1
|
Lui NM, MacMillan SN, Collum DB. Lithiated Oppolzer Enolates: Solution Structures, Mechanism of Alkylation, and Origin of Stereoselectivity. J Am Chem Soc 2022; 144:23379-23395. [PMID: 36534055 PMCID: PMC10071589 DOI: 10.1021/jacs.2c09341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Camphorsultam-based lithium enolates referred to colloquially as Oppolzer enolates are examined spectroscopically, crystallographically, kinetically, and computationally to ascertain the mechanism of alkylation and the origin of the stereoselectivity. Solvent- and substrate-dependent structures include tetramers for alkyl-substituted enolates in toluene, unsymmetric dimers for aryl-substituted enolates in toluene, substrate-independent symmetric dimers in THF and THF/toluene mixtures, HMPA-bridged trisolvated dimers at low HMPA concentrations, and disolvated monomers for the aryl-substituted enolates at elevated HMPA concentrations. Extensive analyses of the stereochemistry of aggregation are included. Rate studies for reaction with allyl bromide implicate an HMPA-solvated ion pair with a +Li(HMPA)4 counterion. Dependencies on toluene and THF are attributed to exclusively secondary-shell (medium) effects. Aided by density functional theory (DFT) computations, a stereochemical model is presented in which neither chelates nor the lithium gegenion serves roles. The stereoselectivity stems from the chirality within the sultam ring and not the camphor skeletal core.
Collapse
Affiliation(s)
- Nathan M Lui
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853-1301, United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853-1301, United States
| | - David B Collum
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853-1301, United States
| |
Collapse
|
2
|
Unusual (3 THF)-microsolvated dimers and donor-free aggregates of two lithium enolates. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Biedermann M, Diddens D, Heuer A. Connecting the quantum and classical mechanics simulation world: Applications of reactive step molecular dynamics simulations. J Chem Phys 2021; 154:194105. [PMID: 34240915 DOI: 10.1063/5.0048618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This article presents the application of the reactive step molecular dynamics simulation method [M. Biedermann, D. Diddens, and A. Heuer, J. Chem. Theory Comput. 17, 1074 (2021)] toward two different atomistic, chemically reactive systems. During reactive steps, transitions from reactant to product molecules are modeled according to physically correct transition probabilities based on quantum chemical information about the reactions such as molecular reaction rates via instant exchange of the employed force field and a subsequent, short relaxation of the structure. In the first application, we study the follow-up reactions of singly reduced ethylene carbonate (EC) radicals in EC solution, first, via extensive ab initio molecular dynamics simulations and, second, with the reactive step algorithm. A direct comparison of both simulation methods shows excellent agreement. Then, we employ the reactive step algorithm to simulate the enolate formation of 2-methylcyclopropanone with the base lithium diisopropylamine. Thereby, we can demonstrate that the reactive step algorithm is also capable of capturing effects from kinetic vs thermodynamic control of chemical reactions during simulation.
Collapse
Affiliation(s)
- Myra Biedermann
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, GermanyHelmholtz-Institute Münster: Ionics in Energy Storage (IEK-12), Forschungszentrum Jülich GmbH, Corrensstrasse 46, 48149 Münster, Germany
| | - Diddo Diddens
- Helmholtz-Institute Münster: Ionics in Energy Storage (IEK-12), Forschungszentrum Jülich GmbH, Corrensstrasse 46, 48149 Münster, Germany
| | - Andreas Heuer
- Institute of Physical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| |
Collapse
|
4
|
Mastropierro P, Livingstone Z, Robertson SD, Kennedy AR, Hevia E. Structurally Mapping Alkyl and Amide Basicity in Zincate Chemistry: Diversity in the Synthesis of Mixed Sodium–Zinc Complexes and Their Applications in Enolate Formation. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Zoe Livingstone
- Department of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL, United Kingdom
| | - Stuart D. Robertson
- Department of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL, United Kingdom
| | - Alan R. Kennedy
- Department of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL, United Kingdom
| | - Eva Hevia
- Department für Chemie und Biochemie, Universität Bern, CH3012 Bern, Switzerland
- Department of Pure and Applied Chemistry, University of Strathclyde Glasgow G1 1XL, United Kingdom
| |
Collapse
|
5
|
Zhou Y, Keresztes I, MacMillan SN, Collum DB. Disodium Salts of Pseudoephedrine-Derived Myers Enolates: Stereoselectivity and Mechanism of Alkylation. J Am Chem Soc 2019; 141:16865-16876. [PMID: 31613094 DOI: 10.1021/jacs.9b08176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pseudoephedrine-derived dianionic Myers enolates were generated using sodium diisopropylamide (NaDA) in THF solution. The reactivities and selectivities of the disodium salts largely mirror those of the dilithium salts but without the requisite large excesses of inorganic salts (LiCl) or mandated dilute solutions. The disodium salts require careful control of temperature to preclude deleterious aggregate aging effects traced to changes in the aggregate structure and intervening O-alkylations. Structural studies and density functional theory (DFT) computations show a dominant highly symmetric polyhedron quite different from the lithium analogue. No enolate-NaDA mixed aggregates are observed with excess NaDA. Rate studies show an alkylation mechanism involving an intervening tetramer-monomer pre-equilibrium followed by rate-limiting alkylation of tetrasolvated monomers. DFT computations were conducted to explore the possible influences on stereochemistry. A crystal deriving from samples aged at ambient temperature contains six dianionic subunits and two monoanionic (alkoxide-only) subunits. A new preparation of concentrated solutions of NaDA in THF solution is described.
Collapse
Affiliation(s)
- Yuhui Zhou
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853-1301 , United States
| | - Ivan Keresztes
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853-1301 , United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853-1301 , United States
| | - David B Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853-1301 , United States
| |
Collapse
|
6
|
Visse R, Möllemann MA, Braun M. Asymmetric Allylic Alkylation of Alkanoic-Acid Ester Enolates. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Robin Visse
- Institute of Organic and Macromolecular Chemistry; Heinrich-Heine-University Düsseldorf; Universitätsstr. 1 40225 Düsseldorf Germany
| | - Martin-Alexander Möllemann
- Institute of Organic and Macromolecular Chemistry; Heinrich-Heine-University Düsseldorf; Universitätsstr. 1 40225 Düsseldorf Germany
| | - Manfred Braun
- Institute of Organic and Macromolecular Chemistry; Heinrich-Heine-University Düsseldorf; Universitätsstr. 1 40225 Düsseldorf Germany
| |
Collapse
|
7
|
Zhou Y, Jermaks J, Keresztes I, MacMillan SN, Collum DB. Pseudophedrine-Derived Myers Enolates: Structures and Influence of Lithium Chloride on Reactivity and Mechanism. J Am Chem Soc 2019; 141:5444-5460. [PMID: 30896939 PMCID: PMC7079698 DOI: 10.1021/jacs.9b00328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structures and reactivities of pseudoephedrine-derived dianionic Myers enolates are examined. A combination of NMR and IR spectroscopic, crystallographic, and computational data reveal that the homoaggregated dianions form octalithiated tetramers displaying S4-symmetric Li8O8 cores and overall C2 symmetry. Computational and isotopic labeling studies reveal strong N-Li contacts in the carboxamide enolate moiety. The method of continuous variations proves deceptive, as octalithiated tetrameric homoaggregates afford hexalithiated trimeric heteroaggregates. A lithium diisopropylamide-lithium enolate mixed aggregate is found to be a C2-symmetric hexalithiated species incorporating two enolate dianions and two lithium diisopropylamide (LDA) subunits. Structural and rate studies show that lithium chloride has little effect on the dynamics of the enolate homoaggregates but forms adducts of unknown structure. Rate studies of alkylations indicate that the aging of the aggregates can have effects spanning orders of magnitude. The LiCl-enolate adduct dramatically accelerates the reaction but requires superstoichiometric quantities owing to putative autoinhibition. Efforts and progress toward eliminating the requisite large excess of LiCl are discussed.
Collapse
Affiliation(s)
- Yuhui Zhou
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell
University, Ithaca, New York 14853–1301
| | - Janis Jermaks
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell
University, Ithaca, New York 14853–1301
| | - Ivan Keresztes
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell
University, Ithaca, New York 14853–1301
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell
University, Ithaca, New York 14853–1301
| | - David B. Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell
University, Ithaca, New York 14853–1301
| |
Collapse
|
8
|
Matsui JK, Gutiérrez-Bonet Á, Rotella M, Alam R, Gutierrez O, Molander GA. Photoredox/Nickel-Catalyzed Single-Electron Tsuji-Trost Reaction: Development and Mechanistic Insights. Angew Chem Int Ed Engl 2018; 57:15847-15851. [PMID: 30307672 PMCID: PMC6526374 DOI: 10.1002/anie.201809919] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/27/2018] [Indexed: 11/09/2022]
Abstract
A regioselective, nickel-catalyzed photoredox allylation of secondary, benzyl, and α-alkoxy radical precursors is disclosed. Through this manifold, a variety of linear allylic alcohols and allylated monosaccharides are accessible in high yields under mild reaction conditions. Quantum mechanical calculations [DFT and DLPNO-CCSD(T)] support the mechanistic hypothesis of a Ni0 to NiII oxidative addition pathway followed by radical addition and inner-sphere allylation.
Collapse
Affiliation(s)
- Jennifer K Matsui
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, Philadelphia, PA, 19104-6323, USA
| | - Álvaro Gutiérrez-Bonet
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, Philadelphia, PA, 19104-6323, USA
| | - Madeline Rotella
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Rauful Alam
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, Philadelphia, PA, 19104-6323, USA
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Gary A Molander
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, Philadelphia, PA, 19104-6323, USA
| |
Collapse
|
9
|
Matsui JK, Gutiérrez-Bonet Á, Rotella M, Alam R, Gutierrez O, Molander GA. Photoredox/Nickel-Catalyzed Single-Electron Tsuji-Trost Reaction: Development and Mechanistic Insights. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809919] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jennifer K. Matsui
- Department of Chemistry; University of Pennsylvania; Roy and Diana Vagelos Laboratories; Philadelphia PA 19104-6323 USA
| | - Álvaro Gutiérrez-Bonet
- Department of Chemistry; University of Pennsylvania; Roy and Diana Vagelos Laboratories; Philadelphia PA 19104-6323 USA
| | - Madeline Rotella
- Department of Chemistry and Biochemistry; University of Maryland; College Park MD 20742 USA
| | - Rauful Alam
- Department of Chemistry; University of Pennsylvania; Roy and Diana Vagelos Laboratories; Philadelphia PA 19104-6323 USA
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry; University of Maryland; College Park MD 20742 USA
| | - Gary A. Molander
- Department of Chemistry; University of Pennsylvania; Roy and Diana Vagelos Laboratories; Philadelphia PA 19104-6323 USA
| |
Collapse
|
10
|
Sahani RL, Patil MD, Wagh SB, Liu RS. Catalytic Transformations of Alkynes into either α-Alkoxy or α-Aryl Enolates: Mannich Reactions by Cooperative Catalysis and Evidence for Nucleophile-Directed Chemoselectivity. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806883] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rajkumar Lalji Sahani
- Frontier Research Center for Matter Science and Technology; Department of Chemistry; National Tsing-Hua University; Hsinchu Taiwan, ROC
| | - Manoj D. Patil
- Frontier Research Center for Matter Science and Technology; Department of Chemistry; National Tsing-Hua University; Hsinchu Taiwan, ROC
| | - Sachin Bhausaheb Wagh
- Frontier Research Center for Matter Science and Technology; Department of Chemistry; National Tsing-Hua University; Hsinchu Taiwan, ROC
| | - Rai-Shung Liu
- Frontier Research Center for Matter Science and Technology; Department of Chemistry; National Tsing-Hua University; Hsinchu Taiwan, ROC
| |
Collapse
|
11
|
Sahani RL, Patil MD, Wagh SB, Liu RS. Catalytic Transformations of Alkynes into either α-Alkoxy or α-Aryl Enolates: Mannich Reactions by Cooperative Catalysis and Evidence for Nucleophile-Directed Chemoselectivity. Angew Chem Int Ed Engl 2018; 57:14878-14882. [DOI: 10.1002/anie.201806883] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/12/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Rajkumar Lalji Sahani
- Frontier Research Center for Matter Science and Technology; Department of Chemistry; National Tsing-Hua University; Hsinchu Taiwan, ROC
| | - Manoj D. Patil
- Frontier Research Center for Matter Science and Technology; Department of Chemistry; National Tsing-Hua University; Hsinchu Taiwan, ROC
| | - Sachin Bhausaheb Wagh
- Frontier Research Center for Matter Science and Technology; Department of Chemistry; National Tsing-Hua University; Hsinchu Taiwan, ROC
| | - Rai-Shung Liu
- Frontier Research Center for Matter Science and Technology; Department of Chemistry; National Tsing-Hua University; Hsinchu Taiwan, ROC
| |
Collapse
|
12
|
|
13
|
Continuous flow multistep synthesis of α-functionalized esters via lithium enolate intermediates. Tetrahedron 2018. [DOI: 10.1016/j.tet.2017.11.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Visse R, Fidan M, Götzinger A, Motzny A, Jeddi S, Braun M. Enantioselective Palladium‐Catalyzed N‐Allylation of Lactams. ChemistrySelect 2018. [DOI: 10.1002/slct.201801233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Robin Visse
- Institute of Organic and Macromolecular ChemistryUniversity of Duesseldorf Universitätsstr. 1 D-40225 Düsseldorf Germany
| | - Mesut Fidan
- Institute of Organic and Macromolecular ChemistryUniversity of Duesseldorf Universitätsstr. 1 D-40225 Düsseldorf Germany
| | - Alissa Götzinger
- Institute of Organic and Macromolecular ChemistryUniversity of Duesseldorf Universitätsstr. 1 D-40225 Düsseldorf Germany
| | - Angelika Motzny
- Institute of Organic and Macromolecular ChemistryUniversity of Duesseldorf Universitätsstr. 1 D-40225 Düsseldorf Germany
| | - Samir Jeddi
- Institute of Organic and Macromolecular ChemistryUniversity of Duesseldorf Universitätsstr. 1 D-40225 Düsseldorf Germany
| | - Manfred Braun
- Institute of Organic and Macromolecular ChemistryUniversity of Duesseldorf Universitätsstr. 1 D-40225 Düsseldorf Germany
| |
Collapse
|
15
|
|
16
|
Houghton MJ, Collum DB. Lithium Enolates Derived from Weinreb Amides: Insights into Five-Membered Chelate Rings. J Org Chem 2016; 81:11057-11064. [PMID: 27749060 PMCID: PMC5261255 DOI: 10.1021/acs.joc.6b02067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enolization of O-methyl hydroxamic acids (Weinreb amides) in tetrahydrofuran solution with lithium diisopropylamide affords predominantly tetrameric enolates. Aryl substituents on the enolates promote deaggregation. The aggregation states are assigned by using the method of continuous variation in conjunction with 6Li NMR spectroscopy. Decoalescence of the tetramer resonance below -100 °C shows considerable spectral complexity attributed to isomerism of the methoxy-based chelates. Density functional theory calculations were used to examine the consequences of the bite angle of five-membered chelates in cubic tetramers and resulting solvation numbers that were higher than anticipated.
Collapse
Affiliation(s)
- Michael J. Houghton
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301
| | - David B. Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301
| |
Collapse
|
17
|
Konishi A, Minami Y, Hosoi T, Chiba K, Yasuda M. First Isolation and Characterization of the Highly Coordinated Group 14 Enolates: Effects of the Coordination Controls on the Geometry and Tautomerization of Germyl Enolates. Chemistry 2016; 22:12688-91. [PMID: 27377796 DOI: 10.1002/chem.201603147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 11/09/2022]
Abstract
The Group 14 enolates play an important part in many organic reactions. Herein, the reduction of an α-bromo ketone with germanium(II) salts cleanly afforded the corresponding germyl enolate as an isolatable species. This experimental reductive generation of a germyl enolate enabled us to characterize both C- and O-bound tautomers derived from an identical precursor and to unveil the tautomeric mechanisms, including the kinetic parameters and the relative stability of these tautomers, along with confirmation from DFT calculations. Moreover, the highly coordinated germyl enolates were isolated by a stabilization process induced by adding ligands. All products were characterized by NMR spectroscopy and X-ray crystallography.
Collapse
Affiliation(s)
- Akihito Konishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yohei Minami
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takahisa Hosoi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kouji Chiba
- Science and Technology System Division, Ryoka Systems Inc., Tokyo Skytree East Tower, 1-1-2 Oshiage, Sumida-ku, Tokyo, 131-0045, Japan
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
18
|
Houghton MJ, Huck CJ, Wright SW, Collum DB. Lithium Enolates Derived from Pyroglutaminol: Mechanism and Stereoselectivity of an Azaaldol Addition. J Am Chem Soc 2016; 138:10276-83. [PMID: 27500546 PMCID: PMC5240537 DOI: 10.1021/jacs.6b05481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A lithium enolate derived from an acetonide-protected pyroglutaminol undergoes a highly selective azaaldol addition with (E)-N-phenyl-1-[2-(trifluoromethyl)phenyl]methanimine. The selectivity is sensitive to tetrahydrofuran (THF) concentration, temperature, and the presence of excess lithium diisopropylamide base. Rate studies show that the observable tetrasolvated dimeric enolate undergoes reversible deaggregation, with the reaction proceeding via a disolvated-monomer-based transition structure. Limited stereochemical erosion stems from the intervention of a trisolvated-monomer-based pathway, which is suppressed at low THF concentrations and elevated temperature. Endofacial selectivity observed with excess lithium diisopropylamide (LDA) is traced to an intermediate dianion formed by subsequent lithiation of the monomeric azaaldol adduct, which is characterized as both a dilithio form and a trilithio dianion-LDA mixed aggregate.
Collapse
Affiliation(s)
- Michael J. Houghton
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853–1301
| | - Christopher J. Huck
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853–1301
| | - Stephen W. Wright
- Worldwide Medicinal Chemistry, Pfizer Global Research and Development, 445 Eastern Point Road, Groton, CT 06340
| | - David B. Collum
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853–1301
| |
Collapse
|
19
|
Houghton MJ, Biok NA, Huck CJ, Algera RF, Keresztes I, Wright SW, Collum DB. Lithium Enolates Derived from Pyroglutaminol: Aggregation, Solvation, and Atropisomerism. J Org Chem 2016; 81:4149-57. [PMID: 27035057 PMCID: PMC5245164 DOI: 10.1021/acs.joc.6b00459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lithium enolates derived from protected pyroglutaminols were characterized by using (6)Li, (13)C, and (19)F NMR spectroscopies in conjunction with the method of continuous variations. Mixtures of tetrasolvated dimers and tetrasolvated tetramers in different proportions depend on the steric demands of the hemiaminal protecting group, tetrahydrofuran concentration, and the presence or absence of an α-fluoro moiety. The high steric demands of the substituted bicyclo[3.3.0] ring system promote dimers to an unusual extent and allow solvents and atropisomers in cubic tetramers to be observed in the slow-exchange limit. Pyridine used as a (6)Li chemical shift reagent proved useful in assigning solvation numbers.
Collapse
Affiliation(s)
- Michael J. Houghton
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| | - Naomi A. Biok
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| | - Christopher J. Huck
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| | - Russell F. Algera
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| | - Ivan Keresztes
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| | - Stephen W. Wright
- Worldwide Medicinal Chemistry, Pfizer Global Research and Development, 445 Eastern Point Road, Groton, CT 06340
| | - David B. Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| |
Collapse
|
20
|
Tallmadge EH, Jermaks J, Collum DB. Structure-Reactivity Relationships in Lithiated Evans Enolates: Influence of Aggregation and Solvation on the Stereochemistry and Mechanism of Aldol Additions. J Am Chem Soc 2016; 138:345-55. [PMID: 26639525 PMCID: PMC4762877 DOI: 10.1021/jacs.5b10980] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aldol additions to isobutyraldehyde and cyclohexanone with lithium enolates derived from acylated oxazolidinones (Evans enolates) are described. Previously characterized trisolvated dimeric enolates undergo rapid addition to isobutyraldehyde to give a 12:1 syn:syn selectivity in high yield along with small amounts of one anti isomer. The efficacy of the addition depends critically on aging effects and the reaction quench. Unsolvated tetrameric enolates that form on warming the solutions are unreactive toward isobutyraldehyde and undergo retroaldol reaction under forcing conditions. Additions to cyclohexanone are relatively slow but form a single isomeric adduct in >80% yield. The ketone-derived aldolates are robust. All attempts to control stereoselectivity by controlling aggregation failed. Rate studies of addition to cyclohexanone trace the lack of aggregation-dependent selectivities to a monomer-based mechanism. The synthetic implications and possible utility of lithium enolates in Evans aldol additions are discussed.
Collapse
Affiliation(s)
- Evan H. Tallmadge
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301
| | - Janis Jermaks
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301
| | - David B. Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301
| |
Collapse
|
21
|
Jin KJ, Collum DB. Solid-State and Solution Structures of Glycinimine-Derived Lithium Enolates. J Am Chem Soc 2015; 137:14446-55. [PMID: 26554898 PMCID: PMC4762874 DOI: 10.1021/jacs.5b09524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A combination of crystallographic, spectroscopic, and computational studies was applied to study the structures of lithium enolates derived from glycinimines of benzophenone and (+)-camphor. The solvents examined included toluene and toluene containing various concentrations of tetrahydrofuran, N,N,N',N'-tetramethylethylenediamine (TMEDA), (R,R)-N,N,N',N'-tetramethylcyclohexanediamine [(R,R)-TMCDA], and (S,S)-N,N,N',N'-tetramethylcyclohexanediamine [(S,S)-TMCDA]. Crystal structures show chelated monomers, symmetric disolvated dimers, S4-symmetric tetramers, and both S6- and D3d-symmetric hexamers. (6)Li NMR spectroscopic studies in conjunction with the method of continuous variations show how these species distribute in solution. Density functional theory computations offer insights into experimentally elusive details.
Collapse
Affiliation(s)
- Kyoung Joo Jin
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301
| | - David B. Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301
| |
Collapse
|
22
|
Haraguchi R, Ikeda Z, Ooguri A, Matsubara S. Chemo- and regioselective preparation of zinc enolate from thiol esters by palladium catalyzed cross-coupling reaction. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.08.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Tallmadge EH, Collum DB. Evans Enolates: Solution Structures of Lithiated Oxazolidinone-Derived Enolates. J Am Chem Soc 2015; 137:13087-95. [PMID: 26437278 PMCID: PMC4765922 DOI: 10.1021/jacs.5b08207] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The results of a combination of (6)Li and (13)C NMR spectroscopic and computational studies of oxazolidinone-based lithium enolates-Evans enolates-in tetrahydrofuran (THF) solution revealed a mixture of dimers, tetramers, and oligomers (possibly ladders). The distribution depended on the structure of the oxazolidinone auxiliary, substituent on the enolate, and THF concentration (in THF/toluene mixtures). The unsolvated tetrameric form contained a D(2d)-symmetric core structure, whereas the dimers were determined experimentally and computationally to be trisolvates with several isomeric forms.
Collapse
Affiliation(s)
- Evan H Tallmadge
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853-1301, United States
| | - David B Collum
- Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York 14853-1301, United States
| |
Collapse
|