1
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
2
|
Bayona LM, van Leeuwen G, Erol Ö, Swierts T, van der Ent E, de Voogd NJ, Choi YH. Influence of Geographical Location on the Metabolic Production of Giant Barrel Sponges ( Xestospongia spp.) Revealed by Metabolomics Tools. ACS OMEGA 2020; 5:12398-12408. [PMID: 32548424 PMCID: PMC7271412 DOI: 10.1021/acsomega.0c01151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Despite their high therapeutic potential, only a limited number of approved drugs originate from marine natural products. A possible reason for this is their broad metabolic variability related to the environment, which can cause reproducibility issues. Consequently, a further understanding of environmental factors influencing the production of metabolites is required. Giant barrel sponges, Xestospongia spp., are a source of many new compounds and are found in a broad geographical range. In this study, the relationship between the metabolome and the geographical location of sponges within the genus Xestospongia spp. was investigated. One hundred and thirty-nine specimens of giant barrel sponges (Xestospongia spp.) collected in four locations, Martinique, Curaçao, Taiwan, and Tanzania, were studied using a multiplatform metabolomics methodology (nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry). A clear grouping of the collected samples according to their location was shown. Metabolomics analysis revealed that sterols and various fatty acids, including polyoxygenated and brominated derivatives, were related to the differences in locations. To explore the relationship between observed metabolic changes and their bioactivity, antibacterial activity was assessed against Escherichia coli and Staphylococcus aureus. The activity was found to correlate with brominated fatty acids. These were isolated and identified as (9E,17E)-18-bromooctadeca-9,17-dien-5,7,15-triynoic acid (1), xestospongic acid (2), (7E,13E,15Z)-14,16-dibromohexadeca-7,13,15-trien-5-ynoic acid (3), and two previously unreported compounds.
Collapse
Affiliation(s)
- Lina M. Bayona
- Natural Products
Laboratory, Institute of Biology, Leiden
University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Gemma van Leeuwen
- Natural Products
Laboratory, Institute of Biology, Leiden
University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Özlem Erol
- Natural Products
Laboratory, Institute of Biology, Leiden
University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Thomas Swierts
- Naturalis
Biodiversity Center, Marine Biodiversity, Darwinweg 2, 2333 CR Leiden, The Netherlands
- Institute
of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Esther van der Ent
- Naturalis
Biodiversity Center, Marine Biodiversity, Darwinweg 2, 2333 CR Leiden, The Netherlands
- Institute
of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Nicole J. de Voogd
- Naturalis
Biodiversity Center, Marine Biodiversity, Darwinweg 2, 2333 CR Leiden, The Netherlands
- Institute
of Environmental Sciences, Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products
Laboratory, Institute of Biology, Leiden
University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- College
of Pharmacy, Kyung Hee University, Hoegi-dong 1, Dongdaemun-gu, 02447 Seoul, Republic
of Korea
| |
Collapse
|
3
|
Bayona LM, Videnova M, Choi YH. Increasing Metabolic Diversity in Marine Sponges Extracts by Controlling Extraction Parameters. Mar Drugs 2018; 16:md16100393. [PMID: 30347785 PMCID: PMC6213764 DOI: 10.3390/md16100393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 01/05/2023] Open
Abstract
Metabolomics has become an important tool in the search for bioactive compounds from natural sources, with the recent inclusion of marine organisms. Of the several steps performed in metabolomics studies, the extraction process is a crucial step-one which has been overlooked for a long time. In the presented study, a pressurized liquid extraction system was used to investigate the effect of extraction parameters such as pressure, temperature, number of cycles, and solvent polarity on the chemical diversity of the extract obtained from the marine sponge, Xestospongia. For this, a full factorial design (2⁴) was performed using a chemical diversity index, which was found to be a suitable tool to determine the efficiency of the extraction process, as the response variable. This index was calculated using a logarithmic transformation of ¹H NMR signals. Three factors (number of cycles, temperature, and solvent polarity) and two interactions were found to affect the chemical diversity of the obtained extracts significantly. Two individual factors (temperature and solvent polarity) were selected for further study on their influence on sponge metabolites using orthogonal partial least square (OPLS) modeling. Based on the results, the groups of compounds that were most influenced by these parameters were determined, and it was concluded that ethanol as the extraction solvent together with low temperatures were the conditions that provided a higher chemical diversity in the extract.
Collapse
Affiliation(s)
- Lina M Bayona
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands.
| | - Melina Videnova
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands.
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands.
- College of Pharmacy, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
4
|
He WF, Xue DQ, Yao LG, Li J, Liu HL, Guo YW. A new bioactive steroidal ketone from the South China Sea sponge Xestospongia testudinaria. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2015; 18:195-199. [PMID: 26289715 DOI: 10.1080/10286020.2015.1056521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
A new steroidal ketone (1), with an ergosta-22,25-diene side chain, was obtained from the South China Sea marine sponge Xestospongia testudinaria. The structure of 1 was determined on the basis of detailed spectroscopic analysis and by comparison with literature. Compound 1 exhibited significant inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), a key target for the treatment of type II diabetes and obesity, with an IC50 value of 4.27 ± 0.55 μM, which is comparable with the positive control oleanolic acid (IC50 = 2.63 ± 0.22 μM).
Collapse
Affiliation(s)
- Wen-Fei He
- a School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035 , China
- b State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Duo-Qing Xue
- b State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Li-Gong Yao
- b State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Jia Li
- b State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Hai-Li Liu
- b State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Yue-Wei Guo
- b State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| |
Collapse
|
5
|
He WF, Liang LF, Cai YS, Gao LX, Li YF, Li J, Liu HL, Guo YW. Brominated polyunsaturated lipids with protein tyrosine phosphatase-1B inhibitory activity from Chinese marine sponge Xestospongia testudinaria. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2015; 17:861-866. [PMID: 25832997 DOI: 10.1080/10286020.2015.1026334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A new brominated polyunsaturated lipid, methyl (E,E)-14,14-dibromo-4,6,13-tetradecatrienoate (1), along with three known related analogues (2-4), were isolated from the Et2O-soluble portion of the acetone extract of Chinese marine sponge Xestospongia testudinaria treated with diazomethane. The structure of the new compound was elucidated by detailed spectroscopic analysis and by comparison with literature data. Compound 3 exhibited significant inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), a key target for the treatment of type II diabetes and obesity, with an IC50 value of 5.30 ± 0.61 μM, when compared to the positive control oleanolic acid (IC50 = 2.39 ± 0.26 μM).
Collapse
Affiliation(s)
- Wen-Fei He
- a School of Pharmaceutical Sciences, Wenzhou Medical University , Wenzhou 325035 , China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hwang BS, Lee K, Yang C, Jeong EJ, Rho JR. Characterization and anti-inflammatory effects of iodinated acetylenic acids isolated from the marine sponges Suberites mammilaris and Suberites japonicus. JOURNAL OF NATURAL PRODUCTS 2013; 76:2355-2359. [PMID: 24256436 DOI: 10.1021/np400793r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The previously unknown compounds 1-4, acetylenic acids with one or two iodine atom(s), were isolated from the marine sponges Suberites mammilaris and Suberites japonicus. Their complete structures were determined using NMR and mass spectrometry. The methylated compounds 1a and 2a exhibited a strong NO inhibitory effect on RAW264.7 cells, while methylated 3a and 4a were inactive in RAW264.7 cells, but highly active in BV2 microglia cells.
Collapse
Affiliation(s)
- Buyng Su Hwang
- Department of Oceanography, Kunsan National University , Jeonbuk, 573-701, South Korea
| | | | | | | | | |
Collapse
|
7
|
Abstract
This review covers the literature published in 2011 for marine natural products, with 870 citations (558 for the period January to December 2011) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1152 for 2011), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
8
|
Pham CD, Hartmann R, Müller WEG, de Voogd N, Lai D, Proksch P. Aaptamine derivatives from the Indonesian sponge Aaptos suberitoides. JOURNAL OF NATURAL PRODUCTS 2013; 76:103-106. [PMID: 23282083 DOI: 10.1021/np300794b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Four new aaptamine derivatives (1-4) along with aaptamine (5) and three related compounds (6-8) were isolated from the ethanol extract of the sponge Aaptos suberitoides collected in Indonesia. The structures of the new compounds were unambiguously determined by one- and two-dimensional NMR and by HRESIMS measurements. Compounds 3, 5, and 6 showed cytotoxic activity against the murine lymphoma L5178Y cell line, with IC(50) values ranging from 0.9 to 8.3 μM.
Collapse
Affiliation(s)
- Cong-Dat Pham
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine University, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | | | | | | | | | | |
Collapse
|
9
|
|