1
|
Baddenhausen S, Lutz B, Hofmann C. Cannabinoid type-1 receptor signaling in dopaminergic Engrailed-1 expressing neurons modulates motivation and depressive-like behavior. Front Mol Neurosci 2024; 17:1379889. [PMID: 38660383 PMCID: PMC11042029 DOI: 10.3389/fnmol.2024.1379889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
The endocannabinoid system comprises highly versatile signaling functions within the nervous system. It is reported to modulate the release of several neurotransmitters, consequently affecting the activity of neuronal circuits. Investigations have highlighted its roles in numerous processes, including appetite-stimulating characteristics, particularly for palatable food. Moreover, endocannabinoids are shown to fine-tune dopamine-signaled processes governing motivated behavior. Specifically, it has been demonstrated that excitatory and inhibitory inputs controlled by the cannabinoid type 1 receptor (CB1) regulate dopaminergic neurons in the mesocorticolimbic pathway. In the present study, we show that mesencephalic dopaminergic (mesDA) neurons in the ventral tegmental area (VTA) express CB1, and we investigated the consequences of specific deletion of CB1 in cells expressing the transcription factor Engrailed-1 (En1). To this end, we validated a new genetic mouse line EN1-CB1-KO, which displays a CB1 knockout in mesDA neurons beginning from their differentiation, as a tool to elucidate the functional contribution of CB1 in mesDA neurons. We revealed that EN1-CB1-KO mice display a significantly increased immobility time and shortened latency to the first immobility in the forced swim test of adult mice. Moreover, the maximal effort exerted to obtain access to chocolate-flavored pellets was significantly reduced under a progressive ratio schedule. In contrast, these mice do not differ in motor skills, anhedonia- or anxiety-like behavior compared to wild-type littermates. Taken together, these findings suggest a depressive-like or despair behavior in an inevitable situation and a lack of motivation to seek palatable food in EN1-CB1-KO mice, leading us to propose that CB1 plays an important role in the physiological functions of mesDA neurons. In particular, our data suggest that CB1 directly modifies the mesocorticolimbic pathway implicated in depressive-like/despair behavior and motivation. In contrast, the nigrostriatal pathway controlling voluntary movement seems to be unaffected.
Collapse
Affiliation(s)
- Sarah Baddenhausen
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Clementine Hofmann
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
2
|
Rescue of Vasopressin Synthesis in Magnocellular Neurons of the Supraoptic Nucleus Normalises Acute Stress-Induced Adrenocorticotropin Secretion and Unmasks an Effect on Social Behaviour in Male Vasopressin-Deficient Brattleboro Rats. Int J Mol Sci 2022; 23:ijms23031357. [PMID: 35163282 PMCID: PMC8836014 DOI: 10.3390/ijms23031357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 02/03/2023] Open
Abstract
The relevance of vasopressin (AVP) of magnocellular origin to the regulation of the endocrine stress axis and related behaviour is still under discussion. We aimed to obtain deeper insight into this process. To rescue magnocellular AVP synthesis, a vasopressin-containing adeno-associated virus vector (AVP-AAV) was injected into the supraoptic nucleus (SON) of AVP-deficient Brattleboro rats (di/di). We compared +/+, di/di, and AVP-AAV treated di/di male rats. The AVP-AAV treatment rescued the AVP synthesis in the SON both morphologically and functionally. It also rescued the peak of adrenocorticotropin release triggered by immune and metabolic challenges without affecting corticosterone levels. The elevated corticotropin-releasing hormone receptor 1 mRNA levels in the anterior pituitary of di/di-rats were diminished by the AVP-AAV-treatment. The altered c-Fos synthesis in di/di-rats in response to a metabolic stressor was normalised by AVP-AAV in both the SON and medial amygdala (MeA), but not in the central and basolateral amygdala or lateral hypothalamus. In vitro electrophysiological recordings showed an AVP-induced inhibition of MeA neurons that was prevented by picrotoxin administration, supporting the possible regulatory role of AVP originating in the SON. A memory deficit in the novel object recognition test seen in di/di animals remained unaffected by AVP-AAV treatment. Interestingly, although di/di rats show intact social investigation and aggression, the SON AVP-AAV treatment resulted in an alteration of these social behaviours. AVP released from the magnocellular SON neurons may stimulate adrenocorticotropin secretion in response to defined stressors and might participate in the fine-tuning of social behaviour with a possible contribution from the MeA.
Collapse
|
3
|
Studying Independent Kcna6 Knock-out Mice Reveals Toxicity of Exogenous LacZ to Central Nociceptor Terminals and Differential Effects of Kv1.6 on Acute and Neuropathic Pain Sensation. J Neurosci 2021; 41:9141-9162. [PMID: 34544832 DOI: 10.1523/jneurosci.0187-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Abstract
The potassium channel Kv1.6 has recently been implicated as a major modulatory channel subunit expressed in primary nociceptors. Furthermore, its expression at juxtaparanodes of myelinated primary afferents is induced following traumatic nerve injury as part of an endogenous mechanism to reduce hyperexcitability and pain-related hypersensitivity. In this study, we compared two mouse models of constitutive Kv1.6 knock-out (KO) achieved by different methods: traditional gene trap via homologous recombination and CRISPR-mediated excision. Both Kv1.6 KO mouse lines exhibited an unexpected reduction in sensitivity to noxious heat stimuli, to differing extents: the Kv1.6 mice produced via gene trap had a far more significant hyposensitivity. These mice (Kcna6lacZ ) expressed the bacterial reporter enzyme LacZ in place of Kv1.6 as a result of the gene trap mechanism, and we found that their central primary afferent presynaptic terminals developed a striking neurodegenerative phenotype involving accumulation of lipid species, development of "meganeurites," and impaired transmission to dorsal horn wide dynamic range neurons. The anatomic defects were absent in CRISPR-mediated Kv1.6 KO mice (Kcna6 -/-) but were present in a third mouse model expressing exogenous LacZ in nociceptors under the control of a Nav1.8-promoted Cre recombinase. LacZ reporter enzymes are thus intrinsically neurotoxic to sensory neurons and may induce pathologic defects in transgenic mice, which has confounding implications for the interpretation of gene KOs using lacZ Nonetheless, in Kcna6 -/- mice not affected by LacZ, we demonstrated a significant role for Kv1.6 regulating acute noxious thermal sensitivity, and both mechanical and thermal pain-related hypersensitivity after nerve injury.SIGNIFICANCE STATEMENT In recent decades, the expansion of technologies to experimentally manipulate the rodent genome has contributed significantly to the field of neuroscience. While introduction of enzymatic or fluorescent reporter proteins to label neuronal populations is now commonplace, often potential toxicity effects are not fully considered. We show a role of Kv1.6 in acute and neuropathic pain states through analysis of two mouse models lacking Kv1.6 potassium channels: one with additional expression of LacZ and one without. We show that LacZ reporter enzymes induce unintended defects in sensory neurons, with an impact on behavioral data outcomes. To summarize we highlight the importance of Kv1.6 in recovery of normal sensory function following nerve injury, and careful interpretation of data from LacZ reporter models.
Collapse
|
4
|
Hofmann C, Sander A, Wang XX, Buerge M, Jungwirth B, Borgstedt L, Kreuzer M, Kopp C, Schorpp K, Hadian K, Wotjak CT, Ebert T, Ruitenberg M, Parsons CG, Rammes G. Inhalational Anesthetics Do Not Deteriorate Amyloid-β-Derived Pathophysiology in Alzheimer's Disease: Investigations on the Molecular, Neuronal, and Behavioral Level. J Alzheimers Dis 2021; 84:1193-1218. [PMID: 34657881 DOI: 10.3233/jad-201185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Studies suggest that general anesthetics like isoflurane and sevoflurane may aggravate Alzheimer's disease (AD) neuropathogenesis, e.g., increased amyloid-β (Aβ) protein aggregation resulting in synaptotoxicity and cognitive dysfunction. Other studies showed neuroprotective effects, e.g., with xenon. OBJECTIVE In the present study, we want to detail the interactions of inhalational anesthetics with Aβ-derived pathology. We hypothesize xenon-mediated beneficial mechanisms regarding Aβ oligomerization and Aβ-mediated neurotoxicity on processes related to cognition. METHODS Oligomerization of Aβ 1-42 in the presence of anesthetics has been analyzed by means of TR-FRET and silver staining. For monitoring changes in neuronal plasticity due to anesthetics and Aβ 1-42, Aβ 1-40, pyroglutamate-modified amyloid-(AβpE3), and nitrated Aβ (3NTyrAβ), we quantified long-term potentiation (LTP) and spine density. We analyzed network activity in the hippocampus via voltage-sensitive dye imaging (VSDI) and cognitive performance and Aβ plaque burden in transgenic AD mice (ArcAβ) after anesthesia. RESULTS Whereas isoflurane and sevoflurane did not affect Aβ 1-42 aggregation, xenon alleviated the propensity for aggregation and partially reversed AβpE3 induced synaptotoxic effects on LTP. Xenon and sevoflurane reversed Aβ 1-42-induced spine density attenuation. In the presence of Aβ 1-40 and AβpE3, anesthetic-induced depression of VSDI-monitored signaling recovered after xenon, but not isoflurane and sevoflurane removal. In slices pretreated with Aβ 1-42 or 3NTyrAβ, activity did not recover after washout. Cognitive performance and plaque burden were unaffected after anesthetizing WT and ArcAβ mice. CONCLUSION None of the anesthetics aggravated Aβ-derived AD pathology in vivo. However, Aβ and anesthetics affected neuronal activity in vitro, whereby xenon showed beneficial effects on Aβ 1-42 aggregation, LTP, and spine density.
Collapse
Affiliation(s)
- Carolin Hofmann
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Annika Sander
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Xing Xing Wang
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Martina Buerge
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Bettina Jungwirth
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Department of Anesthesiology, University Hospital Ulm, Ulm, Germany
| | - Laura Borgstedt
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias Kreuzer
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claudia Kopp
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Neuronal Plasticity, Munich, Germany.,Central Nervous System Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Tim Ebert
- Max Planck Institute of Psychiatry, Neuronal Plasticity, Munich, Germany
| | | | | | - Gerhard Rammes
- Department of Anesthesiology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
Meyer KJ, Anderson MG. Genetic modifiers as relevant biological variables of eye disorders. Hum Mol Genet 2017; 26:R58-R67. [PMID: 28482014 DOI: 10.1093/hmg/ddx180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/05/2017] [Indexed: 12/19/2022] Open
Abstract
From early in the study of mammalian genetics, it was clear that modifiers can have a striking influence on phenotypes. Today, several modifiers have now been studied in enough detail to allow a glimpse of how they function and influence our perspective of disease. With respect to diseases of the eye, some modifiers are an important source of phenotypic variation that can elucidate how genes function in networks to collectively shape ocular anatomy and physiology, thus influencing our understanding of basic biology. Other modifiers represent an opportunity for new therapeutic targets, whose manipulation could be used to mitigate ophthalmic disease. Here, we review progress in the study of genetic modifiers of eye disorders, with examples from mice and humans that together illustrate the ubiquitous nature of genetic modifiers and why they are relevant biological variables in experimental design. Special emphasis is given to ophthalmic modifiers in mice, especially those relevant to selection of genetic background and those that might inadvertently be a source of experimental variability. These modifiers are capable of influencing interpretations of many experiments using targeted genome manipulations such as knockouts or transgenics. Whereas there are fewer examples of modifiers of eye disorders in humans with a molecular identification, there is ample evidence that they exist and should be considered as a relevant biological variable in human genetic studies as well.
Collapse
Affiliation(s)
- Kacie J Meyer
- Department of Molecular Physiology and Biophysics.,Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA
| | - Michael G Anderson
- Department of Molecular Physiology and Biophysics.,Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,Stephen A. Wynn Institute for Vision Research, University of Iowa, Iowa City, IA 52242, USA.,Center for Prevention and Treatment of Visual Loss, Iowa City Veterans Administration Medical Center, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Zhang Y, Reichel JM, Han C, Zuniga-Hertz JP, Cai D. Astrocytic Process Plasticity and IKKβ/NF-κB in Central Control of Blood Glucose, Blood Pressure, and Body Weight. Cell Metab 2017; 25:1091-1102.e4. [PMID: 28467927 PMCID: PMC5576872 DOI: 10.1016/j.cmet.2017.04.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/07/2017] [Accepted: 04/05/2017] [Indexed: 10/19/2022]
Abstract
Central regulation of metabolic physiology is mediated critically through neuronal functions; however, whether astrocytes are also essential remains unclear. Here we show that the high-order processes of astrocytes in the mediobasal hypothalamus displayed shortening in fasting and elongation in fed status. Chronic overnutrition and astrocytic IKKβ/NF-κB upregulation similarly impaired astrocytic plasticity, leading to sustained shortening of high-order processes. In physiology, astrocytic IKKβ/NF-κB upregulation resulted in early-onset effects, including glucose intolerance and blood pressure rise, and late-onset effects, including body weight and fat gain. Appropriate inhibition in astrocytic IKKβ/NF-κB protected against chronic overnutrition impairing astrocytic plasticity and these physiological functions. Mechanistically, astrocytic regulation of hypothalamic extracellular GABA level and therefore BDNF expression were found partly accountable. Hence, astrocytic process plasticity and IKKβ/NF-κB play significant roles in central control of blood glucose, blood pressure, and body weight as well as the central induction of these physiological disorders leading to disease.
Collapse
Affiliation(s)
- Yalin Zhang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Judith M Reichel
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cheng Han
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Juan Pablo Zuniga-Hertz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Institute of Aging, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
7
|
Reichel JM, Bedenk BT, Czisch M, Wotjak CT. Age-related cognitive decline coincides with accelerated volume loss of the dorsal but not ventral hippocampus in mice. Hippocampus 2016; 27:28-35. [PMID: 27699923 DOI: 10.1002/hipo.22668] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2016] [Indexed: 12/11/2022]
Abstract
Even in the absence of neurodegenerative diseases, progressing age often coincides with cognitive decline and morphological changes. However, longitudinal studies that directly link these two processes are missing. In this proof-of-concept study we therefore performed repeated within-subject testing of healthy male R26R mice in a spatial learning task in combination with manganese-enhanced volumetric MRI analyses at the ages of 8, 16, and 24 months. We grouped the mice into good and poor performers (n = 6, each), based on their spatial learning abilities at the age of 24 months. Using this stratification, we failed to detect a priori volume differences, but observed a significant decrease in total hippocampal volume over time for both groups. Interestingly, this volume decrease was specific for the dorsal hippocampus and significantly accelerated in poor performers between 16 and 24 months of age. This is the first time that individual changes in hippocampal volume were traced alongside cognitive performance within the same subjects over 1½ years. Our study points to a causal link between volume loss of the dorsal hippocampus and cognitive impairments. In addition, it suggests accelerated degenerative processes rather than a priori volume differences as determining trajectories of age-related cognitive decline. Despite the relatively small sample sizes, the strong behavioral and moderate morphological alterations demonstrate the general feasibility of longitudinal studies of age-related decline in cognition and hippocampus integrity. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- J M Reichel
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - B T Bedenk
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - M Czisch
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany.,Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - C T Wotjak
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|