1
|
Ulyanova AV, Adam CD, Cottone C, Maheshwari N, Grovola MR, Fruchet OE, Alamar J, Koch PF, Johnson VE, Cullen DK, Wolf JA. Hippocampal interneuronal dysfunction and hyperexcitability in a porcine model of concussion. Commun Biol 2023; 6:1136. [PMID: 37945934 PMCID: PMC10636018 DOI: 10.1038/s42003-023-05491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Cognitive impairment is a common symptom following mild traumatic brain injury (mTBI or concussion) and can persist for years in some individuals. Hippocampal slice preparations following closed-head, rotational acceleration injury in swine have previously demonstrated reduced axonal function and hippocampal circuitry disruption. However, electrophysiological changes in hippocampal neurons and their subtypes in a large animal mTBI model have not been examined. Using in vivo electrophysiology techniques, we examined laminar oscillatory field potentials and single unit activity in the hippocampal network 7 days post-injury in anesthetized minipigs. Concussion altered the electrophysiological properties of pyramidal cells and interneurons differently in area CA1. While the firing rate, spike width and amplitude of CA1 interneurons were significantly decreased post-mTBI, these parameters were unchanged in CA1 pyramidal neurons. In addition, CA1 pyramidal neurons in TBI animals were less entrained to hippocampal gamma (40-80 Hz) oscillations. Stimulation of the Schaffer collaterals also revealed hyperexcitability across the CA1 lamina post-mTBI. Computational simulations suggest that reported changes in interneuronal physiology may be due to alterations in voltage-gated sodium channels. These data demonstrate that a single concussion can lead to significant neuronal and circuit level changes in the hippocampus, which may contribute to cognitive dysfunction following mTBI.
Collapse
Affiliation(s)
- Alexandra V Ulyanova
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - Christopher D Adam
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Carlo Cottone
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Nikhil Maheshwari
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Michael R Grovola
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Oceane E Fruchet
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Jami Alamar
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Paul F Koch
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - Victoria E Johnson
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | - D Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA
| | - John A Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA.
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, USA.
| |
Collapse
|
2
|
Zhou H, Li H, Gowravaram N, Quan M, Kausar N, Gomperts SN. Disruption of hippocampal neuronal circuit function depends upon behavioral state in the APP/PS1 mouse model of Alzheimer's disease. Sci Rep 2022; 12:21022. [PMID: 36471155 PMCID: PMC9723144 DOI: 10.1038/s41598-022-25364-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The Alzheimer's disease-associated peptide amyloid-beta (Aβ) has been associated with neuronal hyperactivity under anesthesia, but clinical trials of anticonvulsants or neural system suppressors have, so far, failed to improve symptoms in AD. Using simultaneous hippocampal calcium imaging and electrophysiology in freely moving mice expressing human Aβ, here we show that Aβ aggregates perturbed neural systems in a state-dependent fashion, driving neuronal hyperactivity in exploratory behavior and slow wave sleep (SWS), yet suppressing activity in quiet wakefulness (QW) and REM sleep. In exploratory behavior and REM sleep, Aβ impaired hippocampal theta-gamma phase-amplitude coupling and altered neuronal synchronization with theta. In SWS, Aβ reduced cortical slow oscillation (SO) power, the coordination of hippocampal sharp wave-ripples with both the SO and thalamocortical spindles, and the coordination of calcium transients with the sharp wave-ripple. Physostigmine improved Aβ-associated hyperactivity in exploratory behavior and hypoactivity in QW and expanded the range of gamma that coupled with theta phase, but exacerbated hypoactivity in exploratory behavior. Together, these findings show that the effects of Aβ alone on hippocampal circuit function are profoundly state dependent and suggest a reformulation of therapeutic strategies aimed at Aβ induced hyperexcitability.
Collapse
Affiliation(s)
- Heng Zhou
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Hanyan Li
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Niket Gowravaram
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Moqin Quan
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Naila Kausar
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Stephen N Gomperts
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
3
|
Prolonged deficit of low gamma oscillations in the peri-infarct cortex of mice after stroke. Exp Neurol 2021; 341:113696. [PMID: 33727098 DOI: 10.1016/j.expneurol.2021.113696] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
Days and weeks after an ischemic stroke, the peri-infarct area adjacent to the necrotic tissue exhibits very intense synaptic reorganization aimed at regaining lost functions. In order to enhance functional recovery, it is important to understand the mechanisms supporting neural repair and neuroplasticity in the cortex surrounding the lesion. Brain oscillations of the local field potential (LFP) are rhythmic fluctuations of neuronal excitability that synchronize neuronal activity to organize information processing and plasticity. Although the oscillatory activity of the brain has been probed after stroke in both animals and humans using electroencephalography (EEG), the latter is ineffective to precisely map the oscillatory changes in the peri-infarct zone where synaptic plasticity potential is high. Here, we worked on the hypothesis that the brain oscillatory system is altered in the surviving peri-infarct cortex, which may slow down the functional repair and reduce the recovery. In order to document the relevance of this hypothesis, oscillatory power was measured at various distances from the necrotic core at 7 and 21 days after a permanent cortical ischemia induced in mice. Delta and theta oscillations remained at a normal power in the peri-infarct cortex, in contrast to low gamma oscillations that displayed a gradual decrease, when approaching the border of the lesion. A broadband increase of power was also observed in the homotopic contralateral sites. Thus, the proximal peri-infarct cortex could become a target of therapeutic interventions applied to correct the oscillatory regimen in order to boost post-stroke functional recovery.
Collapse
|
4
|
Yagishita H, Nishimura Y, Noguchi A, Shikano Y, Ikegaya Y, Sasaki T. Urethane anesthesia suppresses hippocampal subthreshold activity and neuronal synchronization. Brain Res 2020; 1749:147137. [DOI: 10.1016/j.brainres.2020.147137] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/04/2020] [Accepted: 09/23/2020] [Indexed: 02/05/2023]
|
5
|
Traumatic Brain Injury Preserves Firing Rates But Disrupts Laminar Oscillatory Coupling and Neuronal Entrainment in Hippocampal CA1. eNeuro 2020; 7:ENEURO.0495-19.2020. [PMID: 32737188 PMCID: PMC7477953 DOI: 10.1523/eneuro.0495-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 11/21/2022] Open
Abstract
While hippocampal-dependent learning and memory are particularly vulnerable to traumatic brain injury (TBI), the functional status of individual hippocampal neurons and their interactions with oscillations are unknown following injury. Using the most common rodent TBI model and laminar recordings in CA1, we found a significant reduction in oscillatory input into the radiatum layer of CA1 after TBI. Surprisingly, CA1 neurons maintained normal firing rates despite attenuated input, but did not maintain appropriate synchronization with this oscillatory input or with local high-frequency oscillations. Normal synchronization between these coordinating oscillations was also impaired. Simultaneous recordings of medial septal neurons known to participate in theta oscillations revealed increased GABAergic/glutamatergic firing rates postinjury under anesthesia, potentially because of a loss of modulating feedback from the hippocampus. These results suggest that TBI leads to a profound disruption of connectivity and oscillatory interactions, potentially disrupting the timing of CA1 neuronal ensembles that underlie aspects of learning and memory.
Collapse
|
6
|
Gwilt M, Bauer M, Bast T. Frequency- and state-dependent effects of hippocampal neural disinhibition on hippocampal local field potential oscillations in anesthetized rats. Hippocampus 2020; 30:1021-1043. [PMID: 32396678 DOI: 10.1002/hipo.23212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/09/2020] [Accepted: 04/09/2020] [Indexed: 11/11/2022]
Abstract
Reduced inhibitory GABA function, so-called neural disinhibition, has been implicated in cognitive disorders, including schizophrenia and age-related cognitive decline. We previously showed in rats that hippocampal disinhibition by local microinfusion of the GABA-A receptor antagonist picrotoxin disrupted memory and attention and enhanced hippocampal multi-unit burst firing recorded around the infusion site under isoflurane anesthesia. Here, we analyzed the hippocampal local field potential (LFP) recorded alongside the multi-unit data. We predicted frequency-specific LFP changes, based on previous studies implicating GABA in hippocampal oscillations, with the weight of evidence suggesting that disinhibition would facilitate theta and disrupt gamma oscillations. Using a new semi-automated method based on the kurtosis of the LFP peak-amplitude distribution as well as on amplitude envelope thresholding, we separated three distinct hippocampal LFP states under isoflurane anesthesia: "burst" and "suppression" states-high-amplitude LFP spike bursts and the interspersed low-amplitudeperiods-and a medium-amplitude "continuous" state. The burst state showed greater overall power than suppression and continuous states and higher relative delta/theta power, but lower relative beta/gamma power. The burst state also showed reduced functional connectivity across the hippocampal recording area, especially around theta and beta frequencies. Overall neuronal firing was higher in the burst than the other two states, whereas the proportion of burst firing was higher in burst and continuous states than the suppression state. Disinhibition caused state- and frequency-dependent LFP changes, tending to increase power at lower frequencies (<20 Hz), but to decrease power and connectivity at higher frequencies (>20 Hz) in burst and suppression states. The disinhibition-induced enhancement of multi-unit bursting was also state-dependent, tending to be more pronounced in burst and suppression states than the continuous state. Overall, we characterized three distinct hippocampal LFP states in isoflurane-anesthetized rats. Disinhibition changed hippocampal LFP oscillations in a state- and frequency-dependent way. Moreover, the disinhibition-induced enhancement of multi-unit bursting was also LFP state-dependent.
Collapse
Affiliation(s)
- Miriam Gwilt
- School of Psychology and Neuroscience@Nottingham, University of Nottingham, Nottingham, UK
| | - Markus Bauer
- School of Psychology and Neuroscience@Nottingham, University of Nottingham, Nottingham, UK
| | - Tobias Bast
- School of Psychology and Neuroscience@Nottingham, University of Nottingham, Nottingham, UK
| |
Collapse
|
7
|
van der Meij J, Rattenborg NC, Beckers GJL. Divergent neuronal activity patterns in the avian hippocampus and nidopallium. Eur J Neurosci 2020; 52:3124-3139. [PMID: 31944434 DOI: 10.1111/ejn.14675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/27/2019] [Indexed: 02/05/2023]
Abstract
Sleep-related brain activity occurring during non-rapid eye-movement (NREM) sleep is proposed to play a role in processing information acquired during wakefulness. During mammalian NREM sleep, the transfer of information from the hippocampus to the neocortex is thought to be mediated by neocortical slow-waves and their interaction with thalamocortical spindles and hippocampal sharp-wave ripples (SWRs). In birds, brain regions composed of pallial neurons homologous to neocortical (pallial) neurons also generate slow-waves during NREM sleep, but little is known about sleep-related activity in the hippocampus and its possible relationship to activity in other pallial regions. We recorded local field potentials (LFP) and analogue multiunit activity (AMUA) using a 64-channel silicon multi-electrode probe simultaneously inserted into the hippocampus and medial part of the nidopallium (i.e., caudal medial nidopallium; NCM) or separately into the caudolateral nidopallium (NCL) of adult female zebra finches (Taeniopygia guttata) anesthetized with isoflurane, an anesthetic known to induce NREM sleep-like slow-waves. We show that slow-waves in NCM and NCL propagate as waves of neuronal activity. In contrast, the hippocampus does not show slow-waves, nor sharp-wave ripples, but instead displays localized gamma activity. In conclusion, neuronal activity in the avian hippocampus differs from that described in mammals during NREM sleep, suggesting that hippocampal memories are processed differently during sleep in birds and mammals.
Collapse
Affiliation(s)
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Gabriël J L Beckers
- Cognitive Neurobiology and Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Ulyanova AV, Koch PF, Cottone C, Grovola MR, Adam CD, Browne KD, Weber MT, Russo RJ, Gagnon KG, Smith DH, Isaac Chen H, Johnson VE, Kacy Cullen D, Wolf JA. Electrophysiological Signature Reveals Laminar Structure of the Porcine Hippocampus. eNeuro 2018; 5:ENEURO.0102-18.2018. [PMID: 30229132 PMCID: PMC6142048 DOI: 10.1523/eneuro.0102-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/26/2018] [Accepted: 09/04/2018] [Indexed: 02/02/2023] Open
Abstract
The hippocampus is integral to working and episodic memory and is a central region of interest in diseases affecting these processes. Pig models are widely used in translational research and may provide an excellent bridge between rodents and nonhuman primates for CNS disease models because of their gyrencephalic neuroanatomy and significant white matter composition. However, the laminar structure of the pig hippocampus has not been well characterized. Therefore, we histologically characterized the dorsal hippocampus of Yucatan miniature pigs and quantified the cytoarchitecture of the hippocampal layers. We then utilized stereotaxis combined with single-unit electrophysiological mapping to precisely place multichannel laminar silicon probes into the dorsal hippocampus without the need for image guidance. We used in vivo electrophysiological recordings of simultaneous laminar field potentials and single-unit activity in multiple layers of the dorsal hippocampus to physiologically identify and quantify these layers under anesthesia. Consistent with previous reports, we found the porcine hippocampus to have the expected archicortical laminar structure, with some anatomical and histological features comparable to the rodent and others to the primate hippocampus. Importantly, we found these distinct features to be reflected in the laminar electrophysiology. This characterization, as well as our electrophysiology-based methodology targeting the porcine hippocampal lamina combined with high-channel-count silicon probes, will allow for analysis of spike-field interactions during normal and disease states in both anesthetized and future awake behaving neurophysiology in this large animal.
Collapse
Affiliation(s)
| | - Paul F. Koch
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Carlo Cottone
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Michael R. Grovola
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Christopher D. Adam
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Kevin D. Browne
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Maura T. Weber
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Robin J. Russo
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Kimberly G. Gagnon
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Douglas H. Smith
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - H. Isaac Chen
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Victoria E. Johnson
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
| | - D. Kacy Cullen
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - John A. Wolf
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA 19104
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| |
Collapse
|
9
|
A novel pyramidal cell type promotes sharp-wave synchronization in the hippocampus. Nat Neurosci 2018; 21:985-995. [PMID: 29915194 DOI: 10.1038/s41593-018-0172-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 04/26/2018] [Indexed: 01/05/2023]
Abstract
To support cognitive function, the CA3 region of the hippocampus performs computations involving attractor dynamics. Understanding how cellular and ensemble activities of CA3 neurons enable computation is critical for elucidating the neural correlates of cognition. Here we show that CA3 comprises not only classically described pyramid cells with thorny excrescences, but also includes previously unidentified 'athorny' pyramid cells that lack mossy-fiber input. Moreover, the two neuron types have distinct morphological and physiological phenotypes and are differentially modulated by acetylcholine. To understand the contribution of these athorny pyramid neurons to circuit function, we measured cell-type-specific firing patterns during sharp-wave synchronization events in vivo and recapitulated these dynamics with an attractor network model comprising two principal cell types. Our data and simulations reveal a key role for athorny cell bursting in the initiation of sharp waves: transient network attractor states that signify the execution of pattern completion computations vital to cognitive function.
Collapse
|
10
|
Li Q, Zhang X, Cheng N, Yang C, Zhang T. Notch1 knockdown disturbed neural oscillations in the hippocampus of C57BL mice. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:63-70. [PMID: 29410010 DOI: 10.1016/j.pnpbp.2018.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/17/2018] [Accepted: 01/29/2018] [Indexed: 12/30/2022]
Abstract
Neural oscillations and their interactions are associated with the coordination of neural groups, which provide a mechanism underlying information processing of brain functions. Notch1 receptor is involved in the neurological and psychiatric disorders, such as neurodevelopmental deficits, cerebral ischemia, Alzheimer's disease and depression. Here, we investigated the dynamics of neural oscillations in hippocampus of Notch1+/- mice in urethane-anesthetized state. Notch1 knockdown altered the distribution of power in the hippocampal DG areas, reduced theta (3-8 Hz) power and enhanced low gamma (LG, 30-50 Hz) and high gamma (HG, 50-100 Hz) power. Moreover, theta-gamma phase-amplitude coupling in the hippocampal DG area was markedly impaired in the Notch1+/- mice. The data further showed that the expression of NR2B was decreased, and the expressions of GABAARα1, GAD67 and parvalbumin were considerably increased after Notch1 knockdown. Taken together, our results suggest that Notch1 genetic deficiency significantly impaired the corss-frequency coupling of neural oscillations, and their interactions in the hippocampal DG region by means of disrupting the balance of excitatory and inhibitory receptors, which could be an underlying mechanism of cognitive impairment in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Qun Li
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China
| | - Xiaochen Zhang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300071 Tianjin, PR China
| | - Ning Cheng
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China
| | - Chunxiao Yang
- School of Medicine, State Key Laboratory of Medicinal Chemical Biology, Nankai University, 300071 Tianjin, PR China
| | - Tao Zhang
- College of Life Sciences, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, 300071 Tianjin, PR China.
| |
Collapse
|
11
|
Low-frequency hippocampal-cortical activity drives brain-wide resting-state functional MRI connectivity. Proc Natl Acad Sci U S A 2017; 114:E6972-E6981. [PMID: 28760982 DOI: 10.1073/pnas.1703309114] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The hippocampus, including the dorsal dentate gyrus (dDG), and cortex engage in bidirectional communication. We propose that low-frequency activity in hippocampal-cortical pathways contributes to brain-wide resting-state connectivity to integrate sensory information. Using optogenetic stimulation and brain-wide fMRI and resting-state fMRI (rsfMRI), we determined the large-scale effects of spatiotemporal-specific downstream propagation of hippocampal activity. Low-frequency (1 Hz), but not high-frequency (40 Hz), stimulation of dDG excitatory neurons evoked robust cortical and subcortical brain-wide fMRI responses. More importantly, it enhanced interhemispheric rsfMRI connectivity in various cortices and hippocampus. Subsequent local field potential recordings revealed an increase in slow oscillations in dorsal hippocampus and visual cortex, interhemispheric visual cortical connectivity, and hippocampal-cortical connectivity. Meanwhile, pharmacological inactivation of dDG neurons decreased interhemispheric rsfMRI connectivity. Functionally, visually evoked fMRI responses in visual regions also increased during and after low-frequency dDG stimulation. Together, our results indicate that low-frequency activity robustly propagates in the dorsal hippocampal-cortical pathway, drives interhemispheric cortical rsfMRI connectivity, and mediates visual processing.
Collapse
|