1
|
Ushimaru R. Unusual Enzymatic C-C Bond Formation and Cleavage Reactions during Natural Product Biosynthesis. Chem Pharm Bull (Tokyo) 2024; 72:241-247. [PMID: 38432903 DOI: 10.1248/cpb.c23-00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Natural products from plants and microorganisms provide a valuable reservoir of pharmaceutical compounds. C-C bond formation and cleavage are crucial events during natural product biosynthesis, playing pivotal roles in generating diverse and intricate chemical structures that are essential for biological functions. This review summarizes our recent findings regarding biosynthetic enzymes that catalyze unconventional C-C bond formation and cleavage reactions during natural product biosynthesis.
Collapse
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| |
Collapse
|
2
|
Ushimaru R, Lyu J, Abe I. Diverse enzymatic chemistry for propionate side chain cleavages in tetrapyrrole biosynthesis. J Ind Microbiol Biotechnol 2023; 50:kuad016. [PMID: 37422437 PMCID: PMC10548856 DOI: 10.1093/jimb/kuad016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/07/2023] [Indexed: 07/10/2023]
Abstract
Tetrapyrroles represent a unique class of natural products that possess diverse chemical architectures and exhibit a broad range of biological functions. Accordingly, they attract keen attention from the natural product community. Many metal-chelating tetrapyrroles serve as enzyme cofactors essential for life, while certain organisms produce metal-free porphyrin metabolites with biological activities potentially beneficial for the producing organisms and for human use. The unique properties of tetrapyrrole natural products derive from their extensively modified and highly conjugated macrocyclic core structures. Most of these various tetrapyrrole natural products biosynthetically originate from a branching point precursor, uroporphyrinogen III, which contains propionate and acetate side chains on its macrocycle. Over the past few decades, many modification enzymes with unique catalytic activities, and the diverse enzymatic chemistries employed to cleave the propionate side chains from the macrocycles, have been identified. In this review, we highlight the tetrapyrrole biosynthetic enzymes required for the propionate side chain removal processes and discuss their various chemical mechanisms. ONE-SENTENCE SUMMARY This mini-review describes various enzymes involved in the propionate side chain cleavages during the biosynthesis of tetrapyrrole cofactors and secondary metabolites.
Collapse
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jiaqi Lyu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Type-I Hemins and Free Porphyrins from a Western Australian Sponge Isabela sp. Mar Drugs 2023; 21:md21010041. [PMID: 36662214 PMCID: PMC9865862 DOI: 10.3390/md21010041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Two novel free porphyrins, isabellins A and B, as well as the known compounds corallistin D and deuteroporphyrin IX were isolated from a marine sponge Isabela sp. LC-MS analysis of the crude extract revealed that the natural products were present both as free porphyrins and iron(III) coordinated hemins, designated isabellihemin A, isabellihemin B, corallistihemin D and deuterohemin IX, respectively. Structures were determined via high-resolution mass spectrometry, UV-Vis spectroscopy and extensive NOESY NMR spectroscopic experiments. The type-I alkyl substitution pattern of isabellin A and isabellihemin A was assigned unambiguously by single crystal X-ray diffraction. Biological evaluation of the metabolites revealed potent cytotoxicity for isabellin A against the NS-1 murine myeloma cell line.
Collapse
|
4
|
Hamchand R, Lafountain AM, Büchel R, Maas KR, Hird SM, Warren M, Frank HA, Brückner C. Red Fluorescence of European Hedgehog (Erinaceus europaeus) Spines Results from Free-Base Porphyrins of Potential Microbial Origin. J Chem Ecol 2021; 47:588-596. [PMID: 33948884 DOI: 10.1007/s10886-021-01279-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/13/2021] [Accepted: 04/27/2021] [Indexed: 01/04/2023]
Abstract
Bioluminescence has been recognized as an important means for inter- and intra-species communication. A growing number of reports of red fluorescence occurring in keratinaceous materials have become available. The fluorophore(s) in these cases were shown to be, or suspected to be, free base porphyrins. The red fluorescence found in the downs of bustards was associated with inter-species signaling in mate selection. First reported in 1925, we confirm that spines of the European hedgehog (Erinaceus europaeus) when irradiated with UV (365-395 nm) light display red fluorescence localized in the light-colored sections of their proximal ends. Using reflectance fluorescence spectroscopy, we confirmed that the fluorophores responsible for the emission are free-base porphyrins, as suspected in the original report. Base-induced degradation of the spine matrix and subsequent HPLC, UV-vis, and ESI+ mass spectrometry analysis revealed the presence of a mixture of coproporphyrin III and uroporphyrin III as predominant porphyrins and a minor fraction of protoporphyrin IX. Investigation of the spine microbiome uncovered the abundant presence of bacteria known to secrete and/or interconvert porphyrins and that are not present on the non-fluorescing quills of the North American porcupine (Erethizon dorsatum). Given this circumstantial evidence, we propose the porphyrins could originate from commensal bacteria. Furthermore, we hypothesize that the fluorescence may be incidental and of no biological function for the hedgehog.
Collapse
Affiliation(s)
- Randy Hamchand
- Department of Chemistry, University of Connecticut, Unit 3060, Storrs, CT, 06269-3060, USA
| | - Amy M Lafountain
- Department of Chemistry, University of Connecticut, Unit 3060, Storrs, CT, 06269-3060, USA
| | - Rhea Büchel
- Department of Chemistry, University of Connecticut, Unit 3060, Storrs, CT, 06269-3060, USA
| | - Kendra R Maas
- Microbial Analysis, Resources, and Services (MARS), University of Connecticut, Unit-3032, Storrs, CT, 06269-3032, USA
| | - Sarah M Hird
- Department of Molecular and Cell Biology, University of Connecticut, Unit 3125, Storrs, CT, 06269-3125, USA
| | - Martin Warren
- Department of Biochemistry, University of Kent, Canterbury, CT2 7NJ, UK
| | - Harry A Frank
- Department of Chemistry, University of Connecticut, Unit 3060, Storrs, CT, 06269-3060, USA
| | - Christian Brückner
- Department of Chemistry, University of Connecticut, Unit 3060, Storrs, CT, 06269-3060, USA.
| |
Collapse
|
5
|
Brückner C. Tolyporphin—An Unusual Green Chlorin‐like Dioxobacteriochlorin. Photochem Photobiol 2017; 93:1320-1325. [DOI: 10.1111/php.12787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 12/25/2022]
|
6
|
Marine Natural Products from New Caledonia--A Review. Mar Drugs 2016; 14:md14030058. [PMID: 26999165 PMCID: PMC4820312 DOI: 10.3390/md14030058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 02/23/2016] [Accepted: 02/25/2016] [Indexed: 01/17/2023] Open
Abstract
Marine micro- and macroorganisms are well known to produce metabolites with high biotechnological potential. Nearly 40 years of systematic prospecting all around the New Caledonia archipelago and several successive research programs have uncovered new chemical leads from benthic and planktonic organisms. After species identification, biological and/or pharmaceutical analyses are performed on marine organisms to assess their bioactivities. A total of 3582 genera, 1107 families and 9372 species have been surveyed and more than 350 novel molecular structures have been identified. Along with their bioactivities that hold promise for therapeutic applications, most of these molecules are also potentially useful for cosmetics and food biotechnology. This review highlights the tremendous marine diversity in New Caledonia, and offers an outline of the vast possibilities for natural products, especially in the interest of pursuing collaborative fundamental research programs and developing local biotechnology programs.
Collapse
|
7
|
Abstract
This review covers the 390 novel marine natural products described to date from deep-water (>50 m) marine fauna, with details on the source organism, its depth and country of origin, along with any reported biological activity of the metabolites. Relevant synthetic studies on the deep-sea natural products have also been included.
Collapse
Affiliation(s)
- Danielle Skropeta
- School of Chemistry, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
9
|
Abstract
Marine animals, especially those from tropical waters, are often brilliantly coloured, and bright colouration is widespread in both sessile and non-sessile invertebrates. These spectacular natural colours are common in species inhabiting shallow waters, and appear not only in animals exposed to bright light, but also in those living in dark areas where colours are visible only with artificial illumination. Marine organisms also show variation in colour with depth and geographical location, and display great variety in colour patterning. These colour characteristics are the result of several different processes, and serve various purposes - the distribution and function of pigments seems to vary between invertebrate groups. In addition to playing an important role in how marine organisms interact, pigments may be involved in physiological processes. Although nitrogenous pigments predominate, marine organisms contain pigments belonging to all the major structural classes of natural products, as well as some that are unique to the marine environment. This review discusses the nature and significance of such pigments, the chemical and biological processes involved, the factors responsible for and affecting bright colourations, as well as their evolution and speculation as to their function.
Collapse
|
10
|
Montforts FP, Glasenapp-Breiling M. Naturally occurring cyclic tetrapyrroles. FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE = PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS. PROGRES DANS LA CHIMIE DES SUBSTANCES ORGANIQUES NATURELLES 2002; 84:1-51. [PMID: 12132388 DOI: 10.1007/978-3-7091-6160-9_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- F P Montforts
- Institut für Organische Chemie, Universität Bremen, Bremen, Germany
| | | |
Collapse
|
11
|
Terrestrial vs marine natural product diversity. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s1460-1567(02)80018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|