1
|
Ferrier FJ, Saul I, Khoury N, Ruiz AJ, Lao EJP, Escobar I, Dave KR, Young JI, Perez-Pinzon MA. Post cardiac arrest physical exercise mitigates cell death in the septal and thalamic nuclei and ameliorates contextual fear conditioning deficits in rats. J Cereb Blood Flow Metab 2023; 43:446-459. [PMID: 36369732 PMCID: PMC9941858 DOI: 10.1177/0271678x221137539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/14/2022]
Abstract
A major concern for cardiac arrest (CA) survivors is the manifestation of long-term cognitive impairments. Physical exercise (PE) is a well-established approach to improve cognitive functions under certain pathological conditions. We previously showed that PE post-CA mitigates cognitive deficits, but the underlying mechanisms remain unknown. To define neuroprotective mechanisms, we analyzed whether PE post-CA protects neurons involved in memory. We first performed a contextual fear conditioning (CFC) test to confirm that PE post-CA preserves memory in rats. We then conducted a cell-count analysis and determined the number of live cells in the hippocampus, and septal and thalamic nuclei, all areas involved in cognitive functions. Lastly, we performed RNA-seq to determine PE post-CA effect on gene expression. Following CA, exercised rats had preserved CFC memory than sham PE animals. Despite this outcome, PE post-CA did not protect hippocampal cells from dying. However, PE ameliorated cell death in septal and thalamic nuclei compared to sham PE animals, suggesting that these nuclei are crucial in mitigating cognitive decline post-CA. Interestingly, PE affected regulation of genes related to neuroinflammation, plasticity, and cell death. These findings reveal potential mechanisms whereby PE post-CA preserves cognitive functions by protecting septal and thalamic cells via gene regulation.
Collapse
Affiliation(s)
- Fernando J Ferrier
- Peritz Scheinberg Cerebral Vascular Disease Research
Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami,
FL, USA
- Neuroscience Program, University of Miami Leonard M. Miller
School of Medicine, Miami FL
| | - Isabel Saul
- Peritz Scheinberg Cerebral Vascular Disease Research
Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami,
FL, USA
- Department of Neurology, University of Miami Leonard M. Miller
School of Medicine, Miami, FL, USA
| | - Nathalie Khoury
- Peritz Scheinberg Cerebral Vascular Disease Research
Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami,
FL, USA
- Neuroscience Program, University of Miami Leonard M. Miller
School of Medicine, Miami FL
| | - Alexander J Ruiz
- Peritz Scheinberg Cerebral Vascular Disease Research
Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami,
FL, USA
| | - Efrain J Perez Lao
- Peritz Scheinberg Cerebral Vascular Disease Research
Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami,
FL, USA
- Neuroscience Program, University of Miami Leonard M. Miller
School of Medicine, Miami FL
- Hussman Institute for Human Genetics, University of Miami
Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Iris Escobar
- Peritz Scheinberg Cerebral Vascular Disease Research
Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami,
FL, USA
- Neuroscience Program, University of Miami Leonard M. Miller
School of Medicine, Miami FL
| | - Kunjan R Dave
- Peritz Scheinberg Cerebral Vascular Disease Research
Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami,
FL, USA
- Neuroscience Program, University of Miami Leonard M. Miller
School of Medicine, Miami FL
- Department of Neurology, University of Miami Leonard M. Miller
School of Medicine, Miami, FL, USA
| | - Juan I Young
- Hussman Institute for Human Genetics, University of Miami
Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Miguel A Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research
Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami,
FL, USA
- Neuroscience Program, University of Miami Leonard M. Miller
School of Medicine, Miami FL
- Department of Neurology, University of Miami Leonard M. Miller
School of Medicine, Miami, FL, USA
| |
Collapse
|
2
|
Cesari V, Vallefuoco A, Agrimi J, Gemignani A, Paolocci N, Menicucci D. Intimate partner violence: psycho-physio-pathological sequelae for defining a holistic enriched treatment. Front Behav Neurosci 2022; 16:943081. [PMID: 36248029 PMCID: PMC9561850 DOI: 10.3389/fnbeh.2022.943081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Intimate partner violence (IPV) is a health priority, which worldwide, mainly affects women. The consequences of IPV include several psychophysiological effects. These range from altered levels of hormones and neurotrophins to difficulties in emotion regulation and cognitive impairment. Mounting evidence from preclinical studies has shown that environmental enrichment, a form of sensory-motor, cognitive, and social stimulation, can induce a wide range of neuroplastic processes in the brain which consistently improve recovery from a wide variety of somatic and psychiatric diseases. To support IPV survivors, it is essential to ensure a safe housing environment, which can serve as a foundation for environmental enrichment-based interventions. However, some concerns have been raised when supportive housing interventions focus on the economic aspects of survivors’ lives instead of the emotional ones. We thus propose a holistic intervention in which supportive housing is integrated with evidenced-based psychotherapies which could constitute an enriched therapeutic approach for IPV survivors.
Collapse
Affiliation(s)
- Valentina Cesari
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Alessandra Vallefuoco
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Jacopo Agrimi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
- Clinical Psychology branch, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Nazareno Paolocci
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD, United States
| | - Danilo Menicucci
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
- Comitato Unico di Garanzia, University of Pisa, Pisa, Italy
- *Correspondence: Danilo Menicucci
| |
Collapse
|
3
|
Aggleton JP, Nelson AJD, O'Mara SM. Time to retire the serial Papez circuit: Implications for space, memory, and attention. Neurosci Biobehav Rev 2022; 140:104813. [PMID: 35940310 PMCID: PMC10804970 DOI: 10.1016/j.neubiorev.2022.104813] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
After more than 80 years, Papez serial circuit remains a hugely influential concept, initially for emotion, but in more recent decades, for memory. Here, we show how this circuit is anatomically and mechanistically naïve as well as outdated. We argue that a new conceptualisation is necessitated by recent anatomical and functional findings that emphasize the more equal, working partnerships between the anterior thalamic nuclei and the hippocampal formation, along with their neocortical interactions in supporting, episodic memory. Furthermore, despite the importance of the anterior thalamic for mnemonic processing, there is growing evidence that these nuclei support multiple aspects of cognition, only some of which are directly associated with hippocampal function. By viewing the anterior thalamic nuclei as a multifunctional hub, a clearer picture emerges of extra-hippocampal regions supporting memory. The reformulation presented here underlines the need to retire Papez serially processing circuit.
Collapse
Affiliation(s)
- John P Aggleton
- School of Psychology, Cardiff University, 70 Park Place, Cardiff CF10 3AT, Wales, UK.
| | - Andrew J D Nelson
- School of Psychology, Cardiff University, 70 Park Place, Cardiff CF10 3AT, Wales, UK
| | - Shane M O'Mara
- School of Psychology and Trinity College Institute of Neuroscience, Trinity College Dublin, The University of Dublin, Dublin D02 PN40, Ireland
| |
Collapse
|
4
|
Savage LM, Nunes PT, Gursky ZH, Milbocker KA, Klintsova AY. Midline Thalamic Damage Associated with Alcohol-Use Disorders: Disruption of Distinct Thalamocortical Pathways and Function. Neuropsychol Rev 2021; 31:447-471. [PMID: 32789537 PMCID: PMC7878584 DOI: 10.1007/s11065-020-09450-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
The thalamus, a significant part of the diencephalon, is a symmetrical and bilateral central brain structure. The thalamus is subdivided into three major groups of nuclei based on their function: sensorimotor nuclei (or principal/relay nuclei), limbic nuclei and nuclei bridging these two domains. Anatomically, nuclei within the thalamus are described by their location, such as anterior, medial, lateral, ventral, and posterior. In this review, we summarize the role of medial and midline thalamus in cognition, ranging from learning and memory to flexible adaptation. We focus on the discoveries in animal models of alcohol-related brain damage, which identify the loss of neurons in the medial and midline thalamus as drivers of cognitive dysfunction associated with alcohol use disorders. Models of developmental ethanol exposure and models of adult alcohol-related brain damage and are compared and contrasted, and it was revealed that there are similar (anterior thalamus) and different (intralaminar [adult exposure] versus ventral midline [developmental exposure]) thalamic pathology, as well as disruptions of thalamo-hippocampal and thalamo-cortical circuits. The final part of the review summarizes approaches to recover alcohol-related brain damage and cognitive and behavioral outcomes. These approaches include pharmacological, nutritional and behavioral interventions that demonstrated the potential to mitigate alcohol-related damage. In summary, the medial/midline thalamus is a significant contributor to cognition function, which is also sensitive to alcohol-related brain damage across the life span, and plays a role in alcohol-related cognitive dysfunction.
Collapse
Affiliation(s)
- Lisa M Savage
- Developmental Ethanol Alcohol Research Center, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, 13902-6000, USA.
| | - Polliana T Nunes
- Developmental Ethanol Alcohol Research Center, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, 13902-6000, USA
| | - Zachary H Gursky
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Katrina A Milbocker
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| | - Anna Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
5
|
Construction of simple, customised, brain-spanning, multi-channel, linear microelectrode arrays. J Neurosci Methods 2020; 348:109011. [PMID: 33249180 DOI: 10.1016/j.jneumeth.2020.109011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND The construction of multichannel micro-electrode arrays (MEA) generally requires complex and expensive procedures. Here we describe a simple, cheap, flexible method of linear MEA construction. NEW METHOD Our method allows manufacture of linear MEA (cross section ∼ 375 × 250 μm with 12 electrodes) of any desired length, with customized spacing of the electrode tips (down to a minimum spacing of 200 μm or less) to suit different needs and experiments. We describe the following steps: (1) set-up for MEA construction; (2) building of a construction jig; (3) building the reference, ground and optional electrical stimulation electrodes; (4) treatment of the main recording microwires; (5) soldering of the microwires to the main connector plug and arrangement of the microwires in a customizable array; and (6) testing of the MEA resistance and correct connections. Finally, we describe methods for quick surgical implantation of multiple MEAs and bipolar micro-stimulation electrodes for in vivo experiments in free-moving rats. RESULTS We provide examples of multi-site local field potentials from prolonged recordings in awake and free-moving rodents, with recordings viable for months, as well as samples of electrical stimulation effects on cortical and hippocampal recordings. Hippocampal recordings showed clear phase reversal and amplitude changes across its layers. CONCLUSIONS We briefly discuss how the arrays can support other forms of stimulation such as optogenetic probes.
Collapse
|