1
|
Snytte J, Setton R, Mwilambwe-Tshilobo L, Natasha Rajah M, Sheldon S, Turner GR, Spreng RN. Structure-Function Interactions in the Hippocampus and Prefrontal Cortex Are Associated with Episodic Memory in Healthy Aging. eNeuro 2024; 11:ENEURO.0418-23.2023. [PMID: 38479810 PMCID: PMC10972739 DOI: 10.1523/eneuro.0418-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 04/01/2024] Open
Abstract
Aging comes with declines in episodic memory. Memory decline is accompanied by structural and functional alterations within key brain regions, including the hippocampus and lateral prefrontal cortex, as well as their affiliated default and frontoparietal control networks. Most studies have examined how structural or functional differences relate to memory independently. Here we implemented a multimodal, multivariate approach to investigate how interactions between individual differences in structural integrity and functional connectivity relate to episodic memory performance in healthy aging. In a sample of younger (N = 111; mean age, 22.11 years) and older (N = 78; mean age, 67.29 years) adults, we analyzed structural MRI and multiecho resting-state fMRI data. Participants completed measures of list recall (free recall of words from a list), associative memory (cued recall of paired words), and source memory (cued recall of the trial type, or the sensory modality in which a word was presented). The findings revealed that greater structural integrity of the posterior hippocampus and middle frontal gyrus were linked with a pattern of increased within-network connectivity, which together were related to better associative and source memory in older adulthood. Critically, older adults displayed better memory performance in the context of decreased hippocampal volumes when structural differences were accompanied by functional reorganization. This functional reorganization was characterized by a pruning of connections between the hippocampus and the limbic and frontoparietal control networks. Our work provides insight into the neural mechanisms that underlie age-related compensation, revealing that the functional architecture associated with better memory performance in healthy aging is tied to the structural integrity of the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Jamie Snytte
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Roni Setton
- Department of Psychology, Harvard University, Cambridge, Massachusetts 02138
| | - Laetitia Mwilambwe-Tshilobo
- Annenberg School for Communication, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Psychology, Princeton University, Princeton, New Jersey 08540
| | - M Natasha Rajah
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
| | - Gary R Turner
- Department of Psychology, York University, Toronto, Ontario M3J 1P3, Canada
| | - R Nathan Spreng
- Department of Psychology, McGill University, Montreal, Quebec H3A 1G1, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
2
|
Crestol A, Rajagopal S, Lissaman R, LaPlume AA, Pasvanis S, Olsen RK, Einstein G, Jacobs EG, Rajah MN. Menopause Status and Within-Group Differences in Chronological Age Affect the Functional Neural Correlates of Spatial Context Memory in Middle-Aged Females. J Neurosci 2023; 43:8756-8768. [PMID: 37903593 PMCID: PMC10727179 DOI: 10.1523/jneurosci.0663-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023] Open
Abstract
Reductions in the ability to encode and retrieve past experiences in rich spatial contextual detail (episodic memory) are apparent by midlife-a time when most females experience spontaneous menopause. Yet, little is known about how menopause status affects episodic memory-related brain activity at encoding and retrieval in middle-aged premenopausal and postmenopausal females, and whether any observed group differences in brain activity and memory performance correlate with chronological age within group. We conducted an event-related task fMRI study of episodic memory for spatial context to address this knowledge gap. Multivariate behavioral partial least squares was used to investigate how chronological age and retrieval accuracy correlated with brain activity in 31 premenopausal females (age range, 39.55-53.30 years; mean age, 44.28 years; SD age, 3.12 years) and 41 postmenopausal females (age range, 46.70-65.14 years; mean age, 57.56 years; SD age, 3.93 years). We found that postmenopausal status, and advanced age within postmenopause, was associated with lower spatial context memory. The fMRI analysis showed that only in postmenopausal females, advanced age was correlated with decreased activity in occipitotemporal, parahippocampal, and inferior parietal cortices during encoding and retrieval, and poorer spatial context memory performance. In contrast, only premenopausal females exhibited an overlap in encoding and retrieval activity in angular gyrus, midline cortical regions, and prefrontal cortex, which correlated with better spatial context retrieval accuracy. These results highlight how menopause status and chronological age, nested within menopause group, affect episodic memory and its neural correlates at midlife.SIGNIFICANCE STATEMENT This is the first fMRI study to examine how premenopause and postmenopause status affect the neural correlates of episodic memory encoding and retrieval, and how chronological age contributes to any observed group similarities and differences. We found that both menopause status (endocrine age) and chronological age affect spatial context memory and its neural correlates. Menopause status directly affected the direction of age-related and performance-related correlations with brain activity in inferior parietal, parahippocampal, and occipitotemporal cortices across encoding and retrieval. Moreover, we found that only premenopausal females exhibited cortical reinstatement of encoding-related activity in midline cortical, prefrontal, and angular gyrus, at retrieval. This suggests that spatial context memory abilities may rely on distinct brain systems at premenopause compared with postmenopause.
Collapse
Affiliation(s)
- Arielle Crestol
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec H3A 1A1, Canada
| | | | - Rikki Lissaman
- Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montréal, Quebec H3A 1A1, Canada
| | - Annalise A LaPlume
- Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
- Department of Psychology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| | | | - Rosanna K Olsen
- Rotman Research Institute, Baycrest Centre and University of Toronto, Toronto, Ontario M6A 2E1, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada
| | - Gillian Einstein
- Rotman Research Institute, Baycrest Centre and University of Toronto, Toronto, Ontario M6A 2E1, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada
| | - Emily G Jacobs
- Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - M Natasha Rajah
- Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
- Department of Psychology, McGill University, Montréal, Quebec H3A 1G1, Canada
- Department of Psychiatry, McGill University, Montréal, Quebec H3A 1A1, Canada
- Department of Psychology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada
| |
Collapse
|
3
|
Chaposhloo M, Nicholson AA, Becker S, McKinnon MC, Lanius R, Shaw SB. Altered Resting-State functional connectivity in the anterior and posterior hippocampus in Post-traumatic stress disorder: The central role of the anterior hippocampus. Neuroimage Clin 2023; 38:103417. [PMID: 37148709 PMCID: PMC10193024 DOI: 10.1016/j.nicl.2023.103417] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/11/2023] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Post-traumatic stress disorder can be viewed as a memory disorder, with trauma-related flashbacks being a core symptom. Given the central role of the hippocampus in autobiographical memory, surprisingly, there is mixed evidence concerning altered hippocampal functional connectivity in PTSD. We shed light on this discrepancy by considering the distinct roles of the anterior versus posterior hippocampus and examine how this distinction may map onto whole-brain resting-state functional connectivity patterns among those with and without PTSD. METHODS We first assessed whole-brain between-group differences in the functional connectivity profiles of the anterior and posterior hippocampus within a publicly available data set of resting-state fMRI data from 31 male Vietnam war veterans diagnosed with PTSD (mean age = 67.6 years, sd = 2.3) and 29 age-matched combat-exposed male controls (age = 69.1 years, sd = 3.5). Next, the connectivity patterns of each subject within the PTSD group were correlated with their PTSD symptom scores. Finally, the between-group differences in whole-brain functional connectivity profiles discovered for the anterior and posterior hippocampal seeds were used to prescribe post-hoc ROIs, which were then used to perform ROI-to-ROI functional connectivity and graph-theoretic analyses. RESULTS The PTSD group showed increased functional connectivity of the anterior hippocampus with affective brain regions (anterior/posterior insula, orbitofrontal cortex, temporal pole) and decreased functional connectivity of the anterior/posterior hippocampus with regions involved in processing bodily self-consciousness (supramarginal gyrus). Notably, decreased anterior hippocampus connectivity with the posterior cingulate cortex/precuneus was associated with increased PTSD symptom severity. The left anterior hippocampus also emerged as a central locus of abnormal functional connectivity, with graph-theoretic measures suggestive of a more central hub-like role for this region in those with PTSD compared to trauma-exposed controls. CONCLUSIONS Our results highlight that the anterior hippocampus plays a critical role in the neurocircuitry underlying PTSD and underscore the importance of the differential roles of hippocampal sub-regions in serving as biomarkers of PTSD. Future studies should investigate whether the differential patterns of functional connectivity stemming from hippocampal sub-regions is observed in PTSD populations other than older war veterans.
Collapse
Affiliation(s)
- Mohammad Chaposhloo
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Andrew A Nicholson
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Atlas Institute for Veterans and Families, Institute of Mental Health Research, University of Ottawa, Royal Ottawa Hospital, Ottawa, Ontario, Canada; School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Suzanna Becker
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada; Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada
| | - Margaret C McKinnon
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada; Homewood Research Institute, Guelph, Ontario, Canada; Mood Disorders Program, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Ruth Lanius
- Department of Psychiatry, Western University, London, Ontario, Canada; Department of Neuroscience, Western University, London, Ontario, Canada; Imaging Division, Lawson Health Research Institute, London, Ontario, Canada
| | - Saurabh Bhaskar Shaw
- Vector Institute for Artificial Intelligence, Toronto, Ontario, Canada; Homewood Research Institute, Guelph, Ontario, Canada; Department of Psychiatry, Western University, London, Ontario, Canada.
| |
Collapse
|
4
|
Snytte J, Fenerci C, Rajagopal S, Beaudoin C, Hooper K, Sheldon S, Olsen RK, Rajah MN. Volume of the posterior hippocampus mediates age-related differences in spatial context memory and is correlated with increased activity in lateral frontal, parietal and occipital regions in healthy aging. Neuroimage 2022; 254:119164. [PMID: 35381338 DOI: 10.1016/j.neuroimage.2022.119164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022] Open
Abstract
Healthy aging is associated with episodic memory decline, particularly in the ability to encode and retrieve object-context associations (context memory). Neuropsychological and neuroimaging studies have highlighted the importance of the medial temporal lobes (MTL) in supporting episodic memory across the lifespan. However, given the functional heterogeneity of the MTL, volumetric declines in distinct regions may impact performance on specific episodic memory tasks, and affect the function of the large-scale neurocognitive networks supporting episodic memory encoding and retrieval. In the current study, we investigated how MTL structure may mediate age-related differences in performance on spatial and temporal context memory tasks, in a sample of 125 healthy adults aged 19-76 years old. Standard T1-weighted MRIs were segmented into the perirhinal, entorhinal and parahippocampal cortices, as well as the anterior and posterior hippocampal subregions. We observed negative linear and quadratic associations between age and volume of the parahippocampal cortex, and anterior and posterior hippocampal subregions. We also found that volume of the posterior hippocampus fully mediated the association between age and spatial, but not temporal context memory performance. Further, we employed a multivariate behavior partial-least-squares analysis to assess how age and regional MTL volumes correlated with brain activity during the encoding and retrieval of spatial context memories. We found that greater activity within lateral prefrontal, parietal, and occipital regions, as well as within the anterior MTL was related to older age and smaller volume of the posterior hippocampus. Our results highlight the heterogeneity of MTL contributions to episodic memory across the lifespan and provide support for the posterior-anterior shift in aging, and scaffolding theory of aging and cognition.
Collapse
Affiliation(s)
- Jamie Snytte
- Department of Psychology, McGill University, 2001 Avenue McGill College, Montreal, QC H3A 1G1, Canada; Brain Imaging Center, Douglas Institute Research Center, 6875 LaSalle Blvd Verdun, Montreal, QC H4H 1R3, Canada.
| | - Can Fenerci
- Department of Psychology, McGill University, 2001 Avenue McGill College, Montreal, QC H3A 1G1, Canada
| | - Sricharana Rajagopal
- Brain Imaging Center, Douglas Institute Research Center, 6875 LaSalle Blvd Verdun, Montreal, QC H4H 1R3, Canada
| | - Camille Beaudoin
- Brain Imaging Center, Douglas Institute Research Center, 6875 LaSalle Blvd Verdun, Montreal, QC H4H 1R3, Canada
| | - Kiera Hooper
- Brain Imaging Center, Douglas Institute Research Center, 6875 LaSalle Blvd Verdun, Montreal, QC H4H 1R3, Canada
| | - Signy Sheldon
- Department of Psychology, McGill University, 2001 Avenue McGill College, Montreal, QC H3A 1G1, Canada
| | - Rosanna K Olsen
- Department of Psychology, University of Toronto, Toronto, ON, Canada; Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - M Natasha Rajah
- Brain Imaging Center, Douglas Institute Research Center, 6875 LaSalle Blvd Verdun, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, Faculty of Medicine, McGill University and Douglas Mental Health University Institute, Room 2114, CIC Pavilion, 6875 LaSalle Blvd, 1033 Avenue des Pins, Verdun, H4H 1R3, Montreal, QC H3A 1A1, Canada.
| |
Collapse
|
5
|
Guo J, Shubeck K, Hu X. Relationship Between Item and Source Memory: Explanation of Connection-Strength Model. Front Psychol 2021; 12:691577. [PMID: 34659007 PMCID: PMC8511408 DOI: 10.3389/fpsyg.2021.691577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Abstract
The controversy in the relationship between item memory and source memory is a focus of episodic memory. Some studies show the trade-off between item memory and source memory, some show the consistency between them, and others show the independence between them. This review attempts to point out the connection-strength model, implying the different types and strengths of the important role of the item-source connections in the relationship between item memory and source memory, which is based on the same essence in the unified framework. The logic of the model is that when item memory and source memory share the same or relevant connection between item and source, they positively connect, or they are independently or negatively connected. This review integrates empirical evidence from the domains of cognition, cognitive neuroscience, and mathematical modeling to validate our hypothesis.
Collapse
Affiliation(s)
- Junjun Guo
- School of Psychology, Central China Normal University, Wuhan, China
| | - Keith Shubeck
- Department of Psychology, The University of Memphis, Memphis, TN, United States
- Institute for Intelligent Systems, The University of Memphis, Memphis, TN, United States
| | - Xiangen Hu
- School of Psychology, Central China Normal University, Wuhan, China
- Department of Psychology, The University of Memphis, Memphis, TN, United States
- Institute for Intelligent Systems, The University of Memphis, Memphis, TN, United States
| |
Collapse
|
6
|
Polak-Szabela A, Dziembowska I, Bracha M, Pedrycz-Wieczorska A, Kedziora-Kornatowska K, Kozakiewicz M. The Analysis of Oxidative Stress Markers May Increase the Accuracy of the Differential Diagnosis of Alzheimer's Disease with and without Depression. Clin Interv Aging 2021; 16:1105-1117. [PMID: 34163154 PMCID: PMC8215848 DOI: 10.2147/cia.s310750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022] Open
Abstract
Introduction The aim of work is to assess the usefulness of oxidative stress parameters in the differential diagnosis of dementia of the Alzheimer’s type and dementia of the Alzheimer’s type with coexisting depression. Methods The study involved three groups of people: patients with Alzheimer’s disease (AD) (AD; N=27), patients with Alzheimer’s disease and depression (D) (AD+D; N=30), and a control group that consisted of people without dementia and without depression (C; N=24). The assessment of cognitive functioning was carried out using among alia, Auditory Verbal Learning Test and Verbal Fluency Test. Furthermore, we determined the activity of superoxide dismutase (SOD-1) and superoxide anion radical. Results Multiple models with different combinations of independent variables showed that SOD together with Rey delayed recall were the best significant predictors of AD with the area under curve (AUC) of 0.893 (p = 0.001) and superoxide anion radical (O2•−) together with verbal fluency – sharp objects were the best significant predictors of AD +D diagnosis with the AUC of 0.689 (p = 0.034). Conclusion This study confirmed the value of neuropsychological diagnosis and analysis of oxidative stress markers in the diagnosis of AD and major depressive disorder (MDD) in the course of AD. The combination of the use of biochemical markers and neuropsychological tests seems particularly important for differential diagnosis.
Collapse
Affiliation(s)
- Anna Polak-Szabela
- Department of Geriatrics, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Inga Dziembowska
- Department of Pathophysiology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Marietta Bracha
- Department of Geriatrics, Division of Biochemistry and Biogerontology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | | | | | - Mariusz Kozakiewicz
- Department of Geriatrics, Division of Biochemistry and Biogerontology, L. Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
7
|
Hippocampal volume and navigational ability: The map(ping) is not to scale. Neurosci Biobehav Rev 2021; 126:102-112. [PMID: 33722618 DOI: 10.1016/j.neubiorev.2021.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
A critical question regards the neural basis of complex cognitive skill acquisition. One extensively studied skill is navigation, with evidence suggesting that humans vary widely in navigation abilities. Yet, data supporting the neural underpinning of these individual differences are mixed. Some evidence suggests robust structure-behavior relations between hippocampal volume and navigation ability, whereas other experiments show no such correlation. We focus on several possibilities for these discrepancies: 1) volumetric hippocampal changes are relevant only at the extreme ranges of navigational abilities; 2) hippocampal volume correlates across individuals but only for specific measures of navigation skill; 3) hippocampal volume itself does not correlate with navigation skill acquisition; connectivity patterns are more relevant. To explore this third possibility, we present a model emphasizing functional connectivity changes, particularly to extra-hippocampal structures. This class of models arises from the premise that navigation is dynamic and that good navigators flexibly solve spatial challenges. These models pave the way for research on other skills and provide more precise predictions for the neural basis of skill acquisition.
Collapse
|