1
|
Lyu J, Ushimaru R, Abe I. Characterization of Enzymes Catalyzing the Initial Steps of the β-Lactam Tabtoxin Biosynthesis. Org Lett 2022; 24:3337-3341. [PMID: 35510837 DOI: 10.1021/acs.orglett.2c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tabtoxin is a β-lactam ring-containing phytotoxin produced by a plant pathogenic Pseudomonas species. Here, we describe the early stages of tabtoxin biosynthesis, involving a C-methylation reaction catalyzed by the S-adenosyl-l-methionine-dependent methyltransferase TblA as the initial step for the β-lactam construction. Gene deletion and in vitro biochemical assays demonstrated that the Gcn5-related N-acetyltransferase domain of TblD catalyzes the acetylation of the α-amino group of 5-methyl-l-lysine. This establishment of the early reaction steps lays the foundation for characterizing unique β-lactam biosynthesis.
Collapse
Affiliation(s)
- Jiaqi Lyu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,ACT-X, Japan Science and Technology Agency (JST), Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Masschelein J, Jenner M, Challis GL. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep 2017. [PMID: 28650032 DOI: 10.1039/c7np00010c] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2017The overwhelming majority of antibiotics in clinical use originate from Gram-positive Actinobacteria. In recent years, however, Gram-negative bacteria have become increasingly recognised as a rich yet underexplored source of novel antimicrobials, with the potential to combat the looming health threat posed by antibiotic resistance. In this article, we have compiled a comprehensive list of natural products with antimicrobial activity from Gram-negative bacteria, including information on their biosynthetic origin(s) and molecular target(s), where known. We also provide a detailed discussion of several unusual pathways for antibiotic biosynthesis in Gram-negative bacteria, serving to highlight the exceptional biocatalytic repertoire of this group of microorganisms.
Collapse
Affiliation(s)
- J Masschelein
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - M Jenner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - G L Challis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| |
Collapse
|
3
|
Laurell Nash A, Hertzberg R, Wen YQ, Dahlgren B, Brinck T, Moberg C. Dual Lewis Acid/Lewis Base Catalyzed Acylcyanation of Aldehydes: A Mechanistic Study. Chemistry 2016; 22:3821-9. [PMID: 26592522 DOI: 10.1002/chem.201503782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Indexed: 11/07/2022]
Abstract
A mechanistic investigation, which included a Hammett correlation analysis, evaluation of the effect of variation of catalyst composition, and low-temperature NMR spectroscopy studies, of the Lewis acid-Lewis base catalyzed addition of acetyl cyanide to prochiral aldehydes provides support for a reaction route that involves Lewis base activation of the acyl cyanide with formation of a potent acylating agent and cyanide ion. The cyanide ion adds to the carbonyl group of the Lewis acid activated aldehyde. O-Acylation by the acylated Lewis base to form the final cyanohydrin ester occurs prior to decomplexation from titanium. For less reactive aldehydes, the addition of cyanide is the rate-determining step, whereas, for more reactive, electron-deficient aldehydes, cyanide addition is rapid and reversible and is followed by rate-limiting acylation. The resting state of the catalyst lies outside the catalytic cycle and is believed to be a monomeric titanium complex with two alcoholate ligands, which only slowly converts into the product.
Collapse
Affiliation(s)
- Anna Laurell Nash
- KTH Royal Institute of Technology, Department of Chemistry, Organic Chemistry, 10044, Stockholm, Sweden
| | - Robin Hertzberg
- KTH Royal Institute of Technology, Department of Chemistry, Organic Chemistry, 10044, Stockholm, Sweden
| | - Ye-Qian Wen
- KTH Royal Institute of Technology, Department of Chemistry, Organic Chemistry, 10044, Stockholm, Sweden
| | - Björn Dahlgren
- KTH Royal Institute of Technology, Department of Chemistry, Applied Physical Chemistry, 10044, Stockholm, Sweden
| | - Tore Brinck
- KTH Royal Institute of Technology, Department of Chemistry, Applied Physical Chemistry, 10044, Stockholm, Sweden
| | - Christina Moberg
- KTH Royal Institute of Technology, Department of Chemistry, Organic Chemistry, 10044, Stockholm, Sweden
| |
Collapse
|
4
|
Minor Enantiomer Recycling: Application to Enantioselective Syntheses of Beta Blockers. Chemistry 2014; 20:3806-12. [DOI: 10.1002/chem.201303890] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Indexed: 11/07/2022]
|
5
|
Origins of the β-lactam rings in natural products. J Antibiot (Tokyo) 2013; 66:401-10. [DOI: 10.1038/ja.2013.24] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/26/2013] [Accepted: 03/05/2013] [Indexed: 11/08/2022]
|
6
|
Hamed RB, Gomez-Castellanos JR, Henry L, Ducho C, McDonough MA, Schofield CJ. The enzymes of β-lactam biosynthesis. Nat Prod Rep 2013; 30:21-107. [DOI: 10.1039/c2np20065a] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Wencewicz TA, Walsh CT. Pseudomonas syringae self-protection from tabtoxinine-β-lactam by ligase TblF and acetylase Ttr. Biochemistry 2012; 51:7712-25. [PMID: 22994681 DOI: 10.1021/bi3011384] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Plant pathogenic Pseudomonas syringae produce the hydroxy-β-lactam antimetabolite tabtoxinine-β-lactam (TβL) as a time-dependent inactivating glutamine analogue of plant glutamine synthetases. The producing pseudomonads use multiple modes of self-protection, two of which are characterized in this study. The first is the dipeptide ligase TblF which converts tabtoxinine-β-lactam to the TβL-Thr dipeptide known as tabtoxin. The dipeptide is not recognized by glutamine synthetase. This represents a Trojan Horse strategy: the dipeptide is secreted, taken up by dipeptide permeases in neighboring cells, and TβL is released by peptidase action. The second self-protection mode is elaboration by the acetyltransferase Ttr, which acetylates the α-amino group of the proximal inactivator TβL, but not the tabtoxin dipeptide.
Collapse
Affiliation(s)
- Timothy A Wencewicz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | |
Collapse
|
8
|
Carrión VJ, Arrebola E, Cazorla FM, Murillo J, de Vicente A. The mbo operon is specific and essential for biosynthesis of mangotoxin in Pseudomonas syringae. PLoS One 2012; 7:e36709. [PMID: 22615797 PMCID: PMC3355146 DOI: 10.1371/journal.pone.0036709] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 04/05/2012] [Indexed: 12/31/2022] Open
Abstract
Mangotoxin is an antimetabolite toxin produced by certain Pseudomonas syringae pv. syringae strains. This toxin is an oligopeptide that inhibits ornithine N-acetyl transferase, a key enzyme in the biosynthesis of ornithine and arginine. Previous studies have reported the involvement of the putative nonribosomal peptide synthetase MgoA in virulence and mangotoxin production. In this study, we analyse a new chromosomal region of P. syringae pv. syringae UMAF0158, which contains six coding sequences arranged as an operon (mbo operon). The mbo operon was detected in only mangotoxin-producing strains, and it was shown to be essential for the biosynthesis of this toxin. Mutants in each of the six ORFs of the mbo operon were partially or completely impaired in the production of the toxin. In addition, Pseudomonas spp. mangotoxin non-producer strains transformed with the mbo operon gained the ability to produce mangotoxin, indicating that this operon contains all the genetic information necessary for mangotoxin biosynthesis. The generation of a single transcript for the mbo operon was confirmed and supported by the allocation of a unique promoter and Rho-independent terminator. The phylogenetic analysis of the P. syringae strains harbouring the mbo operon revealed that these strains clustered together.
Collapse
Affiliation(s)
- Víctor J. Carrión
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Eva Arrebola
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Estación Experimental La Mayora, Málaga, Spain
| | - Francisco M. Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Jesús Murillo
- Laboratorio de Patología Vegetal, ETS de Ingenieros Agrónomos, Universidad Pública de Navarra, Pamplona, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
9
|
Arrebola E, Carrión VJ, Cazorla FM, Pérez-García A, Murillo J, de Vicente A. Characterisation of the mgo operon in Pseudomonas syringae pv. syringae UMAF0158 that is required for mangotoxin production. BMC Microbiol 2012; 12:10. [PMID: 22251433 PMCID: PMC3298696 DOI: 10.1186/1471-2180-12-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/17/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mangotoxin is an antimetabolite toxin that is produced by strains of Pseudomonas syringae pv. syringae; mangotoxin-producing strains are primarily isolated from mango tissues with symptoms of bacterial apical necrosis. The toxin is an oligopeptide that inhibits ornithine N-acetyl transferase (OAT), a key enzyme in the biosynthetic pathway of the essential amino acids ornithine and arginine. The involvement of a putative nonribosomal peptide synthetase gene (mgoA) in mangotoxin production and virulence has been reported. RESULTS In the present study, we performed a RT-PCR analysis, insertional inactivation mutagenesis, a promoter expression analysis and terminator localisation to study the gene cluster containing the mgoA gene. Additionally, we evaluated the importance of mgoC, mgoA and mgoD in mangotoxin production. A sequence analysis revealed an operon-like organisation. A promoter sequence was located upstream of the mgoB gene and was found to drive lacZ transcription. Two terminators were located downstream of the mgoD gene. RT-PCR experiments indicated that the four genes (mgoBCAD) constitute a transcriptional unit. This operon is similar in genetic organisation to those in the three other P. syringae pathovars for which complete genomes are available (P. syringae pv. syringae B728a, P. syringae pv. tomato DC3000 and P. syringae pv. phaseolicola 1448A). Interestingly, none of these three reference strains is capable of producing mangotoxin. Additionally, extract complementation resulted in a recovery of mangotoxin production when the defective mutant was complemented with wild-type extracts. CONCLUSIONS The results of this study confirm that mgoB, mgoC, mgoA and mgoD function as a transcriptional unit and operon. While this operon is composed of four genes, only the last three are directly involved in mangotoxin production.
Collapse
Affiliation(s)
- Eva Arrebola
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Estación Experimental La Mayora, Algarrobo-Costa, 29750 Málaga, Spain
| | - Víctor J Carrión
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC). Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Unidad Asociada al CSIC, Campus de Teatinos, 29071 Málaga, Spain
| | - Francisco M Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC). Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Unidad Asociada al CSIC, Campus de Teatinos, 29071 Málaga, Spain
| | - Alejandro Pérez-García
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC). Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Unidad Asociada al CSIC, Campus de Teatinos, 29071 Málaga, Spain
| | - Jesús Murillo
- Laboratorio de Patología Vegetal, ETS de Ingenieros Agrónomos, Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC). Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Unidad Asociada al CSIC, Campus de Teatinos, 29071 Málaga, Spain
| |
Collapse
|
10
|
Laurell A, Moberg C. Opposite Enantiomers from Minor Enantiomer Recycling and Dynamic Kinetic Resolution Using a Single Biocatalyst. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100467] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Minor Enantiomer Recycling-Effect of Two Reinforcing Catalysts on Product Yield and Enantiomeric Excess. ChemCatChem 2010. [DOI: 10.1002/cctc.200900327] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Wingstrand E, Laurell A, Fransson L, Hult K, Moberg C. Minor Enantiomer Recycling: Metal Catalyst, Organocatalyst and Biocatalyst Working in Concert. Chemistry 2009; 15:12107-13. [DOI: 10.1002/chem.200901338] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Gross H, Loper JE. Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 2009; 26:1408-46. [PMID: 19844639 DOI: 10.1039/b817075b] [Citation(s) in RCA: 393] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Harald Gross
- Institute for Pharmaceutical Biology, Nussallee 6, 53115, Bonn, Germany.
| | | |
Collapse
|
14
|
Li F, Widyan K, Wingstrand E, Moberg C. Chiral Lewis Base Catalyzed Enantioselective Acetylcyanation of α-Oxo Esters. European J Org Chem 2009. [DOI: 10.1002/ejoc.200900055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Arrebola E, Cazorla FM, Romero D, Pérez-García A, de Vicente A. A nonribosomal peptide synthetase gene (mgoA) of Pseudomonas syringae pv. syringae is involved in mangotoxin biosynthesis and is required for full virulence. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:500-9. [PMID: 17506328 DOI: 10.1094/mpmi-20-5-0500] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Pseudomonas syringae pv. syringae, which causes the bacterial apical necrosis of mango, produces the antimetabolite mangotoxin. We report here the cloning, sequencing, and identity analysis of a chromosomal region of 11.1 kb from strain P syringae pv. syringae UMAF0158, which is involved in mangotoxin biosynthesis. This chromosomal region contains six complete open reading frames (ORFs), including a large gene (ORF5) with a modular architecture characteristic of nonribosomal peptide synthetases (NRPS) named mgoA. A Tn5 mutant disrupted in mgoA was defective in mangotoxin production, revealing the involvement of the putative NRPS gene in the biosynthesis of mangotoxin. This derivative strain impaired in mangotoxin production also showed a reduction in virulence as measured by necrotic symptoms on tomato leaflets. Mangotoxin production and virulence were restored fully in the NRPS mutant by complementation with plasmid pCG2-6, which contains an 11,103-bp chromosomal region cloned from the wild-type strain P syringae pv. syringae UMAF0158 that includes the putative NPRS gene (mgoA). The results demonstrate that mgoA has a role in the virulence of P. syringae pv. syringae. The involvement of an NRPS in the production of an antimetabolite toxin from P. syringae inhibiting ornithine acetyltransferase activity is proposed.
Collapse
Affiliation(s)
- Eva Arrebola
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | | | | | | | | |
Collapse
|
16
|
Lundgren S, Wingstrand E, Moberg C. Lewis Acid–Lewis Base-Catalysed Enantioselective Addition of α-Ketonitriles to Aldehydes. Adv Synth Catal 2007. [DOI: 10.1002/adsc.200600365] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Bender CL, Alarcón-Chaidez F, Gross DC. Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 1999; 63:266-92. [PMID: 10357851 PMCID: PMC98966 DOI: 10.1128/mmbr.63.2.266-292.1999] [Citation(s) in RCA: 530] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coronatine, syringomycin, syringopeptin, tabtoxin, and phaseolotoxin are the most intensively studied phytotoxins of Pseudomonas syringae, and each contributes significantly to bacterial virulence in plants. Coronatine functions partly as a mimic of methyl jasmonate, a hormone synthesized by plants undergoing biological stress. Syringomycin and syringopeptin form pores in plasma membranes, a process that leads to electrolyte leakage. Tabtoxin and phaseolotoxin are strongly antimicrobial and function by inhibiting glutamine synthetase and ornithine carbamoyltransferase, respectively. Genetic analysis has revealed the mechanisms responsible for toxin biosynthesis. Coronatine biosynthesis requires the cooperation of polyketide and peptide synthetases for the assembly of the coronafacic and coronamic acid moieties, respectively. Tabtoxin is derived from the lysine biosynthetic pathway, whereas syringomycin, syringopeptin, and phaseolotoxin biosynthesis requires peptide synthetases. Activation of phytotoxin synthesis is controlled by diverse environmental factors including plant signal molecules and temperature. Genes involved in the regulation of phytotoxin synthesis have been located within the coronatine and syringomycin gene clusters; however, additional regulatory genes are required for the synthesis of these and other phytotoxins. Global regulatory genes such as gacS modulate phytotoxin production in certain pathovars, indicating the complexity of the regulatory circuits controlling phytotoxin synthesis. The coronatine and syringomycin gene clusters have been intensively characterized and show potential for constructing modified polyketides and peptides. Genetic reprogramming of peptide and polyketide synthetases has been successful, and portions of the coronatine and syringomycin gene clusters could be valuable resources in developing new antimicrobial agents.
Collapse
Affiliation(s)
- C L Bender
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma 74078-3032, USA.
| | | | | |
Collapse
|
18
|
Liu L, Shaw PD. A possible role for acetylated intermediates in diaminopimelate and tabtoxinine-beta-lactam biosynthesis in Pseudomonas syringae pv. tabaci BR2.024. J Bacteriol 1997; 179:5922-7. [PMID: 9294453 PMCID: PMC179485 DOI: 10.1128/jb.179.18.5922-5927.1997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The deduced product of an open reading frame (ORF3) located in the tabtoxinine-beta-lactam (T beta L) biosynthetic region of Pseudomonas syringae pv. tabaci BR2.024 (BR2.024) has significant sequence homology to the dapD products of other bacteria. dapD encodes L-2,3,4,5-tetrahydrodipicolinate succinyl coenzyme A succinyltransferase (THDPA-ST), an enzyme in the diaminopimelate (DAP) and lysine biosynthetic pathway. Complementation studies, in vitro transcription-translation experiments, and enzymatic assays indicated that ORF3 encodes a product with THDPA-ST activity in Escherichia coli dapD mutant beta 274. However, a BR2.024 mutant with an insert in ORF3 was prototrophic, and only basal THDPA-ST activity was detected in extracts of both parent and mutant. This finding suggested that ORF3 was not required for DAP biosynthesis and that it did not encode a product with THDPA-ST activity. The results of enzymatic studies, indicating that BR2.024 uses acetylated intermediates for DAP biosynthesis, are consistent with the hypothesis that BR2.024 does not need THDPA-ST for DAP biosynthesis. The ORF3 mutant produced reduced levels of tabtoxin, indicating that ORF3 may have a role in T beta L biosynthesis. We have named the gene tabB and have proposed a possible function for the gene product.
Collapse
Affiliation(s)
- L Liu
- Department of Crop Sciences, University of Illinois, Urbana-Champaign 61801, USA
| | | |
Collapse
|
19
|
Liu L, Shaw PD. Characterization of dapB, a gene required by Pseudomonas syringae pv. tabaci BR2.024 for lysine and tabtoxinine-beta-lactam biosynthesis. J Bacteriol 1997; 179:507-13. [PMID: 8990304 PMCID: PMC178722 DOI: 10.1128/jb.179.2.507-513.1997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The dapB gene, which encodes L-2,3-dihydrodipicolinate reductase, the second enzyme of the lysine branch of the aspartic amino acid family, was cloned and sequenced from a tabtoxin-producing bacterium, Pseudomonas syringae pv. tabaci BR2.024. The deduced amino acid sequence shared 60 to 90% identity to known dapB gene products from gram-negative bacteria and 19 to 21% identity to the dapB products from gram-positive bacteria. The consensus sequence for the NAD(P)H binding site [(V/I)(A/G)(V/I)XGXXGXXG)] and the proposed substrate binding site (HHRHK) were conserved in the polypeptide. A BR2.024 dapB mutant is a diaminopimelate auxotroph and tabtoxin negative. The addition of a mixture of L-,L-, D,D-, and meso-diaminopimelate to defined media restored growth but not tabtoxin production. Cloned DNA fragments containing the parental dapB gene restored the ability to grow in defined media and tabtoxin production to the dapB mutant. These results indicate that the dapB gene is required for both lysine and tabtoxin biosynthesis, thus providing the first genetic evidence that the biosynthesis of tabtoxin proceeds in part along the lysine biosynthetic pathway. These data also suggest that L-2,3,4,5-tetrahydrodipicolinate is a common intermediate for both lysine and tabtoxin biosynthesis.
Collapse
Affiliation(s)
- L Liu
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 61801, USA
| | | |
Collapse
|
20
|
Baldwin JE, Fieldhouse R, Russell AT. Synthesis and assignment of the relative stereochemistry of a putative biosynthetic precursor of tabtoxinine β-lactam. Tetrahedron Lett 1993. [DOI: 10.1016/s0040-4039(00)73942-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Tamm C. Chemie der Kohlenhydrate, der Pflanzeninhaltsstoffe und der mikrobiellen Stoffwechselprodukte im Spiegel derHelvetica Chimica Acta 1918-1992. Helv Chim Acta 1992. [DOI: 10.1002/hlca.19920750703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|