1
|
Lai QC, Zheng J, Mou J, Cui CY, Wu QC, M Musa Rizvi S, Zhang Y, Li TM, Ren YB, Liu Q, Li Q, Zhang C. Identification of hub genes in calcific aortic valve disease. Comput Biol Med 2024; 172:108214. [PMID: 38508057 DOI: 10.1016/j.compbiomed.2024.108214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
Calcific aortic valve disease (CAVD) is a heart valve disorder characterized primarily by calcification of the aortic valve, resulting in stiffness and dysfunction of the valve. CAVD is prevalent among aging populations and is linked to factors such as hypertension, dyslipidemia, tobacco use, and genetic predisposition, and can result in becoming a growing economic and health burden. Once aortic valve calcification occurs, it will inevitably progress to aortic stenosis. At present, there are no medications available that have demonstrated effectiveness in managing or delaying the progression of the disease. In this study, we mined four publicly available microarray datasets (GSE12644 GSE51472, GSE77287, GSE233819) associated with CAVD from the GEO database with the aim of identifying hub genes associated with the occurrence of CAVD and searching for possible biological targets for the early prevention and diagnosis of CAVD. This study provides preliminary evidence for therapeutic and preventive targets for CAVD and may provide a solid foundation for subsequent biological studies.
Collapse
Affiliation(s)
- Qian-Cheng Lai
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Sichuan Provincial People's Hospital, Chengdu, 610000, Sichuan, China
| | - Jie Zheng
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jian Mou
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chun-Yan Cui
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qing-Chen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Syed M Musa Rizvi
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Tian-Mei Li
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Ying-Bo Ren
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Qing Liu
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China; Hejiang Traditional Chinese Medicine Hospital, Luzhou, 646000, Sichuan, China.
| | - Qun Li
- Department of Pain, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Genetic Mapping of Behavioral Traits Using the Collaborative Cross Resource. Int J Mol Sci 2022; 24:ijms24010682. [PMID: 36614124 PMCID: PMC9821145 DOI: 10.3390/ijms24010682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
The complicated interactions between genetic background, environment and lifestyle factors make it difficult to study the genetic basis of complex phenotypes, such as cognition and anxiety levels, in humans. However, environmental and other factors can be tightly controlled in mouse studies. The Collaborative Cross (CC) is a mouse genetic reference population whose common genetic and phenotypic diversity is on par with that of humans. Therefore, we leveraged the power of the CC to assess 52 behavioral measures associated with locomotor activity, anxiety level, learning and memory. This is the first application of the CC in novel object recognition tests, Morris water maze tasks, and fear conditioning tests. We found substantial continuous behavioral variations across the CC strains tested, and mapped six quantitative trait loci (QTLs) which influenced these traits, defining candidate genetic variants underlying these QTLs. Overall, our findings highlight the potential of the CC population in behavioral genetic research, while the identified genomic loci and genes driving the variation of relevant behavioral traits provide a foundation for further studies.
Collapse
|
3
|
Seib E, Klein T. The role of ligand endocytosis in notch signalling. Biol Cell 2021; 113:401-418. [PMID: 34038572 DOI: 10.1111/boc.202100009] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/05/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022]
Abstract
The Notch signalling receptor is a mechanoreceptor that is activated by force. This force elicits a conformational change in Notch that results in the release of its intracellular domain into the cytosol by two consecutive proteolytic cleavages. In most cases, the force is generated by pulling of the ligands on the receptor upon their endocytosis. In this review, we summarise recent work that shed a more detailed light on the role of endocytosis during ligand-dependent Notch activation and discuss the role of ubiquitylation of the ligands during this process.
Collapse
Affiliation(s)
- Ekaterina Seib
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, Duesseldorf, 40225, Germany
| | - Thomas Klein
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, Duesseldorf, 40225, Germany
| |
Collapse
|