1
|
Jiang H, Xie L, Duan Z, Lin K, He Q, Lynch VM, Sessler JL, Wang H. Fluorescent Supramolecular Organic Frameworks Constructed by Amidinium-Carboxylate Salt Bridges. Chemistry 2021; 27:15006-15012. [PMID: 34288158 DOI: 10.1002/chem.202102296] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 12/14/2022]
Abstract
We report here a set of fluorescent supramolecular organic frameworks (SOFs) that incorporate aggregation-induced emission (AIE) units within their frameworks. The fluorescent SOFs of this study were constructed by linking the tetraphenylethylene (TPE)-based tetra(amidinium) cation TPE4+ and aromatic dicarboxylate anions through amidinium-carboxylate salt bridges. The resulting self-assembled structures are characterized by fluorescence quantum yields in the range of 4.6∼14 %. This emissive behavior is ascribed to a combination of electrostatic interactions and hydrogen bonds that operate in concert to impede motions that would otherwise lead to excited state energy dissipation. Single-crystal X-ray diffraction analyses revealed that the length of the dicarboxylate anion bridges has a considerable impact on the structural features of the resulting frameworks. Nevertheless, all SOFs prepared in the context of the present study were found to display emissive features characteristic of TPE-based AIE luminogens with only a modest dependence on the structural specifics being seen. The SOFs reported here could be reversibly "broken up" and "reformed" in response to acid/base stimuli. This reversible structural behavior is consistent with their SOF nature.
Collapse
Affiliation(s)
- Hongqin Jiang
- Department of Chemistry, College of Science, and Center for Supramolecular Chemistry & Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Linhuang Xie
- Department of Chemistry, College of Science, and Center for Supramolecular Chemistry & Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Zhiming Duan
- Department of Chemistry, College of Science, and Center for Supramolecular Chemistry & Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Kunhua Lin
- Department of Chemistry, College of Science, and Center for Supramolecular Chemistry & Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street A5300, Austin, Texas 78712, United States
| | - Jonathan L Sessler
- Department of Chemistry, College of Science, and Center for Supramolecular Chemistry & Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China.,Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street A5300, Austin, Texas 78712, United States
| | - Hongyu Wang
- Department of Chemistry, College of Science, and Center for Supramolecular Chemistry & Catalysis, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| |
Collapse
|
2
|
Thomas M, Anglim Lagones T, Judd M, Morshedi M, O'Mara ML, White NG. Hydrogen bond-Driven Self-Assembly between Amidinium Cations and Carboxylate Anions: A Combined Molecular Dynamics, NMR Spectroscopy, and Single Crystal X-ray Diffraction Study. Chem Asian J 2017; 12:1587-1597. [PMID: 28544634 DOI: 10.1002/asia.201700406] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/18/2017] [Indexed: 11/06/2022]
Abstract
A combination of molecular dynamics (MD), NMR spectroscopy, and single crystal X-ray diffraction (SCXRD) techniques was used to probe the self-assembly of para- and meta-bis(amidinium) compounds with para-, meta-, and ortho-dicarboxylates. Good concordance was observed between the MD and experimental results. In DMSO solution, the systems form several rapidly exchanging assemblies, in part because a range of hydrogen bonding interactions is possible between the amidinium and carboxylate moieties. Upon crystallization, the majority of the systems form 1D supramolecular polymers, which are held together by short N-H⋅⋅⋅O hydrogen bonds.
Collapse
Affiliation(s)
- Michael Thomas
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Thomas Anglim Lagones
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Martyna Judd
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Mahbod Morshedi
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Megan L O'Mara
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| | - Nicholas G White
- Research School of Chemistry, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
3
|
Mardaleishvili IR, Lyubimov AV, Zaichenko NL, Kol’tsova LS, Shienok AI, Tatikolov AS. Luminescence of new hydroxy-2,4,5-triarylimidazoles with an intramolecular hydrogen bond. HIGH ENERGY CHEMISTRY 2016. [DOI: 10.1134/s0018143916040123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Song G, Liu R, He G, Yuan S, Zhu H. Synthesis, Photophysics, and Electronic Structures of Benzene-Linked Bispyrimidine Compounds. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Shu Y, Lei H, Tan YN, Meng M, Zhang XC, Liu CY. Tuning the electronic coupling in Mo2-Mo2 systems by variation of the coordinating atoms of the bridging ligands. Dalton Trans 2014; 43:14756-65. [PMID: 25157859 DOI: 10.1039/c4dt00786g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three novel [Mo2]-bridge-[Mo2] complexes were synthesized by a convergent assembling reaction of the dimetal precursor Mo2(DAniF)3(O2CCH3) (DAniF = N,N'-di(p-anisyl)formamidinate) with the bridging ligands terephthalamidine, terephthalamide and dithioterephthalamide. The structures of these compounds, [Mo2(DAniF)3]2[μ-1,4-{C(E)NH}2-C6H4] (E = NH (), O () or S ()), were determined, either by X-ray crystallography or (1)H NMR spectroscopy, to be the analogues of the terephthalate bridged dimolybdenum dimer. These compounds are structurally and electronically closely related by having the same structural skeleton and similar bonding parameters, which allowed us to analyze the differences between N, O and S atoms on the bridging ligand in promoting electronic interaction between the two [Mo2] units. In the electronic spectra, the metal to ligand charge transfer absorption bands, attributed to the HOMO (dδ) → LUMO (pπ*) transition, was red shifted as the variable atoms change from N to O to S. The mixed-valence species (+), (+) and (+), generated by one-electron oxidation of the neutral precursors and measured in situ, exhibited characteristic intervalence absorption bands, for which the energy and half-height bandwidth decreased from (+) to (+). Therefore, in comparison to O atoms, S atoms are capable of enhancing the electronic coupling between the two [Mo2] units, and the incorporation of N atoms to the bridging ligands slightly diminished the metal-metal interaction. The molecular structures and spectroscopic properties of these compounds were simulated by theoretical calculations at DFT level on the simplified models, which gave results consistent with the experimental observations.
Collapse
Affiliation(s)
- Yao Shu
- Department of Chemistry, Jinan University, 601 Huang-Pu Avenue West, Guangzhou 510632, China.
| | | | | | | | | | | |
Collapse
|
6
|
Izumisawa Y, Togo H. Preparation of α-Bromoketones and Thiazoles from Ketones with NBS and Thioamides in Ionic Liquids. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/gsc.2011.13010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|