1
|
Xu Y, Wang M, Wei H, Yu M, Li Y. Pentraxin 3 promotes microglial M2 polarization and excitatory synapse formation in the hippocampus in depression. Int Immunopharmacol 2025; 146:113946. [PMID: 39736239 DOI: 10.1016/j.intimp.2024.113946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/10/2024] [Accepted: 12/22/2024] [Indexed: 01/01/2025]
Abstract
Depression is a prevalent mental illness that significantly impairs individuals' overall quality of life and physical well-being. However, the pathological mechanisms of depression remain unclear, and effective treatment strategies are urgently needed. Pentraxin 3 (PTX3), a long pentraxin protein, plays a significant role in various pathological conditions, including infections, immune responses, and tissue repair. In this study, we collected serum from patients with depression and established both animal and cell models of depression. We found that PTX3 expression was significantly reduced in both the serum of patients with depression and the hippocampus of chronic unpredictable mild stress (CUMS) mice. PTX3 supplementation markedly improved depressive-like behavior in CUMS mice and promoted microglial M2 polarization. In the LPS-induced BV2 cell model, PTX3 overexpression facilitated microglial M2 polarization via activation of the CREB/CEBPb axis. Additionally, PTX3 enhanced fibroblast growth factor 22 (FGF22) expression and excitatory synapse formation in the CA3 region of the hippocampus in CUMS mice. In the dexamethasone (DXM)-treated SH-SY5Y cell model, PTX3 overexpression increased SPI1 expression, elevated FGF22 transcriptional activity, and promoted the expression of excitatory synapse-related proteins PSD95 and VGLUT1. In summary, our study demonstrates that PTX3 promotes microglial M2 polarization and excitatory synapse formation in the hippocampus, suggesting potential antidepressant effects and providing theoretical support for considering PTX3 as a therapeutic target for depression.
Collapse
Affiliation(s)
- Yuhao Xu
- Department of Radiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212001, China; Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China; Department of Neuroimaging Laboratory, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Man Wang
- Department of Radiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212001, China; Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Hong Wei
- Department of Neuroimaging Laboratory, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Department of Neurology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China; Central Laboratory of the Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Ming Yu
- Department of Neurology, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| | - Yuefeng Li
- Department of Radiology, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
2
|
Zhao K, Xu J, Zhao B. Panoramic RNA expression of fibroblast growth factors in human glioblastoma tissues and the impact on the survival of patients. Oncol Lett 2024; 28:317. [PMID: 38807663 PMCID: PMC11130607 DOI: 10.3892/ol.2024.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/26/2024] [Indexed: 05/30/2024] Open
Abstract
Fibroblast growth factors (FGFs) have a key role in various critical steps of tumor growth and progression through effects on angiogenesis, inflammation and the growth and invasion of malignant cells. Nevertheless, the role of the FGF family in human glioblastoma (GBM) has been rarely studied. The objective of the present study was to assess the RNA expression of all FGF family members in tissues obtained from patients with GBM and to analyze the association between FGF expression and the survival of these patients. For this, the RNA expression of FGF family members in the malignant and proximal tissues of 12 patients with GBM was determined by analyzing high-throughput RNA transcriptome sequencing data uploaded to the National Center for Biotechnology Information database. The relationship between FGF genes and the survival of patients with GBM and glioma was also respectively studied by analyzing data from The Cancer Genome Atlas database using the Gene Expression Profiling Interactive Analysis tool. The results showed that the expression of FGF1, FGF17, FGF20 and FGF22 in GBM tissues was lower than that in adjacent tissues, with a difference of >2 times. Analysis of the overall survival of patients with GBM indicated there were no significant relationships between the expression of FGF1, FGF17, FGF20, FGF22 and overall survival. Analysis of the overall survival of patients with glioma showed that glioma patients with low FGF1 expression achieved a longer survival time than patients with high FGF1 expression; however, high expression of FGF17 and FGF22 indicated a longer survival time. In summary, the results of the present study demonstrated the panoramic expression of FGF family members in patients with GBM, and indicated that FGF1, FGF17 and FGF22 did not affect the survival of patients with GBM, but had a notable influence on the survival of patients with glioma.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jiakun Xu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Beichuan Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
3
|
Aljović A, Jacobi A, Marcantoni M, Kagerer F, Loy K, Kendirli A, Bräutigam J, Fabbio L, Van Steenbergen V, Pleśniar K, Kerschensteiner M, Bareyre FM. Synaptogenic gene therapy with FGF22 improves circuit plasticity and functional recovery following spinal cord injury. EMBO Mol Med 2023; 15:e16111. [PMID: 36601738 PMCID: PMC9906383 DOI: 10.15252/emmm.202216111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
Functional recovery following incomplete spinal cord injury (SCI) depends on the rewiring of motor circuits during which supraspinal connections form new contacts onto spinal relay neurons. We have recently identified a critical role of the presynaptic organizer FGF22 for the formation of new synapses in the remodeling spinal cord. Here, we now explore whether and how targeted overexpression of FGF22 can be used to mitigate the severe functional consequences of SCI. By targeting FGF22 expression to either long propriospinal neurons, excitatory interneurons, or a broader population of interneurons, we establish that FGF22 can enhance neuronal rewiring both in a circuit-specific and comprehensive way. We can further demonstrate that the latter approach can restore functional recovery when applied either on the day of the lesion or within 24 h. Our study thus establishes viral gene transfer of FGF22 as a new synaptogenic treatment for SCI and defines a critical therapeutic window for its application.
Collapse
Affiliation(s)
- Almir Aljović
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany,Graduate School of Systemic NeurosciencesLMU MunichPlaneggGermany
| | - Anne Jacobi
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany,Present address:
F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of NeurologyHarvard Medical SchoolBostonMAUSA
| | - Maite Marcantoni
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany
| | - Fritz Kagerer
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany,Elite Graduate Program M.Sc. Biomedical NeuroscienceTUMMunichGermany
| | - Kristina Loy
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany
| | - Arek Kendirli
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany,Graduate School of Systemic NeurosciencesLMU MunichPlaneggGermany
| | - Jonas Bräutigam
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany
| | - Luca Fabbio
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany
| | - Valérie Van Steenbergen
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany
| | - Katarzyna Pleśniar
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany,Munich Cluster of Systems Neurology (SyNergy)MunichGermany
| | - Florence M Bareyre
- Institute of Clinical Neuroimmunology, University HospitalLMU MunichMunichGermany,Biomedical Center Munich (BMC), Faculty of MedicineLMU MunichPlaneggGermany,Munich Cluster of Systems Neurology (SyNergy)MunichGermany
| |
Collapse
|
4
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
5
|
Díaz I, Colmenárez-Raga AC, Pérez-González D, Carmona VG, Plaza Lopez I, Merchán MA. Effects of Multisession Anodal Electrical Stimulation of the Auditory Cortex on Temporary Noise-Induced Hearing Loss in the Rat. Front Neurosci 2021; 15:642047. [PMID: 34393701 PMCID: PMC8358804 DOI: 10.3389/fnins.2021.642047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
The protective effect of the efferent system against acoustic trauma (AT) has been shown by several experimental approaches, including damage to one ear, sectioning of the olivocochlear bundle (OCB) in the floor of the IV ventricle, and knock-in mice overexpressing outer hair cell (OHC) cholinergic receptors, among others. Such effects have been related to changes in the regulation of the cholinergic efferent system and in cochlear amplification, which ultimately reverse upon protective hearing suppression. In addition to well-known circuits of the brainstem, the descending corticofugal pathway also regulates efferent neurons of the olivary complex. In this study, we applied our recently developed experimental paradigm of multiple sessions of electrical stimulation (ES) to activate the efferent system in combination with noise overstimulation. ABR thresholds increased 1 and 2 days after AT (8-16 kHz bandpass noise at 107 dB for 90 min) recovering at AT + 14 days. However, after multiple sessions of epidural anodal stimulation, no changes in thresholds were observed following AT. Although an inflammatory response was also observed 1 day after AT in both groups, the counts of reactive macrophages in both experimental conditions suggest decreased inflammation in the epidural stimulation group. Quantitative immunocytochemistry for choline acetyltransferase (ChAT) showed a significant decrease in the size and optical density of the efferent terminals 1 day after AT and a rebound at 14 days, suggesting depletion of the terminals followed by a long-term compensatory response. Such a synthesis recovery was significantly higher upon cortical stimulation. No significant correlation was found between ChAT optical density and size of the buttons in sham controls (SC) and ES/AT + 1day animals; however, significant negative correlations were shown in all other experimental conditions. Therefore, our comparative analysis suggests that cochleotopic cholinergic neurotransmission is also better preserved after multisession epidural stimulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Miguel A. Merchán
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
6
|
Xie H, Hong N, Zhang E, Li F, Sun K, Yu Y. Identification of Rare Copy Number Variants Associated With Pulmonary Atresia With Ventricular Septal Defect. Front Genet 2019; 10:15. [PMID: 30745907 PMCID: PMC6360179 DOI: 10.3389/fgene.2019.00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/14/2019] [Indexed: 11/13/2022] Open
Abstract
Copy number variants (CNVs) are major variations contributing to the gene heterogeneity of congenital heart diseases (CHD). pulmonary atresia with ventricular septal defect (PA-VSD) is a rare form of cyanotic CHD characterized by complex manifestations and the genetic determinants underlying PA-VSD are still largely unknown. We investigated rare CNVs in a recruited cohort of 100 unrelated patients with PA-VSD, PA-IVS, or TOF and a population-matched control cohort of 100 healthy children using whole-exome sequencing. Comparing rare CNVs in PA-VSD cases and that in PA-IVS or TOF positive controls, we observed twenty-two rare CNVs only in PA-VSD, five rare CNVs only in PA-VSD and TOF as well as thirteen rare CNVs only in PA-VSD and PA-IVS. Six of these CNVs were considered pathogenic or potentially pathogenic to PA-VSD: 16p11.2 del (PPP4C and TBX6), 5q35.3 del (FLT4), 5p13.1 del (RICTOR), 6p21.33 dup (TNXB), 7p15.2 del (HNRNPA2B1), and 19p13.3 dup (FGF22). The gene networks showed that four putative candidate genes for PA-VSD, PPP4C, FLT4, RICTOR, and FGF22 had strong interaction with well-known cardiac genes relevant to heart or blood vessel development. Meanwhile, the analysis of transcriptome array revealed that PPP4C and RICTOR were also significantly expressed in human embryonic heart. In conclusion, three rare novel CNVs were identified only in PA-VSD: 16p11.2 del (PPP4C), 5q35.3 del (FLT4) and 5p13.1 del (RICTOR), implicating novel candidate genes of interest for PA-VSD. Our study provided new insights into understanding for the pathogenesis of PA-VSD and helped elucidate critical genes for PA-VSD.
Collapse
Affiliation(s)
- Huilin Xie
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nanchao Hong
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Erge Zhang
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fen Li
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Sun
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Yu
- Department of Pediatric Cardiology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Kitahara Y, Ohta K, Hasuo H, Shuto T, Kuroiwa M, Sotogaku N, Togo A, Nakamura KI, Nishi A. Chronic Fluoxetine Induces the Enlargement of Perforant Path-Granule Cell Synapses in the Mouse Dentate Gyrus. PLoS One 2016; 11:e0147307. [PMID: 26788851 PMCID: PMC4720354 DOI: 10.1371/journal.pone.0147307] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/01/2016] [Indexed: 12/27/2022] Open
Abstract
A selective serotonin reuptake inhibitor is the most commonly prescribed antidepressant for the treatment of major depression. However, the mechanisms underlying the actions of selective serotonin reuptake inhibitors are not fully understood. In the dentate gyrus, chronic fluoxetine treatment induces increased excitability of mature granule cells (GCs) as well as neurogenesis. The major input to the dentate gyrus is the perforant path axons (boutons) from the entorhinal cortex (layer II). Through voltage-sensitive dye imaging, we found that the excitatory neurotransmission of the perforant path synapse onto the GCs in the middle molecular layer of the mouse dentate gyrus (perforant path-GC synapse) is enhanced after chronic fluoxetine treatment (15 mg/kg/day, 14 days). Therefore, we further examined whether chronic fluoxetine treatment affects the morphology of the perforant path-GC synapse, using FIB/SEM (focused ion beam/scanning electron microscopy). A three-dimensional reconstruction of dendritic spines revealed the appearance of extremely large-sized spines after chronic fluoxetine treatment. The large-sized spines had a postsynaptic density with a large volume. However, chronic fluoxetine treatment did not affect spine density. The presynaptic boutons that were in contact with the large-sized spines were large in volume, and the volumes of the mitochondria and synaptic vesicles inside the boutons were correlated with the size of the boutons. Thus, the large-sized perforant path-GC synapse induced by chronic fluoxetine treatment contains synaptic components that correlate with the synapse size and that may be involved in enhanced glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Yosuke Kitahara
- Department of Pharmacology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830–0011, Japan
| | - Keisuke Ohta
- Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830–0011, Japan
| | - Hiroshi Hasuo
- Department of Physiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830–0011, Japan
| | - Takahide Shuto
- Department of Pharmacology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830–0011, Japan
| | - Mahomi Kuroiwa
- Department of Pharmacology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830–0011, Japan
| | - Naoki Sotogaku
- Department of Pharmacology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830–0011, Japan
| | - Akinobu Togo
- Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830–0011, Japan
| | - Kei-ichiro Nakamura
- Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830–0011, Japan
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, 830–0011, Japan
- * E-mail:
| |
Collapse
|