1
|
Masurkar AV, Marsh K, Morgan B, Leitner D, Wisniewski T. Factors Affecting Resilience and Prevention of Alzheimer's Disease and Related Dementias. Ann Neurol 2024. [PMID: 39152774 DOI: 10.1002/ana.27055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
Alzheimer's disease (AD) is a devastating, age-associated neurodegenerative disorder and the most common cause of dementia. The clinical continuum of AD spans from preclinical disease to subjective cognitive decline, mild cognitive impairment, and dementia stages (mild, moderate, and severe). Neuropathologically, AD is defined by the accumulation of amyloid β (Aβ) into extracellular plaques in the brain parenchyma and in the cerebral vasculature, and by abnormally phosphorylated tau that accumulates intraneuronally forming neurofibrillary tangles (NFTs). Development of treatment approaches that prevent or even reduce the cognitive decline because of AD has been slow compared to other major causes of death. Recently, the United States Food and Drug Administration gave full approval to 2 different Aβ-targeting monoclonal antibodies. However, this breakthrough disease modifying approach only applies to a limited subset of patients in the AD continuum and there are stringent eligibility criteria. Furthermore, these approaches do not prevent progression of disease, because other AD-related pathologies, such as NFTs, are not directly targeted. A non-mutually exclusive alternative is to address lifestyle interventions that can help reduce the risk of AD and AD-related dementias (ADRD). It is estimated that addressing such modifiable risk factors could potentially delay up to 40% of AD/ADRD cases. In this review, we discuss some of the many modifiable risk factors that may be associated with prevention of AD/ADRD and/or increasing brain resilience, as well as other factors that may interact with these modifiable risk factors to influence AD/ADRD progression. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Arjun V Masurkar
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Karyn Marsh
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Brianna Morgan
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Dominique Leitner
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA
- Comprehensive Epilepsy Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Cognitive Neurology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
2
|
Eisenstein T, Giladi N, Hendler T, Havakuk O, Lerner Y. Neural Synchrony During Naturalistic Information Processing Is Associated With Aerobically Active Lifestyle and Cardiorespiratory Fitness in Cognitively Intact Older Adults. Front Hum Neurosci 2022; 16:906099. [PMID: 35874153 PMCID: PMC9300901 DOI: 10.3389/fnhum.2022.906099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
The functional neural mechanisms underlying the cognitive benefits of aerobic exercise have been a subject of ongoing research in recent years. However, while most neuroimaging studies to date which examined functional neural correlates of aerobic exercise have used simple stimuli in highly controlled and artificial experimental conditions, our everyday life experiences require a much more complex and dynamic neurocognitive processing. Therefore, we have used a naturalistic complex information processing fMRI paradigm of story comprehension to investigate the role of an aerobically active lifestyle in the processing of real-life cognitive-demanding situations. By employing the inter-subject correlation (inter-SC) approach, we have identified differences in reliable stimulus-induced neural responses between groups of aerobically active (n = 27) and non-active (n = 22) cognitively intact older adults (age 65–80). Since cardiorespiratory fitness has previously been suggested to play a key role in the neuroprotective potential of aerobic exercise, we have investigated its dose-response relationship with regional inter-subject neural responses. We found that aerobically active lifestyle and cardiorespiratory fitness were associated with more synchronized inter-subject neural responses during story comprehension in higher order cognitive and linguistic brain regions in the prefrontal and temporo-parietal cortices. In addition, while higher regional inter-SC values were associated with higher performance on a post-listening memory task, this was not translated to a significant between-group difference in task performance. We, therefore, suggest that the modulatory potential of aerobic exercise and cardiorespiratory fitness on cognitive processing may extend beyond simple and highly controlled stimuli to situations in which the brain faces continuous real-life complex information. Additional studies incorporating other aspects of real-life situations such as naturalistic visual stimuli, everyday life decision making, and motor responses in these situations are desired to further validate the observed relationship between aerobic exercise, cardiorespiratory fitness, and complex naturalistic information processing.
Collapse
Affiliation(s)
- Tamir Eisenstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- *Correspondence: Tamir Eisenstein Yulia Lerner
| | - Nir Giladi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Talma Hendler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Havakuk
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yulia Lerner
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Tamir Eisenstein Yulia Lerner
| |
Collapse
|
3
|
Eisenstein T, Giladi N, Hendler T, Havakuk O, Lerner Y. Physically Active Lifestyle Is Associated With Attenuation of Hippocampal Dysfunction in Cognitively Intact Older Adults. Front Aging Neurosci 2021; 13:720990. [PMID: 34690738 PMCID: PMC8527880 DOI: 10.3389/fnagi.2021.720990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/12/2021] [Indexed: 11/13/2022] Open
Abstract
Alterations in hippocampal function have been shown in older adults, which are expressed as changes in hippocampal activity and connectivity. While hippocampal activation during memory demands has been demonstrated to decrease with age, some older individuals present increased activity, or hyperactivity, of the hippocampus which is associated with increased neuropathology and poor memory function. In addition, lower functional coherence between the hippocampus and core hubs of the default mode network (DMN), namely, the posteromedial and medial prefrontal cortices, as well as increased local intrahippocampal connectivity, were also demonstrated in cognitively intact older adults. Aerobic exercise has been shown to elicit neuroprotective effects on hippocampal structure and vasculature in aging, and improvements in cardiorespiratory fitness have been suggested to mediate these exercise-related effects. However, how these lifestyle factors relate to hippocampal function is not clear. Fifty-two cognitively intact older adults (aged 65-80 years) have been recruited and divided into physically active (n = 29) or non-active (n = 23) groups based on their aerobic activity lifestyle habits. Participants underwent resting-state and task-based fMRI experiments which included an associative memory encoding paradigm followed by a post-scan memory recognition test. In addition, 44 participants also performed cardiopulmonary exercise tests to evaluate cardiorespiratory fitness by measuring peak oxygen consumption (Vo2peak). While both groups demonstrated increased anterior hippocampal activation during memory encoding, a physically active lifestyle was associated with significantly lower activity level and higher memory performance in the recognition task. In addition, the physically active group also demonstrated higher functional connectivity of the anterior and posterior hippocampi with the core hubs of the DMN and lower local intra-hippocampal connectivity within and between hemispheres. Vo2peak was negatively associated with the hippocampal activation level and demonstrated a positive correlation with hippocampal-DMN connectivity. According to these findings, an aerobically active lifestyle may be associated with attenuation of hippocampal dysfunction in cognitively intact older adults.
Collapse
Affiliation(s)
- Tamir Eisenstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Giladi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Talma Hendler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Havakuk
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Cardiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Yulia Lerner
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|