visual lateralisation, domestic chicks became a crucial model for research on the interaction of environmental and genetic influences for brain development. In domestic chick embryos, light exposure induces neuroanatomical asymmetries in the strength of visual projections from the thalamus to the visual Wulst. Consequently, the right visual Wulst receives more bilateral information from the two eyes than the left one. How this impacts visual Wulst's physiology is still unknown. This paper investigates the visual response properties of neurons in the left and right Wulst of dark- and light-incubated chicks, studying the effect of light incubation on bilaterally responsive cells that integrate information from both eyes. We recorded from a large number of visually responsive units, providing the first direct evidence of lateralisation in the neural response properties of units of the visual Wulst. While we confirm that some forms of lateralisation are induced by embryonic light exposure, we found also many cases of light-independent asymmetries. Moreover, we found a strong effect of in-egg light exposure on the general development of the functional properties of units in the two hemispheres. This indicates that the effect of embryonic stimulation goes beyond its contribution to the emergence of some forms of lateralisation, with influences on the maturation of visual units in both hemispheres.
Collapse
|
11
|
Morandi-Raikova A, Mayer U. Selective activation of the right hippocampus during navigation by spatial cues in domestic chicks (Gallus gallus). Neurobiol Learn Mem 2020; 177:107344. [PMID: 33242588 DOI: 10.1016/j.nlm.2020.107344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/26/2020] [Accepted: 11/16/2020] [Indexed: 11/28/2022]
Abstract
In different vertebrate species, hippocampus plays a crucial role for spatial orientation. However, even though cognitive lateralization is widespread in the animal kingdom, the lateralization of this hippocampal function has been poorly studied. The aim of the present study was to investigate the lateralization of hippocampal activation in domestic chicks, during spatial navigation in relation to free-standing objects. Two groups of chicks were trained to find food in one of the feeders located in a large circular arena. Chicks of one group solved the task using the relational spatial information provided by free-standing objects present in the arena, while the other group used the local appearance of the baited feeder as a beacon. The immediate early gene product c-Fos was employed to map neural activation of hippocampus and medial striatum of both hemispheres. Chicks that used spatial cues for navigation showed higher activation of the right hippocampus compared to chicks that oriented by local features and compared to the left hippocampus. Such differences between the two groups were not present in the left hippocampus or in the medial striatum. Relational spatial information seems thus to be selectively processed by the right hippocampus in domestic chicks. The results are discussed in light of existing evidence of hippocampal lateralization of spatial processing in chicks, with particular attention to the contrasting evidence found in pigeons.
Collapse
Affiliation(s)
- Anastasia Morandi-Raikova
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068 Rovereto (TN), Italy
| | - Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068 Rovereto (TN), Italy.
| |
Collapse
|
12
|
Coppola VJ, Nardi D, Bingman VP. Age-associated decline in septum neuronal activation during spatial learning in homing pigeons (Columba livia). Behav Brain Res 2020; 397:112948. [PMID: 33017641 DOI: 10.1016/j.bbr.2020.112948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/11/2020] [Accepted: 09/26/2020] [Indexed: 01/22/2023]
Abstract
The relationship between hippocampal aging and spatial-cognitive decline in birds has recently been investigated. However, like its mammalian counterpart, the avian hippocampus does not work in isolation and its relationship to the septum is of particular interest. The current study aimed to investigate the effects of age on septum (medial and lateral) and associated nucleus of the diagonal band (NDB) neuronal activation (as indicated by c-Fos expression) during learning of a spatial, delayed non-match-to-sample task conducted in a modified radial arm maze. The results indicated significantly reduced septum, but not NDB, activation during spatial learning in older pigeons. We also preliminarily investigated the effect of age on the number of cholinergic septum and NDB neurons (as indicated by expression of choline acetyltransferase; ChAT). Although underpowered to reveal a statistical effect, the data suggest that older pigeons have substantially fewer ChAT-expressing cells in the septum compared to younger pigeons. The data support the hypothesis that reduced activation of the septum contributes to the age-related, spatial cognitive impairment in pigeons.
Collapse
Affiliation(s)
- Vincent J Coppola
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, United States; J.P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green, OH, United States.
| | - Daniele Nardi
- Department of Psychological Science, Ball State University, Muncie, IN, United States
| | - Verner P Bingman
- Department of Behavioral Sciences, University of Findlay, Findlay, OH, United States; J.P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green, OH, United States; Department of Psychology, Bowling Green State University, Bowling Green, OH, United States
| |
Collapse
|
13
|
Neural basis of unfamiliar conspecific recognition in domestic chicks (Gallus Gallus domesticus). Behav Brain Res 2020; 397:112927. [PMID: 32980353 DOI: 10.1016/j.bbr.2020.112927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/14/2020] [Accepted: 09/20/2020] [Indexed: 12/27/2022]
Abstract
Domestic chickens are able to distinguish familiar from unfamiliar conspecifics, however the neuronal mechanisms mediating this behaviour are almost unknown. Moreover, the lateralisation of chicks' social recognition has only been investigated at the behavioural level, but not at the neural level. The aim of the present study was to test the hypothesis that exposure to unfamiliar conspecifics will selectively activate septum, hippocampus or nucleus taeniae of the amygdala of young domestic chicks. Moreover we also wanted to test the lateralisation of this response. For this purpose, we used the immediate early gene product c-Fos to map neural activity. Chicks were housed in pairs for one week. At test, either one of the two chicks was exchanged by an unfamiliar individual (experimental 'unfamiliar' group) or the familiar individual was briefly removed and then placed back in its original cage (control 'familiar' group). Analyses of chicks' interactions with the familiar/unfamiliar social companion revealed a higher number of social pecks directed towards unfamiliar individuals, compared to familiar controls. Moreover, in the group exposed to the unfamiliar individual a significantly higher activation was present in the dorsal and ventral septum of the left hemisphere and in the ventral hippocampus of the right hemisphere, compared to the control condition. These effects were neither present in other subareas of hippocampus or septum, nor in the nucleus taeniae of the amygdala. Our study thus indicates selective lateralised involvement of domestic chicks' septal and hippocampal subregions in responses to unfamiliar conspecific.
Collapse
|
14
|
The Role of Hp-NCL Network in Goal-Directed Routing Information Encoding of Bird: A Review. Brain Sci 2020; 10:brainsci10090617. [PMID: 32906650 PMCID: PMC7563516 DOI: 10.3390/brainsci10090617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022] Open
Abstract
Goal-directed navigation is a crucial behavior for the survival of animals, especially for the birds having extraordinary spatial navigation ability. In the studies of the neural mechanism of the goal-directed behavior, especially involving the information encoding mechanism of the route, the hippocampus (Hp) and nidopallium caudalle (NCL) of the avian brain are the famous regions that play important roles. Therefore, they have been widely concerned and a series of studies surrounding them have increased our understandings of the navigation mechanism of birds in recent years. In this paper, we focus on the studies of the information encoding mechanism of the route in the avian goal-directed behavior. We first summarize and introduce the related studies on the role of the Hp and NCL for goal-directed behavior comprehensively. Furthermore, we review the related cooperative interaction studies about the Hp-NCL local network and other relevant brain regions supporting the goal-directed routing information encoding. Finally, we summarize the current situation and prospect the existing important questions in this field. We hope this paper can spark fresh thinking for the following research on routing information encoding mechanism of birds.
Collapse
|
15
|
Distinct and combined responses to environmental geometry and features in a working-memory reorientation task in rats and chicks. Sci Rep 2020; 10:7508. [PMID: 32371918 PMCID: PMC7200675 DOI: 10.1038/s41598-020-64366-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/09/2020] [Indexed: 11/12/2022] Open
Abstract
The original provocative formulation of the ‘geometric module’ hypothesis was based on a working-memory task in rats which suggested that spontaneous reorientation behavior is based solely on the environmental geometry and is impervious to featural cues. Here, we retested that claim by returning to a spontaneous navigation task with rats and domestic chicks, using a single prominent featural cue (a striped wall) within a rectangular arena. Experiments 1 and 2 tested the influence of geometry and features separately. In Experiment 1, we found that both rats and chicks used environmental geometry to compute locations in a plain rectangular arena. In Experiment 2, while chicks failed to spontaneously use a striped wall in a square arena, rats showed a modest influence of the featural cue as a local marker to the goal. The critical third experiment tested the striped wall inside the rectangular arena. We found that although chicks solely relied on geometry, rats navigated based on both environmental geometry and the featural cue. While our findings with rats are contrary to classic claims of an impervious geometric module, they are consistent with the hypothesis that navigation by boundaries and features may involve distinct underlying cognitive computations. We conclude by discussing the similarities and differences in feature-use across tasks and species.
Collapse
|
16
|
Morandi-Raikova A, Mayer U. The effect of monocular occlusion on hippocampal c-Fos expression in domestic chicks (Gallus gallus). Sci Rep 2020; 10:7205. [PMID: 32350337 PMCID: PMC7190859 DOI: 10.1038/s41598-020-64224-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/09/2020] [Indexed: 01/07/2023] Open
Abstract
In birds, like in mammals, the hippocampus is particularly sensitive to exposure to novel environments, a function that is based on visual input. Chicks' eyes are placed laterally and their optic fibers project mainly to the contralateral brain hemispheres, with only little direct interhemispheric coupling. Thus, monocular occlusion has been frequently used in chicks to document functional specialization of the two hemispheres. However, we do not know whether monocular occlusion influences hippocampal activation. The aim of the present work was to fill this gap by directly testing this hypothesis. To induce hippocampal activation, chicks were exposed to a novel environment with their left or right eye occluded, or in conditions of binocular vision. Their hippocampal expression of c-Fos (neural activity marker) was compared to a baseline group that remained in a familiar environment. Interestingly, while the hippocampal activation in the two monocular groups was not different from the baseline, it was significantly higher in the binocular group exposed to the novel environment. This suggest that the representation of environmental novelty in the hippocampus of domestic chicks involves strong binocular integration.
Collapse
Affiliation(s)
| | - Uwe Mayer
- Center for Mind/Brain Sciences, University of Trento, Trento, Italy.
| |
Collapse
|
17
|
Zhou H, Wang X, Lin J, Zhao Z, Chang C. Distribution of Cadherin in the Parahippocampal Area of Developing Domestic Chicken Embryos. Exp Neurobiol 2020; 29:11-26. [PMID: 32122105 PMCID: PMC7075654 DOI: 10.5607/en.2020.29.1.11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/31/2022] Open
Abstract
Hippocampal formation is important in spatial learning and memory. Members of the cadherin superfamily are observed in the neural system with diverse spatial and temporal expression patterns and are involved in many biological processes. To date, the avian hippocampal formation is not well understood. In this study, we examined the expression of cadherin mRNA in chicken and mouse brains to investigate the morphological and cytoarchitectural bases of hippocampal formation. Profiles of the spatiotemporal expression of cadherin mRNAs in the developing chicken embryonic parahippocampal area (APH) are provided, and layer-specific expression and spatiotemporal expression were observed in different subdivisions of the APH. That fact that some cadherins (Cdh2, Cdh8, Pcdh8 and Pcdh10) showed conserved regional expression both in the hippocampus and entorhinal cortex of mice and the hippocampal formation of chickens partially confirmed the structural homology proposed by previous scientists. This study indicates that some cadherins can be used as special markers of the avian hippocampal formation.
Collapse
Affiliation(s)
- He Zhou
- School of Basic Medical Sciences, ZhengZhou University, Zhengzhou 450000, China.,Department of General and Visceral Surgery, Goethe-University Hospital, Frankfurt am Main 60596, Germany
| | - XiaoFan Wang
- School of Basic Medical Sciences, ZhengZhou University, Zhengzhou 450000, China
| | - JunTang Lin
- Henan Joint International Research Laboratory of Stem Cell Medicine, College of Biomedical Engineering, Xinxiang Medical University, Xinxiang 453000, China
| | - Ze Zhao
- School of Law, Shanghai University of Finance and Economics, Shanghai 200000, China
| | - Cheng Chang
- School of Basic Medical Sciences, ZhengZhou University, Zhengzhou 450000, China.,Birth Defect Prevention Key Laboratory, National Health Commission of the People's Republic of China, Zhengzhou 450000, China.,Center of Cerebral Palsy Surgical Research and Treatment, ZhengZhou University, Zhengzhou 450000, China
| |
Collapse
|
18
|
The use of spatial and local cues for orientation in domestic chicks (Gallus gallus). Anim Cogn 2020; 23:367-387. [DOI: 10.1007/s10071-019-01342-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
|
19
|
Lormant F, Cornilleau F, Constantin P, Meurisse M, Lansade L, Leterrier C, Lévy F, Calandreau L. Research Note: Role of the hippocampus in spatial memory in Japanese quail. Poult Sci 2019; 99:61-66. [PMID: 32416848 PMCID: PMC7587872 DOI: 10.3382/ps/pez507] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
The Japanese quail is a powerful model to characterize behavioral, physiological, and neurobiological processes in Galliformes. Behavioral tests have already been adapted for quail to assess memory systems, but despite the pivotal role of the hippocampus in this cognitive process, its involvement in spatial memory has not been demonstrated in this species. In this study, lesions were created in the hippocampus of Japanese quail, and both lesioned and control quail were tested for spatial and cue-based learning performances. These hippocampal lesions specifically impacted spatial learning performance, but spared learning performance when birds could solve the task using their cue-based memory. These findings, thus, highlight that the hippocampus plays a crucial role and is essential for spatial declarative memory. Future studies could aim to elucidate the cellular or molecular mechanisms involved in this form of memory.
Collapse
Affiliation(s)
- Flore Lormant
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS, UMR 7247, F-37380 Nouzilly, France Université François Rabelais, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - Fabien Cornilleau
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS, UMR 7247, F-37380 Nouzilly, France Université François Rabelais, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - Paul Constantin
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS, UMR 7247, F-37380 Nouzilly, France Université François Rabelais, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - Maryse Meurisse
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS, UMR 7247, F-37380 Nouzilly, France Université François Rabelais, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - Léa Lansade
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS, UMR 7247, F-37380 Nouzilly, France Université François Rabelais, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - Christine Leterrier
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS, UMR 7247, F-37380 Nouzilly, France Université François Rabelais, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - Frédéric Lévy
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS, UMR 7247, F-37380 Nouzilly, France Université François Rabelais, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - Ludovic Calandreau
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS, UMR 7247, F-37380 Nouzilly, France Université François Rabelais, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France.
| |
Collapse
|
20
|
Coppola VJ, Bingman VP. c-Fos revealed lower hippocampal participation in older homing pigeons when challenged with a spatial memory task. Neurobiol Aging 2019; 87:98-107. [PMID: 31889558 DOI: 10.1016/j.neurobiolaging.2019.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/12/2023]
Abstract
Homing pigeons experience age-related spatial-cognitive decline similar to that seen in mammals. In contrast to mammals, however, previous studies have shown the hippocampal formation (HF) of old, cognitively impaired pigeons to be greater in volume and neuron number compared with young pigeons. As a partial explanation of the cognitive decline in older birds, it was hypothesized that older pigeons have reduced HF activation during spatial learning. The present study compared HF activation (via the activity-dependent expression of the immediate early gene c-Fos) between younger and older pigeons during learning of a spatial, delayed nonmatch-to-sample task. On the last day of training, c-Fos activation significantly correlated with behavioral performance in the young, but not old, pigeons suggesting more HF engagement by the young pigeons in solving the task. The behavioral correlation was additionally associated with consistently higher, but insignificant c-Fos activation across practically every HF subdivision in the young compared with the old pigeons. In sum, the results of the present study are consistent with the hypothesis that age-related decline in the spatial cognitive ability of homing pigeons is in part a result of an older HF being less responsive to the processing of spatial information. However, alternative interpretations of the data are discussed.
Collapse
Affiliation(s)
- Vincent J Coppola
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA; J.P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green, OH, USA.
| | - Verner P Bingman
- Department of Psychology, Bowling Green State University, Bowling Green, OH, USA; J.P. Scott Center for Neuroscience, Mind, & Behavior, Bowling Green, OH, USA
| |
Collapse
|
21
|
Sotelo MI, Bingman VP, Muzio RN. The Mating Call of the Terrestrial Toad, Rhinella arenarum, as a Cue for Spatial Orientation and Its Associated Brain Activity. BRAIN, BEHAVIOR AND EVOLUTION 2019; 94:7-17. [PMID: 31770764 DOI: 10.1159/000504122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 10/13/2019] [Indexed: 11/19/2022]
Abstract
Acoustic communication is essential for reproduction and predator avoidance in many anuran species. For example, mating calls are generally produced by males and represent a conspicuous communication signal employed during the breeding season. Although anuran mating calls have been largely studied to analyze content and phonotaxis toward choruses, they are rarely discussed as sources of information guiding spatial behavior in broader contexts. This is striking if we consider that previous studies have shown anurans to be impressive navigators. In the current study, we investigated whether terrestrial toad (Rhinella arenarum) males can use a mating call as a spatial cue to locate a water reward in a laboratory maze. Male toads could indeed learn the location of a reward guided by a mating call. This navigational ability, as indicated by c-Fos, was associated with greater neuronal activity in the telencephalic hippocampal formation (HF; also referred to in amphibians as medial pallium), the medial septum (MS), and the central amygdala (CeA). HF and MS are telencephalic structures associated with spatial navigation in mammals and other vertebrates. The CeA, by contrast, has been studied in the context of acoustic processing and communication in other amphibian species. The results are discussed in the framework of an evolutionary conserved, HF-septal spatial-cognitive network shared by amphibians and mammals.
Collapse
Affiliation(s)
- María I Sotelo
- Department of Psychology, Literature, Science and Art (LSA), University of Michigan, Ann Arbor, Michigan, USA,
| | - Verner P Bingman
- Department of Psychology and J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, Ohio, USA
| | - Rubén N Muzio
- Instituto de Biología y Medicina Experimental (IBYME-CONICET) and Facultad de, Psicología, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
22
|
Selective response of the nucleus taeniae of the amygdala to a naturalistic social stimulus in visually naive domestic chicks. Sci Rep 2019; 9:9849. [PMID: 31285532 PMCID: PMC6614359 DOI: 10.1038/s41598-019-46322-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/18/2019] [Indexed: 01/17/2023] Open
Abstract
The detection of animate beings at the onset of life is important for phylogenetically distant species, such as birds and primates. Naïve chicks preferentially approach a stimulus resembling a conspecific (a stuffed fowl) over a less naturalistic one (a scrambled version of the stuffed fowl, presenting the same low-level visual features as the fowl in an unnatural configuration). The neuronal mechanisms underlying this behavior are mostly unknown. However, it has been hypothesized that innate social predispositions may involve subpallial brain areas including the amygdala. Here we asked whether a stuffed hen would activate areas of the arcopallium/amygdala complex, in particular the nucleus taeniae of the amygdala (TnA) or septum. We measured brain activity by visualizing the immediate early gene product c-Fos. After exposure to the hen, TnA showed higher density of c-Fos expressing neurons, compared to chicks that were exposed to the scrambled stimulus. A similar trend was present in the lower portion of the arcopallium, but not in the upper portion of the arcopallium or in the septum. This demonstrates that at birth the TnA is already engaged in responses to social visual stimuli, suggesting an important role for this nucleus in the early ontogenetic development of social behavior.
Collapse
|
23
|
Golüke S, Bischof HJ, Engelmann J, Caspers BA, Mayer U. Social odour activates the hippocampal formation in zebra finches (Taeniopygia guttata). Behav Brain Res 2019; 364:41-49. [DOI: 10.1016/j.bbr.2019.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023]
|
24
|
Lorenzi E, Mayer U, Rosa-Salva O, Morandi-Raikova A, Vallortigara G. Spontaneous and light-induced lateralization of immediate early genes expression in domestic chicks. Behav Brain Res 2019; 368:111905. [PMID: 30986491 DOI: 10.1016/j.bbr.2019.111905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 11/16/2022]
Abstract
Exposure of domestic chicks' eggs to light during embryo incubation stimulates asymmetrically the two eye-systems, reaching selectively the right eye (left hemisphere) and inducing asymmetries at the behavioral and neural level. Surprisingly, though, some types of lateralization have been observed also in dark incubated chicks, especially at the behavioral level. Here we investigate the mechanisms subtending the development of lateralization, in the presence and in the absence of embryonic light exposure. We measured the baseline level of expression for the immediate early gene product c-Fos, used as an indicator of the spontaneous level of neural activity and plasticity in four areas of the two hemispheres (preoptic area, septum, hippocampus and intermediate medial mesopallium). Additional DAPI staining measured overall cell density (regardless of c-Fos expression), ruling out any confound due to underlying asymmetries in cell density between the hemispheres. In different brain areas, c-Fos expression was lateralized either in light- (septum) or in dark-incubated chicks (preoptic area). Light exposure increased c-Fos expression in the left hemisphere, suggesting that c-Fos expression could participate to the known effects of light stimulation on brain asymmetries. Interestingly, this effect was visible few days after the end of the light exposure, revealing a delayed effect of light exposure on c-Fos baseline expression in brain areas outside the visual pathways. In the preoptic area of dark incubated chicks, we found a rightward bias for c-Fos expression, revealing that lateralization of the baseline level of activity and plasticity is present in the developing brain also in the absence of light exposure.
Collapse
Affiliation(s)
- Elena Lorenzi
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini 31, 38068 Rovereto (TN), Italy.
| | - Uwe Mayer
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini 31, 38068 Rovereto (TN), Italy.
| | - Orsola Rosa-Salva
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini 31, 38068 Rovereto (TN), Italy.
| | | | - Giorgio Vallortigara
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini 31, 38068 Rovereto (TN), Italy.
| |
Collapse
|
25
|
Pozner T, Vistoropsky Y, Moaraf S, Heiblum R, Barnea A. Questioning Seasonality of Neuronal Plasticity in the Adult Avian Brain. Sci Rep 2018; 8:11289. [PMID: 30050046 PMCID: PMC6062517 DOI: 10.1038/s41598-018-29532-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/13/2018] [Indexed: 12/14/2022] Open
Abstract
To date, studies that reported seasonal patterns of adult neurogenesis and neuronal recruitment have correlated them to seasonal behaviors as the cause or as a consequence of neuronal changes. The aim of our study was to test this correlation, and to investigate whether there is a seasonal pattern of new neuronal recruitment that is not correlated to behavior. To do this, we used adult female zebra finches (songbirds that are not seasonal breeders), kept them under constant social, behavioral, and spatial environments, and compared neuronal recruitment in their brains during two seasons, under natural and laboratory conditions. Under natural conditions, no significant differences were found in the pattern of new neuronal recruitment across seasons. However, under artificial indoor conditions that imitated the natural conditions, higher neuronal recruitment occurred in late summer (August) compared to early spring (February). Moreover, our data indicate that "mixing" temperature and day length significantly reduces new neuronal recruitment, demonstrating the importance of the natural combination of temperature and day length. Taken together, our findings show, for the first time, that neuroplasticity changes under natural vs. artificial conditions, and demonstrate the importance of both laboratory and field experiments when looking at complex biological systems.
Collapse
Affiliation(s)
- Tatyana Pozner
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel.
- Department of Stem Cell Biology, Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Erlangen, 91054, Germany.
| | - Yulia Vistoropsky
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
| | - Stan Moaraf
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
| | - Rachel Heiblum
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
| | - Anat Barnea
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel
| |
Collapse
|
26
|
Krause ET, Bischof HJ, Engel K, Golüke S, Maraci Ö, Mayer U, Sauer J, Caspers BA. Olfaction in the Zebra Finch ( Taeniopygia guttata ): What Is Known and Further Perspectives. ADVANCES IN THE STUDY OF BEHAVIOR 2018. [DOI: 10.1016/bs.asb.2017.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
The orientation of homing pigeons (Columba livia f.d.) with and without navigational experience in a two-dimensional environment. PLoS One 2017; 12:e0188483. [PMID: 29176875 PMCID: PMC5703563 DOI: 10.1371/journal.pone.0188483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 11/08/2017] [Indexed: 11/19/2022] Open
Abstract
Homing pigeons are known for their excellent homing ability, and their brains seem to be functionally adapted to homing. It is known that pigeons with navigational experience show a larger hippocampus and also a more lateralised brain than pigeons without navigational experience. So we hypothesized that experience may have an influence also on orientation ability. We examined two groups of pigeons (11 with navigational experience and 17 without) in a standard operant chamber with a touch screen monitor showing a 2-D schematic of a rectangular environment (as “geometric” information) and one uniquely shaped and colored feature in each corner (as “landmark” information). Pigeons were trained first for pecking on one of these features and then we examined their ability to encode geometric and landmark information in four tests by modifying the rectangular environment. All tests were done under binocular and monocular viewing to test hemispheric dominance. The number of pecks was counted for analysis. Results show that generally both groups orientate on the basis of landmarks and the geometry of environment, but landmark information was preferred. Pigeons with navigational experience did not perform better on the tests but showed a better conjunction of the different kinds of information. Significant differences between monocular and binocular viewing were detected particularly in pigeons without navigational experience on two tests with reduced information. Our data suggest that the conjunction of geometric and landmark information might be integrated after processing separately in each hemisphere and that this process is influenced by experience.
Collapse
|
28
|
Representation of environmental shape in the hippocampus of domestic chicks (Gallus gallus). Brain Struct Funct 2017; 223:941-953. [DOI: 10.1007/s00429-017-1537-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/05/2017] [Indexed: 10/18/2022]
|
29
|
Lorenzi E, Mayer U, Rosa-Salva O, Vallortigara G. Dynamic features of animate motion activate septal and preoptic areas in visually naïve chicks ( Gallus gallus ). Neuroscience 2017; 354:54-68. [DOI: 10.1016/j.neuroscience.2017.04.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/25/2017] [Accepted: 04/17/2017] [Indexed: 02/03/2023]
|
30
|
Vallortigara G. Comparative cognition of number and space: the case of geometry and of the mental number line. Philos Trans R Soc Lond B Biol Sci 2017; 373:20170120. [PMID: 29292353 PMCID: PMC5784052 DOI: 10.1098/rstb.2017.0120] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2017] [Indexed: 12/20/2022] Open
Abstract
Evidence is discussed about the use of geometric information for spatial orientation and the association between space and numbers in non-human animals. A variety of vertebrate species can reorient using simple Euclidian geometry of the environmental surface layout, i.e. in accord with metric and sense (right/left) relationships among extended surfaces. There seems to be a primacy of geometric over non-geometric information in spatial reorientation and, possibly, innate encoding of the sense of direction. The hippocampal formation plays a key role in geometry-based reorientation in mammals, birds, amphibians and fish. Although some invertebrate species show similar behaviours, it is unclear whether the underlying mechanisms are the same as in vertebrates. As to the links between space and number representations, a disposition to associate numerical magnitudes onto a left-to-right-oriented mental number line appears to exist independently of socio-cultural factors, and can be observed in animals with very little numerical experience, such as newborn chicks and human infants. Such evidence supports a nativistic foundation of number-space association. Some speculation about the possible underlying mechanisms is provided together with consideration on the difficulties inherent to any comparison among species of different taxonomic groups.This article is part of a discussion meeting issue 'The origins of numerical abilities'.
Collapse
Affiliation(s)
- Giorgio Vallortigara
- Centre for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Trento, Italy
| |
Collapse
|
31
|
Mayer U, Rosa-Salva O, Morbioli F, Vallortigara G. The motion of a living conspecific activates septal and preoptic areas in naive domestic chicks (Gallus gallus). Eur J Neurosci 2017; 45:423-432. [DOI: 10.1111/ejn.13484] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC); University of Trento; Piazza Manifattura 1 I-38068 Rovereto TN Italy
| | - Orsola Rosa-Salva
- Center for Mind/Brain Sciences (CIMeC); University of Trento; Piazza Manifattura 1 I-38068 Rovereto TN Italy
| | - Francesca Morbioli
- Center for Mind/Brain Sciences (CIMeC); University of Trento; Piazza Manifattura 1 I-38068 Rovereto TN Italy
| | - Giorgio Vallortigara
- Center for Mind/Brain Sciences (CIMeC); University of Trento; Piazza Manifattura 1 I-38068 Rovereto TN Italy
| |
Collapse
|
32
|
First exposure to an alive conspecific activates septal and amygdaloid nuclei in visually-naïve domestic chicks (Gallus gallus). Behav Brain Res 2017; 317:71-81. [DOI: 10.1016/j.bbr.2016.09.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/05/2016] [Accepted: 09/11/2016] [Indexed: 12/29/2022]
|
33
|
Prete G, Fabri M, Foschi N, Tommasi L. Geometry, landmarks and the cerebral hemispheres: 2D spatial reorientation in split-brain patients. J Neuropsychol 2016; 12:248-270. [DOI: 10.1111/jnp.12115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/18/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Giulia Prete
- Department of Psychological Science, Health and Territory; ‘G. d'Annunzio’ University of Chieti-Pescara; Italy
| | - Mara Fabri
- Department of Clinical and Experimental Medicine; Neuroscience and Cell Biology Section; Polytechnic University of Marche; Ancona Italy
| | - Nicoletta Foschi
- Regional Epilepsy Center; Neurological Clinic; ‘Ospedali Riuniti’; Ancona Italy
| | - Luca Tommasi
- Department of Psychological Science, Health and Territory; ‘G. d'Annunzio’ University of Chieti-Pescara; Italy
| |
Collapse
|
34
|
Rosa-Salva O, Grassi M, Lorenzi E, Regolin L, Vallortigara G. Spontaneous preference for visual cues of animacy in naïve domestic chicks: The case of speed changes. Cognition 2016; 157:49-60. [PMID: 27592411 DOI: 10.1016/j.cognition.2016.08.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 08/13/2016] [Accepted: 08/25/2016] [Indexed: 11/17/2022]
Abstract
Animacy perception arises in human adults from motion cues implying an internal energy source to the moving object. The internal energy of the object is often represented by a change in speed. The same features cause preferential attention in infants. We investigated whether speed changes affecting adults' animacy ratings elicit spontaneous social preferences in visually-naïve chicks. Human observers evaluated the similarity between the movement of a red blob stimulus and that of a living creature. The stimulus entered the screen and moved along the azimuth; halfway through its trajectory it could either continue to move at a constant speed or linearly increase in speed. The average speed, the distance covered and the overall motion duration were kept constant. Animacy ratings of humans were higher for accelerating stimuli (Exp. 1). Naïve chicks were then tested for their spontaneous preference for approaching the stimulus moving at a constant speed and trajectory or an identical stimulus, which suddenly accelerated and then decelerated again to the original speed. Chicks showed a significant preference for the 'speed-change stimulus' (Exp. 2). Two additional controls (Exp. 3 and 4) showed that matching the variability of the control 'speed-constant' stimulus to that of the 'speed-change stimulus' did not alter chicks' preference for the latter. Chicks' preference was suppressed by adding two occluders on both displays, positioned along the stimulus trajectory in such a way to occlude the moment of the speed change (Exp. 5). This confirms that, for chicks to show a preference, the moments of speed change need to be visible. Finally, chicks' preference extended to stimuli displaying a direction change, another motion cue eliciting animacy perception in human observers, if the speed- and direction-profile were consistent with each other and resembled what expected for biological entities that invert their motion direction (Exp. 6). Overall, this is the first demonstration of social predispositions for speed changes in any naïve model or non-human animal, indicating the presence of an attentional filter tuned toward one of the general properties of animate creatures. The similarity with human data suggests a phylogenetically old mechanism shared between vertebrates. Finally, the paradigm developed here provides ground for future investigations of the neural basis of these phenomena.
Collapse
Affiliation(s)
- O Rosa-Salva
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini 31, 38068 Rovereto (TN), Italy.
| | - M Grassi
- Department of General Psychology, University of Padua, Via Venezia 8, 35131 Padova, Italy
| | - E Lorenzi
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini 31, 38068 Rovereto (TN), Italy
| | - L Regolin
- Department of General Psychology, University of Padua, Via Venezia 8, 35131 Padova, Italy
| | - G Vallortigara
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini 31, 38068 Rovereto (TN), Italy
| |
Collapse
|
35
|
Mayer U, Rosa-Salva O, Lorenzi E, Vallortigara G. Social predisposition dependent neuronal activity in the intermediate medial mesopallium of domestic chicks (Gallus gallus domesticus). Behav Brain Res 2016; 310:93-102. [DOI: 10.1016/j.bbr.2016.05.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/02/2016] [Accepted: 05/06/2016] [Indexed: 10/21/2022]
|