1
|
Walton T, DasGupta S, Duzdevich D, Oh SS, Szostak JW. In vitro selection of ribozyme ligases that use prebiotically plausible 2-aminoimidazole-activated substrates. Proc Natl Acad Sci U S A 2020; 117:5741-5748. [PMID: 32123094 PMCID: PMC7084097 DOI: 10.1073/pnas.1914367117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The hypothesized central role of RNA in the origin of life suggests that RNA propagation predated the advent of complex protein enzymes. A critical step of RNA replication is the template-directed synthesis of a complementary strand. Two experimental approaches have been extensively explored in the pursuit of demonstrating protein-free RNA synthesis: template-directed nonenzymatic RNA polymerization using intrinsically reactive monomers and ribozyme-catalyzed polymerization using more stable substrates such as biological 5'-triphosphates. Despite significant progress in both approaches in recent years, the assembly and copying of functional RNA sequences under prebiotic conditions remains a challenge. Here, we explore an alternative approach to RNA-templated RNA copying that combines ribozyme catalysis with RNA substrates activated with a prebiotically plausible leaving group, 2-aminoimidazole (2AI). We applied in vitro selection to identify ligase ribozymes that catalyze phosphodiester bond formation between a template-bound primer and a phosphor-imidazolide-activated oligomer. Sequencing revealed the progressive enrichment of 10 abundant sequences from a random sequence pool. Ligase activity was detected in all 10 RNA sequences; all required activation of the ligator with 2AI and generated a 3'-5' phosphodiester bond. We propose that ribozyme catalysis of phosphodiester bond formation using intrinsically reactive RNA substrates, such as imidazolides, could have been an evolutionary step connecting purely nonenzymatic to ribozyme-catalyzed RNA template copying during the origin of life.
Collapse
Affiliation(s)
- Travis Walton
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Saurja DasGupta
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Daniel Duzdevich
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 37673 Pohang, Gyeongbuk, South Korea
| | - Jack W Szostak
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114;
- Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| |
Collapse
|
2
|
Motsch S, Pfeffer D, Richert C. 2'/3' Regioselectivity of Enzyme-Free Copying of RNA Detected by NMR. Chembiochem 2020; 21:2013-2018. [PMID: 32017335 PMCID: PMC7497262 DOI: 10.1002/cbic.202000014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Indexed: 11/06/2022]
Abstract
The RNA-templated extension of oligoribonucleotides by nucleotides produces either a 3',5' or a 2',5'-phosphodiester. Nature controls the regioselectivity during RNA chain growth with polymerases, but enzyme-free versions of genetic copying have modest specificity. Thus far, enzymatic degradation of products, combined with chromatography or electrophoresis, has been the preferred mode of detecting 2',5'-diesters produced in enzyme-free reactions. This approach hinges on the substrate specificity of nucleases, and is not suitable for in situ monitoring. Here we report how 1 H NMR spectroscopy can be used to detect the extension of self-templating RNA hairpins and that this reveals the regioisomeric nature of the newly formed phosphodiesters. We studied several modes of activating nucleotides, including imidazolides, a pyridinium phosphate, an active ester, and in situ activation with carbodiimide and organocatalyst. Conversion into the desired extension product ranged from 20 to 90 %, depending on the leaving group. Integration of the resonances of H1' protons of riboses and H5 protons of pyrimidines gave regioselectivities ranging from 40:60 to 85:15 (3',5' to 2',5' diester), but no simple correlation between 3',5' selectivity and yield. Our results show how monitoring with a high-resolution technique sheds a new light on a process that may have played an important role during the emergence of life.
Collapse
Affiliation(s)
- Sebastian Motsch
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Daniel Pfeffer
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
3
|
Walton T, Zhang W, Li L, Tam CP, Szostak JW. The Mechanism of Nonenzymatic Template Copying with Imidazole-Activated Nucleotides. Angew Chem Int Ed Engl 2019; 58:10812-10819. [PMID: 30908802 DOI: 10.1002/anie.201902050] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Indexed: 11/10/2022]
Abstract
The emergence of the replication of RNA oligonucleotides was a critical step in the origin of life. An important model for the study of nonenzymatic template copying, which would be a key part of any such pathway, involves the reaction of ribonucleoside-5'-phosphorimidazolides with an RNA primer/template complex. The mechanism by which the primer becomes extended by one nucleotide was assumed to be a classical in-line nucleophilic-substitution reaction in which the 3'-hydroxyl of the primer attacks the phosphate of the incoming activated monomer with displacement of the imidazole leaving group. Surprisingly, this simple model has turned out to be incorrect, and the dominant pathway has now been shown to involve the reaction of two activated nucleotides with each other to form a 5'-5'-imidazolium bridged dinucleotide intermediate. Here we review the discovery of this unexpected intermediate, and the chemical, kinetic, and structural evidence for its role in template copying chemistry.
Collapse
Affiliation(s)
- Travis Walton
- Howard Hughes Medical Institute and Dept. of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Wen Zhang
- Howard Hughes Medical Institute and Dept. of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Li Li
- Howard Hughes Medical Institute and Dept. of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Chun Pong Tam
- Howard Hughes Medical Institute and Dept. of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Dept. of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.,Present address: Moderna Inc., Cambridge, MA, 02139, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute and Dept. of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, 02114, USA.,Dept. of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
4
|
Walton T, Zhang W, Li L, Tam CP, Szostak JW. The Mechanism of Nonenzymatic Template Copying with Imidazole‐Activated Nucleotides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Travis Walton
- Howard Hughes Medical Institute and Dept. of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 USA
| | - Wen Zhang
- Howard Hughes Medical Institute and Dept. of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 USA
| | - Li Li
- Howard Hughes Medical Institute and Dept. of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 USA
| | - Chun Pong Tam
- Howard Hughes Medical Institute and Dept. of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 USA
- Dept. of Chemistry and Chemical Biology Harvard University Cambridge MA 02138 USA
- Present address: Moderna Inc. Cambridge MA 02139 USA
| | - Jack W. Szostak
- Howard Hughes Medical Institute and Dept. of Molecular Biology Center for Computational and Integrative Biology Massachusetts General Hospital Boston MA 02114 USA
- Dept. of Chemistry and Chemical Biology Harvard University Cambridge MA 02138 USA
| |
Collapse
|
5
|
Pal A, Das RS, Zhang W, Lang M, McLaughlin LW, Szostak JW. Effect of terminal 3′-hydroxymethyl modification of an RNA primer on nonenzymatic primer extension. Chem Commun (Camb) 2016; 52:11905-11907. [DOI: 10.1039/c6cc06925h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Displacing the hydroxyl nucleophile at the 3′-end of a primer by a single methylene group drastically decreases the rate of primer extension, illustrating the importance of the precise position of the hydroxyl nucleophile.
Collapse
Affiliation(s)
- Ayan Pal
- Howard Hughes Medical Institute
- Department of Molecular Biology and Center for Computational and Integrative Biology
- Massachusetts General Hospital
- Boston
- USA
| | - Rajat S. Das
- Boston College
- Department of Chemistry
- Merkert Chemistry Center
- Chestnut Hill
- USA
| | - Weicheng Zhang
- Howard Hughes Medical Institute
- Department of Molecular Biology and Center for Computational and Integrative Biology
- Massachusetts General Hospital
- Boston
- USA
| | - Megan Lang
- Boston College
- Department of Chemistry
- Merkert Chemistry Center
- Chestnut Hill
- USA
| | - Larry W. McLaughlin
- Boston College
- Department of Chemistry
- Merkert Chemistry Center
- Chestnut Hill
- USA
| | - Jack W. Szostak
- Howard Hughes Medical Institute
- Department of Molecular Biology and Center for Computational and Integrative Biology
- Massachusetts General Hospital
- Boston
- USA
| |
Collapse
|
6
|
Sliding over the blocks in enzyme-free RNA copying--one-pot primer extension in ice. PLoS One 2013; 8:e75617. [PMID: 24058695 PMCID: PMC3776762 DOI: 10.1371/journal.pone.0075617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/15/2013] [Indexed: 12/02/2022] Open
Abstract
Template-directed polymerization of RNA in the absence of enzymes is the basis for an information transfer in the ‘RNA-world’ hypothesis and in novel nucleic acid based technology. Previous investigations established that only cytidine rich strands are efficient templates in bulk aqueous solutions while a few specific sequences completely block the extension of hybridized primers. We show that a eutectic water/ice system can support Pb2+/Mg2+-ion catalyzed extension of a primer across such sequences, i.e. AA, AU and AG, in a one-pot synthesis. Using mixtures of imidazole activated nucleotide 5′-monophosphates, the two first “blocking” residues could be passed during template-directed polymerization, i.e., formation of triply extended products containing a high fraction of faithful copies was demonstrated. Across the AG sequence, a mismatch sequence was formed in similar amounts to the correct product due to U·G wobble pairing. Thus, the template-directed extension occurs both across pyrimidine and purine rich sequences and insertions of pyrimidines did not inhibit the subsequent insertions. Products were mainly formed with 2′-5′-phosphodiester linkages, however, the abundance of 3′–5′-linkages was higher than previously reported for pyrimidine insertions. When enzyme-free, template-directed RNA polymerization is performed in a eutectic water ice environment, various intrinsic reaction limitations observed in bulk solution can then be overcome.
Collapse
|
7
|
Kaiser A, Richert C. Nucleotide-based copying of nucleic acid sequences without enzymes. J Org Chem 2013; 78:793-9. [PMID: 23327991 DOI: 10.1021/jo3025779] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemical primer extension is the enzyme-free incorporation of nucleotides at the end of an oligonucleotide, directed by a template. The reaction mimics the copying of sequences during replication but relies on recognition and reactivity of nucleic acids alone. Copying is low-yielding, particularly for long RNA. Hydrolysis of active esters and inhibition through hydrolysis products have been identified as factors that prevent high yields, and approaches to overcoming them have culminated in successful template-directed solid-phase syntheses for RNA and phosphoramidate DNA.
Collapse
Affiliation(s)
- Andreas Kaiser
- Institute for Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | | |
Collapse
|
8
|
Zhang N, Zhang S, Szostak JW. Activated ribonucleotides undergo a sugar pucker switch upon binding to a single-stranded RNA template. J Am Chem Soc 2012; 134:3691-4. [PMID: 22296305 PMCID: PMC3448298 DOI: 10.1021/ja212027q] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Indexed: 12/02/2022]
Abstract
Template-directed polymerization of chemically activated ribonucleotide monomers, such as nucleotide 5'-phosphorimidazolides, has been studied as a model for nonenzymatic RNA replication during the origin of life. Kinetic studies of the polymerization of various nucleotide monomers on oligonucleotide templates have suggested that the A-form (C3'-endo sugar pucker) conformation is optimal for both monomers and templates for efficient copying. However, RNA monomers are predominantly in the C2'-endo conformation when free in solution, except for cytidine, which is approximately equally distributed between the C2'-endo and C3'-endo conformations. We hypothesized that ribonucleotides undergo a switch in sugar pucker upon binding to an A-type template and that this conformational switch allows or enhances subsequent polymerization. We used transferred nuclear Overhauser effect spectroscopy (TrNOESY), which can be used for specific detection of the bound conformation of small-molecule ligands with relatively weak affinity to receptors, to study the interactions between nucleotide 5'-phosphorimidazolides and single-stranded oligonucleotide templates. We found that the sugar pucker of activated ribonucleotides switches from C2'-endo in the free state to C3'-endo upon binding to an RNA template. This switch occurs only on RNA and not on DNA templates. Furthermore, activated 2'-deoxyribonucleotides maintain a C2'-endo sugar pucker in both the free and template-bound states. Our results provide a structural explanation for the observations that activated ribonucleotides are superior to activated deoxyribonucleotides and that RNA templates are superior to DNA templates in template-directed nonenzymatic primer-extension reactions.
Collapse
Affiliation(s)
- Na Zhang
- Howard Hughes
Medical Institute and Department of Molecular
Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street,
Boston, Massachusetts 02114, United States
| | - Shenglong Zhang
- Howard Hughes
Medical Institute and Department of Molecular
Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street,
Boston, Massachusetts 02114, United States
| | - Jack W. Szostak
- Howard Hughes
Medical Institute and Department of Molecular
Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street,
Boston, Massachusetts 02114, United States
| |
Collapse
|
9
|
Loakes D, Holliger P. Darwinian chemistry: towards the synthesis of a simple cell. MOLECULAR BIOSYSTEMS 2009; 5:686-94. [PMID: 19562107 DOI: 10.1039/b904024b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The total synthesis of a simple cell is in many ways the ultimate challenge in synthetic biology. Outlined eight years ago in a visionary article by Szostak et al. (J. W. Szostak, D. P. Bartel and P. L. Luisi, Nature, 2001, 409, 387), the chances of success seemed remote. However, recent progress in nucleic acid chemistry, directed evolution and membrane biophysics have brought the prospect of a simple synthetic cell with life-like properties such as growth, division, heredity and evolution within reach. Success in this area will not only revolutionize our understanding of abiogenesis but provide a fertile test-bed for models of prebiotic chemistry and early evolution. Last but not least, a robust "living" protocell may provide a versatile and safe chassis for embedding synthetic devices and systems.
Collapse
Affiliation(s)
- David Loakes
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | | |
Collapse
|
10
|
Ohgi T, Kitagawa H, Yano J. Chemical synthesis of oligoribonucleotides with 2'-O-(2-cyanoethoxymethyl)-protected phosphoramidites. ACTA ACUST UNITED AC 2008; Chapter 2:Unit 2.15. [PMID: 18819083 DOI: 10.1002/0471142700.nc0215s34] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An RNA synthetic method with 2-cyanoethoxymethyl (CEM) as the 2'-hydroxyl protecting group allows the synthesis of long oligoribonucleotides from CEM-amidites with an efficiency and final purity comparable to that obtained in DNA synthesis. The CEM-amidites give a high coupling efficiency, because the CEM group minimizes steric hindrance in the coupling reaction. The CEM group shows satisfactory stability under solid-phase synthetic conditions, avoids the generation of asymmetric centers, and is easily cleaved to give the final product. This unit describes the synthesis of the four CEM-amidites, the preparation of reagents, the solid-phase synthesis of oligoribonucleotides on an automated DNA synthesizer, and their deprotection.
Collapse
Affiliation(s)
- Tadaaki Ohgi
- Discovery Research Laboratories, Nippon Shinyaku Co., Ltd., Ibaraki, Japan
| | | | | |
Collapse
|
11
|
|
12
|
Vogel SR, Richert C. Adenosine residues in the template do not block spontaneous replication steps of RNA. Chem Commun (Camb) 2007:1896-8. [PMID: 17695221 DOI: 10.1039/b702768k] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sub-freezing temperatures, azabenzotriazolide activation, multiple monomer addition, and helper displacement help to overcome what seemed like an intrinsic block of adenine-templated RNA replication steps in the absence of enzymes.
Collapse
Affiliation(s)
- Stephanie R Vogel
- Institute for Organic Chemistry, University of Karlsruhe (TH), 76131 Karlsruhe, Germany
| | | |
Collapse
|
13
|
Stütz JAR, Kervio E, Deck C, Richert C. Chemical primer extension: individual steps of spontaneous replication. Chem Biodivers 2007; 4:784-802. [PMID: 17443889 DOI: 10.1002/cbdv.200790064] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The replication of genetic information, as we know it from today's biology, relies on template-directed, polymerase-catalyzed extension of primers. It is known that short stretches of complementary RNA can form on templates in the absence of enzymes. This account summarizes recent work on efficient enzyme-free primer extension, both with 3'-amino-terminal deoxyribonucleotide primers and with primers made of unmodified RNA. Near-quantitative primer extension with half-life times on the order of hours has been demonstrated by using azaoxybenzotriazolides of nucleotides and downstream-binding oligomers. Further, small non-nucleosidic substituents placed on the terminus of the template or the downstream-binding oligomer have been shown to increase the rate and fidelity of primer-extension reactions. Since all four templating bases (A, C, G, T/U) direct sequence-selective primer-extension steps, we feel that there is renewed hope that full, nonenzymatic replication from monomers may eventually be achieved.
Collapse
Affiliation(s)
- Jan A Rojas Stütz
- Institute for Organic Chemistry, University of Karlsruhe TH, D-76131 Karlsruhe
| | | | | | | |
Collapse
|
14
|
Ober M, Müller H, Pieck C, Gierlich J, Carell T. Base pairing and replicative processing of the formamidopyrimidine-dG DNA lesion. J Am Chem Soc 2006; 127:18143-9. [PMID: 16366567 DOI: 10.1021/ja0549188] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 2,6-diamino-4-hydroxy-5-formamidopyrimidine of 2'-deoxyguanosine (FaPydG) is one of the major DNA lesions found after oxidative stress in cells. To clarify the base pairing and coding potential of this major DNA lesion with the aim to estimate its mutagenic effect, we prepared oligonucleotides containing a cyclopentane based analogue of the DNA lesion (cFaPydG). In addition, oligonucleotides containing the cyclopentane analogue of 2'-deoxyguanosine (cdG), and oligonucleotides containing 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were synthesized. The thermodynamic stability of duplexes containing these building blocks and all canonical counterbases were determined by concentration dependent melting-point measurements (van't Hoff plots). The data reveal that cFaPydG greatly destabilizes a DNA duplex (DeltaDeltaG degrees (298K) approximately 2-4 kcal mol(-1)). The optimal base pairing partner for the cFaPydG lesion is dC. Investigation of duplexes containing dG and cdG shows that the effect of substituting the deoxyribose by a cyclopentane moiety is marginal. The data also provide strong evidence that the FaPydG lesion is unable to form a base pair with dA. Our computational studies indicate that the syn-conformation required for base pairing with dA is energetically unfavorable. This is in contrast to 8-oxodG for which the syn-conformation represents the energetic minimum. Kinetic primer extension studies using S. cerevisiae Pol eta reveal that cFaPydG is replicated in an error-free fashion. dC is inserted 2-3 orders of magnitude more efficiently than dT or dA, showing that FaPydG is a lesion which retains the coding potential of dG. This is also in contrast to 8-oxodG, for which base pairing with dC and dA was established.
Collapse
Affiliation(s)
- Matthias Ober
- Department of Chemistry and Biochemistry Ludwig-Maximilians-University Munich, D-81377 Munich, Germany
| | | | | | | | | |
Collapse
|
15
|
Vogel SR, Deck C, Richert C. Accelerating chemical replication steps of RNA involving activated ribonucleotides and downstream-binding elements. Chem Commun (Camb) 2005:4922-4. [PMID: 16205800 DOI: 10.1039/b510775j] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Template-directed single nucleotide extension of an RNA primer with oxyazabenzotriazolides of ribonucleotides is shown to be fast and sequence-selective; downstream-binding RNA strands contribute to the acceleration of the reaction.
Collapse
Affiliation(s)
- Stephanie R Vogel
- Institute for Organic Chemistry, University of Karlsruhe (TH), 76131 Karlsruhe, Germany
| | | | | |
Collapse
|
16
|
Abstract
The demonstration that ribosomal peptide synthesis is a ribozyme-catalyzed reaction makes it almost certain that there was once an RNA World. The central problem for origin-of-life studies, therefore, is to understand how a protein-free RNA World became established on the primitive Earth. We first review the literature on the prebiotic synthesis of the nucleotides, the nonenzymatic synthesis and copying of polynucleotides, and the selection of ribozyme catalysts of a kind that might have facilitated polynucleotide replication. This leads to a brief outline of the Molecular Biologists' Dream, an optimistic scenario for the origin of the RNA World. In the second part of the review we point out the many unresolved problems presented by the Molecular Biologists' Dream. This in turn leads to a discussion of genetic systems simpler than RNA that might have "invented" RNA. Finally, we review studies of prebiotic membrane formation.
Collapse
|
17
|
Rojas Stütz JA, Richert C. A steroid cap adjusts the selectivity and accelerates the rates of nonenzymatic single nucleotide extensions of an oligonucleotide. J Am Chem Soc 2001; 123:12718-9. [PMID: 11741453 DOI: 10.1021/ja011448i] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J A Rojas Stütz
- Department of Chemistry, University of Constance, Fach M709, 78457 Konstanz, Germany
| | | |
Collapse
|
18
|
Kozlov IA, De Bouvere B, Van Aerschot A, Herdewijn P, Orgel LE. Efficient transfer of information from hexitol nucleic acids to RNA during nonenzymatic oligomerization. J Am Chem Soc 2001; 121:5856-9. [PMID: 11542282 DOI: 10.1021/ja990440u] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hexitol nucleic acids (HNAs) are DNA analogues that contain the standard nucleoside bases attached to a phosphorylated 1,5-anhydrohexitol backbone. We find that HNAs support efficient information transfer in nonensymatic template-directed reactions. HNA heterosequences appeared to be superior to the corresponding DNA heterosequences in facilitating synthesis of complementary oligonucleotides from nucleoside-5'-phosphoro-2-methyl imidazolides.
Collapse
Affiliation(s)
- I A Kozlov
- The Salk Institute for Biological Studies, San Diego, California 92186, USA
| | | | | | | | | |
Collapse
|