1
|
Garzón-Posse F, Prunet J, Gamba-Sánchez D. An alternative approach to the synthesis of the three fragments of anachelin H. Org Biomol Chem 2020; 18:2702-2715. [PMID: 32207760 DOI: 10.1039/d0ob00315h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of the fully protected peptide, polyketide and alkaloid fragments of anachelin H is presented. The peptide fragment was prepared using a liquid phase peptide synthesis; the polyketide fragment was synthetized using a cross metathesis and an intramolecular oxa-Michael reaction as the key steps to introduce the desired stereochemistry; finally, the alkaloid fragment was obtained by an oxidative cyclization of a catechol derivative using potassium ferricyanide. The synthesis of all fragments was based on the use of natural amino acids as sources of asymmetry. The independent synthesis of the three fragments should allow more efficient biological studies on the fragments instead of the whole natural product. Experiments to illustrate the coupling of fragments and the effectiveness of the convergent strategy are also described.
Collapse
Affiliation(s)
- Fabián Garzón-Posse
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia.
| | - Joëlle Prunet
- WestCHEM, School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, UK
| | - Diego Gamba-Sánchez
- Laboratory of Organic Synthesis, Bio and Organocatalysis, Chemistry Department, Universidad de los Andes, Cra 1 No. 18A-12 Q:305, Bogotá 111711, Colombia.
| |
Collapse
|
2
|
Årstøl E, Hohmann-Marriott MF. Cyanobacterial Siderophores-Physiology, Structure, Biosynthesis, and Applications. Mar Drugs 2019; 17:E281. [PMID: 31083354 PMCID: PMC6562677 DOI: 10.3390/md17050281] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/16/2022] Open
Abstract
Siderophores are low-molecular-weight metal chelators that function in microbial iron uptake. As iron limits primary productivity in many environments, siderophores are of great ecological importance. Additionally, their metal binding properties have attracted interest for uses in medicine and bioremediation. Here, we review the current state of knowledge concerning the siderophores produced by cyanobacteria. We give an overview of all cyanobacterial species with known siderophore production, finding siderophores produced in all but the most basal clades, and in a wide variety of environments. We explore what is known about the structure, biosynthesis, and cycling of the cyanobacterial siderophores that have been characterized: Synechobactin, schizokinen and anachelin. We also highlight alternative siderophore functionality and technological potential, finding allelopathic effects on competing phytoplankton and likely roles in limiting heavy-metal toxicity. Methodological improvements in siderophore characterization and detection are briefly described. Since most known cyanobacterial siderophores have not been structurally characterized, the application of mass spectrometry techniques will likely reveal a breadth of variation within these important molecules.
Collapse
Affiliation(s)
- Erland Årstøl
- Department of Biotechnology, PhotoSynLab, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| | - Martin F Hohmann-Marriott
- Department of Biotechnology, PhotoSynLab, Norwegian University of Science and Technology, 7491 Trondheim, Norway.
| |
Collapse
|
3
|
Zhang X, Li B, Xu H, Wells M, Tefsen B, Qin B. Effect of micronutrients on algae in different regions of Taihu, a large, spatially diverse, hypereutrophic lake. WATER RESEARCH 2019; 151:500-514. [PMID: 30641465 DOI: 10.1016/j.watres.2018.12.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 05/03/2023]
Abstract
Eutrophication or excessive nutrient richness is an impairment of many freshwater ecosystems and a prominent cause of harmful algal blooms. It is generally accepted that nitrogen and phosphorus nutrients are the primary causative factor, however, for systems subject to large anthropogenic perturbation, this may no longer be true, and the role of micronutrients is often overlooked. Here we report a study on Lake Tai (Taihu), a large, spatially diverse and hypereutrophic lake in China. We performed small-scale mesocosm nutrient limitation bioassays using boron, iron, cobalt, copper, molybdenum, nitrogen and phosphorus on phytoplankton communities sampled from different locations in Taihu to test the relative effects of micronutrients on in situ algal assemblages. In addition to commonly-used methods of chemical and biological analysis (including algal phytoplankton counting), we used flow cytometry coupled with data-driven analysis to monitor changes to algal assemblages. We found statistically significant effects of limitation or co-limitation for boron, cobalt, copper and iron. For copper at one location chlorophyll-a was over four times higher for amendment with copper, nitrogen and phosphorous than for the latter two alone. Since copper is often proposed as amendment for the environmental management of harmful algal blooms, this result is significant. We have three primary conclusions: first, the strong effects for Cu that we report here are mutually consistent across chlorophyll-a results, count data, and results determined from a data-driven approach to flow cytometry. Given that we cannot rule out a role for a Fe-Cu homeostatic link in causing these effects, future research into MNs and how they interact with N, P, and other MNs should be pursued to explore new interventions for effective management of HABs. Second, in view of the stimulatory effect that Cu exhibited, management of HABs with Cu as an algal biocide may not always be advisable. Third, our approach to flow cytometry offers data confirming our results from chemical and biological analysis, however also holds promise for future development as a high-throughput tool for use in understanding changes in algal assemblages. The results from this study concur with a small and emerging body of literature suggesting that the potential role of micronutrients in eutrophication requires further consideration in environmental management.
Collapse
Affiliation(s)
- Xiaokai Zhang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, PR China; Department of Environmental Science, University of Liverpool, Brownlow Hill, Liverpool, L69 7ZX, United Kingdom
| | - Boling Li
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, PR China; Department of Environmental Science, University of Liverpool, Brownlow Hill, Liverpool, L69 7ZX, United Kingdom
| | - Hai Xu
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Mona Wells
- Freshwater Ecology Group, National Institute of Water and Atmospheric Research, Dunedin, 9016, New Zealand.
| | - Boris Tefsen
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, 215123, PR China
| | - Boqiang Qin
- Taihu Laboratory for Lake Ecosystem Research, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, PR China
| |
Collapse
|