1
|
Cardona YV, Muñoz LG, Cardozo DG, Chamorro AF. Recent Applications of Amphiphilic Copolymers in Drug Release Systems for Skin Treatment. Pharmaceutics 2024; 16:1203. [PMID: 39339239 PMCID: PMC11435020 DOI: 10.3390/pharmaceutics16091203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Amphiphilic copolymers (ACs) are versatile systems with self-assembling and aggregating properties, enabling the formation of nanomaterials (NMs) such as micelles, vesicles, nanocapsules, and nanogels. These materials have been extensively explored for the delivery of various drugs and active compounds, enhancing the solubility and permeation of poorly water-soluble drugs into skin tissue. This improvement facilitates the treatment of skin diseases, including chronic conditions like cancer, as well as infections caused by bacteria, fungi, and viruses. This review summarizes recent applications of ACs in skin treatment, with a particular focus on their use in anti-cancer drug therapy. It covers the synthesis, classification, and characterization of ACs using various experimental techniques. Additionally, it discusses recent research on different drug delivery pathways using ACs, including encapsulation efficiency, release behavior, characteristics, applications, and responses to various chemical and physical stimuli (both in vivo and in vitro). Furthermore, this review provides a comprehensive analysis of the effects of ACs NMs on several skin diseases, highlighting their potential as alternative treatments.
Collapse
Affiliation(s)
- Yudy Vanessa Cardona
- Research Group of Electrochemistry and Environment (GIEMA), Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Lizeth Geraldine Muñoz
- Research Group of Electrochemistry and Environment (GIEMA), Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Daniela Gutierrez Cardozo
- Research Group of Electrochemistry and Environment (GIEMA), Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Andrés Felipe Chamorro
- Research Group of Electrochemistry and Environment (GIEMA), Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia
| |
Collapse
|
2
|
Serkhacheva NS, Prokopov NI, Lysenko EA, Kozhunova EY, Chernikova EV. Modern Trends in Polymerization-Induced Self-Assembly. Polymers (Basel) 2024; 16:1408. [PMID: 38794601 PMCID: PMC11125046 DOI: 10.3390/polym16101408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/01/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Polymerization-induced self-assembly (PISA) is a powerful and versatile technique for producing colloidal dispersions of block copolymer particles with desired morphologies. Currently, PISA can be carried out in various media, over a wide range of temperatures, and using different mechanisms. This method enables the production of biodegradable objects and particles with various functionalities and stimuli sensitivity. Consequently, PISA offers a broad spectrum of potential commercial applications. The aim of this review is to provide an overview of the current state of rational synthesis of block copolymer particles with diverse morphologies using various PISA techniques and mechanisms. The discussion begins with an examination of the main thermodynamic, kinetic, and structural aspects of block copolymer micellization, followed by an exploration of the key principles of PISA in the formation of gradient and block copolymers. The review also delves into the main mechanisms of PISA implementation and the principles governing particle morphology. Finally, the potential future developments in PISA are considered.
Collapse
Affiliation(s)
- Natalia S. Serkhacheva
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Nickolay I. Prokopov
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, pr. Vernadskogo, 86, 119571 Moscow, Russia;
| | - Evgenii A. Lysenko
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| | - Elena Yu. Kozhunova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, bld. 2, 119991 Moscow, Russia
| | - Elena V. Chernikova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, bld. 3, 119991 Moscow, Russia; (E.A.L.); (E.Y.K.)
| |
Collapse
|
3
|
Otulakowski Ł, Kasprow M, Gadzinowski M, Slomkowski S, Makowski T, Basinska T, Forys A, Godzierz M, Trzebicka B. Influence of hydrophilic block length on the aggregation properties of polyglycidol-polystyrene-polyglycidol copolymers. SOFT MATTER 2024; 20:546-557. [PMID: 38126407 DOI: 10.1039/d3sm01194a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Amphiphilic triblock copolymers, polyglycidol-polystyrene-polyglycidol (PGL-PS-PGL), were synthesised via anionic polymerization starting from the synthesis of a polystyrene macroinitiator with 60 styrene units in the block terminated by ethylene oxide. Poly(ethoxyethyl glycidyl ether) blocks of different lengths were created on both sides of the macroinitiator. By removing the ethoxyethyl blocking groups, PGL-PS-PGL copolymers containing polyglycidol blocks with DP 11, 23, 44 and 63 were received. Their structures were determined by NMR and FTIR. The hydrophilicity of PLG-PS-PGL films was studied upon exposure to water vapour. To perform the copolymers' aggregation in water, the samples were dialysed from DMF into water. The critical concentration of their micellisation (CMC) was determined by measuring the absorbance of the 1,6-diphenylhexa-1,3,5-triene (DPH) probe and the intensity of light scattered by the copolymers' solution as a function of concentration. CMC values increased with increasing the number of hydrophilic glycidol units in the copolymer chain. The sizes of aggregates formed slightly above the critical concentration were measured by dynamic light scattering (DLS), and particles were imaged by cryo-TEM. Cryo-TEM pictures showed the presence of regular micelles in copolymer dispersions. For copolymers with shorter PGL chains aggregated partices were detected. Moreover, cryo-TEM demonstrated that the copolymers with a polyglycidol block of DP = 63 formed regular spherical micelles that formed 2D ordered organisation on the surface. X-ray measurements showed the formation of a partially crystallised PS core in the micelle's interior. The aggregates of all copolymers were stable. Their sizes did not change after one year of storage. The particles did not disassociate even after diluting their dispersions to a concentration 10 times lower than the critical concentration.
Collapse
Affiliation(s)
- Łukasz Otulakowski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, Zabrze, 41-819, Poland.
| | - Maciej Kasprow
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, Zabrze, 41-819, Poland.
| | - Mariusz Gadzinowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Stanislaw Slomkowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Teresa Basinska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, Zabrze, 41-819, Poland.
| | - Marcin Godzierz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, Zabrze, 41-819, Poland.
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, Zabrze, 41-819, Poland.
| |
Collapse
|
4
|
Shin J, Cole BD, Shan T, Jang Y. Heterogeneous Synthetic Vesicles toward Artificial Cells: Engineering Structure and Composition of Membranes for Multimodal Functionalities. Biomacromolecules 2022; 23:1505-1518. [PMID: 35266692 DOI: 10.1021/acs.biomac.1c01504] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The desire to develop artificial cells to imitate living cells in synthetic vesicle platforms has continuously increased over the past few decades. In particular, heterogeneous synthetic vesicles made from two or more building blocks have attracted attention for artificial cell applications based on their multifunctional modules with asymmetric structures. In addition to the traditional liposomes or polymersomes, polypeptides and proteins have recently been highlighted as potential building blocks to construct artificial cells owing to their specific biological functionalities. Incorporating one or more functionally folded, globular protein into synthetic vesicles enables more cell-like functions mediated by proteins. This Review highlights the recent research about synthetic vesicles toward artificial cell models, from traditional synthetic vesicles to protein-assembled vesicles with asymmetric structures. We aim to provide fundamental and practical insights into applying knowledge on molecular self-assembly to the bottom-up construction of artificial cell platforms with heterogeneous building blocks.
Collapse
Affiliation(s)
- Jooyong Shin
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Blair D Cole
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Ting Shan
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
5
|
Eichhorn J, Klein M, Romanenko I, Schacher FH. Synthesis of block copolymers containing 3-chloro-2-hydroxypropyl methacrylate by NMP – a versatile platform for functionalization. Polym Chem 2022. [DOI: 10.1039/d2py00611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study highlights the potential of 3-chloro-2-hydroxypropyl methacrylate (ClHPMA) as a functional building block in nanostructured block copolymer architectures.
Collapse
Affiliation(s)
- Jonas Eichhorn
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Michael Klein
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany
| | - Iuliia Romanenko
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstraße 10, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743 Jena, Germany
| |
Collapse
|
6
|
Zhang F, Peng S, Xu J, Cai C, Zhang LJ. Morphological transitions of micelles induced by the block arrangements of copolymer blocks: Dissipative particle dynamics simulation. Phys Chem Chem Phys 2022; 24:10757-10764. [DOI: 10.1039/d2cp00617k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polymer micelles with distinct morphologies and unique microphase separation microstructures can exhibit different properties and functions, holding the great promises for a range of biomedical applications. In current work, the...
Collapse
|
7
|
Vrbata D, Kereiche S, Kalíková K, Uchman M. Stimuli-responsive multifunctional micelles of ABC vs. ACB triblock terpolymers using reversible covalent bonding of phenylboronic acid: controlled synthesis, self-assembly and model drug release. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Karayianni M, Pispas S. Block copolymer solution self‐assembly: Recent advances, emerging trends, and applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210430] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Karayianni
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| |
Collapse
|
9
|
Calubaquib EL, Soltantabar P, Wang H, Shin H, Flores A, Biewer MC, Stefan MC. Self-assembly behavior of oligo(ethylene glycol) substituted polycaprolactone homopolymers. Polym Chem 2021. [DOI: 10.1039/d1py00483b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this work, non-ionic amphiphilic oligo(ethylene glycol)-substituted polycaprolactone homopolymers readily self-assembled to form micelles in a polar environment, which allowed the encapsulation of a hydrophobic molecule.
Collapse
Affiliation(s)
- Erika L. Calubaquib
- Department of Chemistry and Biochemistry
- University of Texas at Dallas
- Richardson
- USA
| | | | - Hanghang Wang
- Department of Chemistry and Biochemistry
- University of Texas at Dallas
- Richardson
- USA
| | - Heejin Shin
- Department of Chemistry and Biochemistry
- University of Texas at Dallas
- Richardson
- USA
| | - Alfonso Flores
- Department of Chemistry and Biochemistry
- University of Texas at Dallas
- Richardson
- USA
| | - Michael C. Biewer
- Department of Chemistry and Biochemistry
- University of Texas at Dallas
- Richardson
- USA
| | - Mihaela C. Stefan
- Department of Chemistry and Biochemistry
- University of Texas at Dallas
- Richardson
- USA
- Department of Bioengineering
| |
Collapse
|
10
|
Yang Cong, Zhou Q, Rao Z, Zhai W, Yu J. Multicompartment Self-assemblies of Triblock Copolymer for Drug Delivery. COLLOID JOURNAL 2021. [DOI: 10.1134/s1061933x2101004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Daubian D, Fillion A, Gaitzsch J, Meier W. One-Pot Synthesis of an Amphiphilic ABC Triblock Copolymer PEO- b-PEHOx- b-PEtOz and Its Self-Assembly into Nanoscopic Asymmetric Polymersomes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Davy Daubian
- Department of Physical Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Alexandra Fillion
- Department of Physical Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Jens Gaitzsch
- Department of Physical Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - Wolfgang Meier
- Department of Physical Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| |
Collapse
|
12
|
The chemistry of cross-linked polymeric vesicles and their functionalization towards biocatalytic nanoreactors. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04681-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractSelf-assembly of amphiphilic block copolymers into polymersomes continues to be a hot topic in modern research on biomimetics. Their well-known and valued mechanical strength can be increased even further if they are cross-linked. These additional bonds prevent a collapse or disassembly of the polymersomes and open the way towards smart nanoreactors. A variety of chemistries have been applied to obtain the desired cross-linked polymersomes, and therefore, the chemical approaches performed over time will be highlighted in this mini-review. Due to the large number of studies, a selected set of photo-cross-linked and pH-sensitive polymersomes will be specifically highlighted. This system has proven to be a very potent candidate for the formation of nanoreactors and drug delivery systems, and even for the formation of functional multicompartment cell mimics.
Collapse
|
13
|
Zhang X, Dai Y, Dai G, Deng C. Advances in PEG-based ABC terpolymers and their applications. RSC Adv 2020; 10:21602-21614. [PMID: 35518773 PMCID: PMC9054495 DOI: 10.1039/d0ra03478a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
ABC terpolymers are a class of very important polymers because of their expansive molecular topologies and extensive architectures. As block A, poly(ethylene glycol) (PEG) is one of the most principal categories owing to good biocompatibility and wide commercial availability. More importantly, the synthetic approaches of ABC terpolymers using PEG as a macroinitiator are facile and varied. PEG-based ABC terpolymers from design and synthesis to applications are highlighted in this review. Linear, 3-miktoarm, and cyclic polymers as the architecture are separated. The synthetic approaches of PEG-based ABC terpolymers mainly include the sequential polymerization or coupling of polymers. PEG-based ABC terpolymers have wide applications in the fields of drug carriers, gene vectors, templates for the fabrication of inorganic hollow nanospheres, and stabilizers of metal nanoparticles.
Collapse
Affiliation(s)
- Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Guofei Dai
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences Nanchang 330029 China
| | - Chunhui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis, Advanced Materials Laboratory, Fudan University Shanghai 200433 China
| |
Collapse
|
14
|
Daubian D, Gaitzsch J, Meier W. Synthesis and complex self-assembly of amphiphilic block copolymers with a branched hydrophobic poly(2-oxazoline) into multicompartment micelles, pseudo-vesicles and yolk/shell nanoparticles. Polym Chem 2020. [DOI: 10.1039/c9py01559k] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A new PEO-b-PEHOx amphiphilic diblock copolymer was achieved which unlocked new complex self-assembled structures. Thanks to its hydrophobic oxazoline block with a long branched side chain, EHOx, various potent structures were obtained.
Collapse
Affiliation(s)
- Davy Daubian
- Department of Physical Chemistry
- University of Basel
- 4058 Basel
- Switzerland
| | - Jens Gaitzsch
- Department of Physical Chemistry
- University of Basel
- 4058 Basel
- Switzerland
- Leibniz-Institut für Polymerforschung Dresden e.V
| | - Wolfgang Meier
- Department of Physical Chemistry
- University of Basel
- 4058 Basel
- Switzerland
| |
Collapse
|
15
|
Kyropoulou M, DiLeone S, Lanzilotto A, Constable EC, Housecroft CE, Meier WP, Palivan CG. Porphyrin Containing Polymersomes with Enhanced ROS Generation Efficiency: In Vitro Evaluation. Macromol Biosci 2019; 20:e1900291. [DOI: 10.1002/mabi.201900291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/03/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Myrto Kyropoulou
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | - Stefano DiLeone
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | - Angelo Lanzilotto
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | - Edwin C. Constable
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | | | - Wolfgang P. Meier
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| | - Cornelia G. Palivan
- Department of ChemistryUniversity of Basel Mattenstrasse 24a 4058 Basel Switzerland
| |
Collapse
|
16
|
Affiliation(s)
- Xiaolian Qiang
- Physical Chemistry and Center for Nanointegration (CENIDE)University of Duisburg-Essen 47057 Duisburg Germany
| | - Ramzi Chakroun
- Physical Chemistry and Center for Nanointegration (CENIDE)University of Duisburg-Essen 47057 Duisburg Germany
| | - Nicole Janoszka
- Physical Chemistry and Center for Nanointegration (CENIDE)University of Duisburg-Essen 47057 Duisburg Germany
| | - André H. Gröschel
- Physical Chemistry and Center for Nanointegration (CENIDE)University of Duisburg-Essen 47057 Duisburg Germany
| |
Collapse
|
17
|
Gaitzsch J, Hirschi S, Freimann S, Fotiadis D, Meier W. Directed Insertion of Light-Activated Proteorhodopsin into Asymmetric Polymersomes from an ABC Block Copolymer. NANO LETTERS 2019; 19:2503-2508. [PMID: 30875467 DOI: 10.1021/acs.nanolett.9b00161] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoscopic artificial vesicles containing functional protein transporters are fundamental for synthetic biology. Energy-providing modules, such as proton pumps, are a basis for simple nanoreactors. We report on the first insertion of a functional transmembrane protein into asymmetric polymersomes from an ABC triblock copolymer. The polymer with the composition poly(ethylene glycol)-poly(diisopropylaminoethyl methacrylate)-poly(styrenesulfonate) (PEG-PDPA-PSS) was synthesized by sequential controlled radical polymerization. PEG and PSS are two distinctively different hydrophilic blocks, allowing for a specific orientation of our protein, the light-activated proton pump proteorhodopsin (PR), into the final proteopolymersome. A very interesting aspect of the PEG-PDPA-PSS triblock copolymers is that it allowed for simultaneous vesicle formation and oriented insertion of PR simply by adjusting the pH. The intrinsic positive charge of PR's intracellular surface was enhanced by a His-tag, which aligns readily with the negative charges of the PSS on the outside of the polymersomes. The directed insertion of PR was confirmed by a light-dependent pH change of the proteopolymersome solution, indicating the intended orientation. We have hereby demonstrated the first successful oriented insertion of a proton pump into an artificial asymmetric membrane.
Collapse
Affiliation(s)
- Jens Gaitzsch
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4058 Basel , Switzerland
| | - Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine , University of Bern , Bühlstrasse 28 , 3012 Bern , Switzerland
| | - Sven Freimann
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4058 Basel , Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine , University of Bern , Bühlstrasse 28 , 3012 Bern , Switzerland
| | - Wolfgang Meier
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4058 Basel , Switzerland
| |
Collapse
|
18
|
Polymer membranes as templates for bio-applications ranging from artificial cells to active surfaces. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2018.12.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Yorulmaz Avsar S, Kyropoulou M, Di Leone S, Schoenenberger CA, Meier WP, Palivan CG. Biomolecules Turn Self-Assembling Amphiphilic Block Co-polymer Platforms Into Biomimetic Interfaces. Front Chem 2019; 6:645. [PMID: 30671429 PMCID: PMC6331732 DOI: 10.3389/fchem.2018.00645] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022] Open
Abstract
Biological membranes constitute an interface between cells and their surroundings and form distinct compartments within the cell. They also host a variety of biomolecules that carry out vital functions including selective transport, signal transduction and cell-cell communication. Due to the vast complexity and versatility of the different membranes, there is a critical need for simplified and specific model membrane platforms to explore the behaviors of individual biomolecules while preserving their intrinsic function. Information obtained from model membrane platforms should make invaluable contributions to current and emerging technologies in biotechnology, nanotechnology and medicine. Amphiphilic block co-polymers are ideal building blocks to create model membrane platforms with enhanced stability and robustness. They form various supramolecular assemblies, ranging from three-dimensional structures (e.g., micelles, nanoparticles, or vesicles) in aqueous solution to planar polymer membranes on solid supports (e.g., polymer cushioned/tethered membranes,) and membrane-like polymer brushes. Furthermore, polymer micelles and polymersomes can also be immobilized on solid supports to take advantage of a wide range of surface sensitive analytical tools. In this review article, we focus on self-assembled amphiphilic block copolymer platforms that are hosting biomolecules. We present different strategies for harnessing polymer platforms with biomolecules either by integrating proteins or peptides into assemblies or by attaching proteins or DNA to their surface. We will discuss how to obtain synthetic structures on solid supports and their characterization using different surface sensitive analytical tools. Finally, we highlight present and future perspectives of polymer micelles and polymersomes for biomedical applications and those of solid-supported polymer membranes for biosensing.
Collapse
|
20
|
Folini J, Huang CH, Anderson JC, Meier WP, Gaitzsch J. Novel monomers in radical ring-opening polymerisation for biodegradable and pH responsive nanoparticles. Polym Chem 2019. [DOI: 10.1039/c9py01103j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report the first amine-bearing cyclic ketene acetals (CKAs) for radical ring-opening polymerisation (RROP). The resulting polyesters and their corresponding nanoparticles were biodegradable and showed the desired pH sensitive behaviour.
Collapse
Affiliation(s)
- Jenny Folini
- Departement Chemie
- Universität Basel
- 4058 Basel
- Switzerland
| | - Chao-Hung Huang
- Department of Chemistry
- University College London
- London WC1H 0AJ
- UK
| | | | | | - Jens Gaitzsch
- Departement Chemie
- Universität Basel
- 4058 Basel
- Switzerland
- Leibniz-Institut für Polymerforschung Dresden e.V
| |
Collapse
|
21
|
Huang J, Guo Y, Gu S, Han G, Duan W, Gao C, Zhang W. Multicompartment block copolymer nanoparticles: recent advances and future perspectives. Polym Chem 2019. [DOI: 10.1039/c9py00452a] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review focuses on the synthesis of multicompartment block copolymer nanoparticles (MBCNs) via solution self-assembly and polymerization-induced self-assembly (PISA).
Collapse
Affiliation(s)
- Jing Huang
- Sinopec Research Institute of Petroleum Engineering
- Beijing
- China
| | - Yakun Guo
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Song Gu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Guang Han
- State Key Laboratory of Special Functional Waterproof Materials
- Beijing Oriental Yuhong Waterproof Technology Co
- Ltd
- Beijing 100123
- China
| | - Wenfeng Duan
- State Key Laboratory of Special Functional Waterproof Materials
- Beijing Oriental Yuhong Waterproof Technology Co
- Ltd
- Beijing 100123
- China
| | - Chengqiang Gao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|