1
|
Wang XN, Wang Y, Wang N, Chen J, Qi C, Chang J. TMSOTf-Catalyzed Reactions of N-Arylynamides with Sulfilimines To Construct 2-Aminoindoles and α-Arylated Amidines. J Org Chem 2024. [PMID: 38178688 DOI: 10.1021/acs.joc.3c02342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Here, we disclose an efficient TMSOTf-catalyzed C-H annulation of aryl-terminated N-arylynamides with sulfilimines, leading to the practical assembly of various valuable 2-aminoindoles in generally moderate to excellent yields with a broad range of functional groups, while nonaryl terminated N-arylynamides undergo TMSOTf-catalyzed aminative arylation with sulfilimines providing α-arylated amidines.
Collapse
Affiliation(s)
- Xiao-Na Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Yanan Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Nanfang Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Jinyue Chen
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Chaofan Qi
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| | - Junbiao Chang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, P. R. China
| |
Collapse
|
2
|
Wei L, Xiao X, Cai M. Recyclable gold(I)-catalyzed heterocyclization of ynamides with benzyl or indolyl azides towards 2-aminoindoles or 3-amino-β-carbolines. Org Biomol Chem 2023; 21:8757-8766. [PMID: 37877426 DOI: 10.1039/d3ob01555f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
A highly efficient heterogeneous gold(I)-catalyzed heterocyclization of ynamides with benzyl or indolyl azides has been achieved in 1,2-dichloroethane under mild conditions via a heterogenized α-imino gold carbene intermediate using 5 mol% of SBA-15-anchored strongly hindered NHC-gold(I) complex [IPr-SBA-15-AuNTf2] as the catalyst, delivering a wide range of valuable 2-aminoindoles or 3-amino-β-carbolines in mostly good to excellent yields with high regioselectivity. Furthermore, the new heterogenized NHC-gold(I) complex displays the same catalytic activity as IPrAuNTf2 and is facile to recover by centrifugation of the reaction mixture and can be reused at least seven times without any appreciable drop in its catalytic activity.
Collapse
Affiliation(s)
- Li Wei
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Xiaoqiang Xiao
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| | - Mingzhong Cai
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
3
|
Zhang X, Xing Q, Gou Z, Gan S, Wang W, Li Z, Shao H, Wang C. Synthesis of Functionalized Tetrahydroquinoline Containing Indole Scaffold via Chemoselective Annulation of Aza- ortho-quinone Methide Precursor. ACS OMEGA 2023; 8:22352-22360. [PMID: 37396238 PMCID: PMC10308564 DOI: 10.1021/acsomega.2c07036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/21/2023] [Indexed: 07/04/2023]
Abstract
The chemoselective annulation of aza-ortho-quinone methide generated by in situ o-chloromethyl sulfonamide has been achieved with bifunctional acyclic olefin. This efficient approach provides access to the diastereoselective synthesis of functionalized tetrahydroquinoline derivatives containing indole scaffolds through the inverse-electron-demand aza-Diels-Alder reaction under mild reaction conditions with excellent results (up to 93% yield, > 20:1 dr). Moreover, this article realized the cyclization of α-halogeno hydrazone with electron-deficient alkene affording the tetrahydropyridazine derivatives, which had never been reported.
Collapse
Affiliation(s)
- Xiaoke Zhang
- Central
Laboratory, Chongqing University Fuling
Hospital, Chongqing 408000, PR China
- Zunyi
Medical University, Zunyi, Guizhou 563000, China
| | - Qianlu Xing
- Department
of Pediatrics, The Second Affiliated Hospital
of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zhengxing Gou
- Central
Laboratory, Chongqing University Fuling
Hospital, Chongqing 408000, PR China
| | - Song Gan
- Zunyi
Medical University, Zunyi, Guizhou 563000, China
| | - Wenjuan Wang
- Zunyi
Medical University, Zunyi, Guizhou 563000, China
| | - Ziwei Li
- Central
Laboratory, Chongqing University Fuling
Hospital, Chongqing 408000, PR China
| | - Huawu Shao
- Natural
Products Research Centre, Chengdu Institute
of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Chaoyong Wang
- Central
Laboratory, Chongqing University Fuling
Hospital, Chongqing 408000, PR China
| |
Collapse
|
4
|
P R, S V, John J. Inverse Electron Demand Diels Alder Reaction of Aza- o-Quinone Methides and Enaminones: Accessing 3-Aroyl Quinolines and Indeno[1,2- b]quinolinones. J Org Chem 2022; 87:13708-13714. [PMID: 36177973 DOI: 10.1021/acs.joc.2c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have developed a Diels Alder cycloaddition route toward 3-aroyl quinolines from enaminones and in situ generated aza-o-quinone methides. The reaction was found to be general with a range of substituted enaminones and aza-o-quinone methides, and we could validate the applicability of the methodology in gram scale. We also demonstrated a one-pot strategy toward 3-acyl quinolines starting from the corresponding aliphatic ketones. Finally, we utilized the 3-aroyl quinolines for synthesizing indeno[1,2-b]quinolinones via a Pd-catalyzed dual C-H activation approach.
Collapse
Affiliation(s)
- Rahul P
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Veena S
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
| | - Jubi John
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
5
|
Wang L, Huang Z, Guo X, Liu J, Dong J, Xu X. Diastereodivergent synthesis of chromeno[2,3- b]chromenes by tuning all of the reactivity centers of isocyanoacetate. Chem Commun (Camb) 2022; 58:6433-6436. [PMID: 35545968 DOI: 10.1039/d2cc01632j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel diastereodivergent tricyclization of isocyanoacetates with o-quinone methides was accomplished for the efficient synthesis of chromeno[2,3-b]chromene derivatives. All three reactive centers of isocyanoacetate reacted sequentially with two o-QMs, affording the products with four adjacent stereocenters in a diastereoselective manner. The asymmetric version was preliminarily investigated.
Collapse
Affiliation(s)
- Lei Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, China.
| | - Zitong Huang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, China.
| | - Xiaoyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, China.
| | - Jian Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, China.
| | - Jinhuan Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, China.
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
6
|
Cheng H, Yan DC, Wang G, He ZL. [4+2] Cycloaddition reactions with aza-o-QMs of fulvenes: Construction of tetrahydroquinoline derivatives. Synlett 2022. [DOI: 10.1055/a-1796-7444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An efficient [4+2] cycloaddition reaction of fulvenes with the in situ generated aza-o-quinone methides from N-(o-chloromethyl)aryl sulfonamides with the assistance base has been developed to afford a series of tetrahydroquinoline derivatives. The reaction tolerates a wide range of aza-o-quinone methides and fulvenes bearing four to seven-membered rings to afford the corresponding tetrahydroquinolines in moderate to good yields. Based on the literature analysis, a plausible mechanism for this [4+2] cycloaddition was proposed.
Collapse
Affiliation(s)
- Hang Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Ding-Ce Yan
- Analytical and Testing Center, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Zhao-Lin He
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
| |
Collapse
|
7
|
Yang QQ, Xiao WJ, He XY, Ma YH. [4+n] Annulation Reactions Using ortho-Chloromethyl Anilines as Aza-ortho-Quinone Methide Precursors. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1529-7739] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
AbstractAza-ortho-quinone methides are important reactive intermediates that have found broad applications in synthetic chemistry. Recently, 1,4-elimination of ortho-chloromethyl aniline derivatives has emerged as a novel, powerful and convenient method for aza-ortho-quinone methide generation. This review will highlight the recent applications of aza-ortho-quinone methide precursors in annulation reactions to access various biologically important nitrogen-containing heterocycles. The general mechanisms are briefly discussed as well.1 Introduction2 [4+n] Annulation Reactions Using ortho-Chloromethyl Anilines as Aza-ortho-Quinone Methide Precursors2.1 [4+2] Annulation Reactions2.2 [4+1] Annulation Reactions2.3 [4+3] Annulation Reactions3 Conclusion and Perspective
Collapse
Affiliation(s)
- Qing-Qing Yang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University
| | - Wen-Jing Xiao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University
| | - Xiao-Yu He
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University
| | - Yu-Hong Ma
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University
| |
Collapse
|
8
|
Zhang L, Fang L, Huang H, Wang C, Gao F, Wang Z. Synthesis of Benzo[ e][1,4]thiazepines by Base-Induced Formal [4+3] Annulation Reaction of Aza- o-quinone Methides and Pyridinium 1,4-Zwitterionic Thiolates. J Org Chem 2021; 86:18156-18163. [PMID: 34866383 DOI: 10.1021/acs.joc.1c02433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The base-induced formal [4+3] annulation reaction of in situ-formed aza-o-quinone methides and pyridinium 1,4-zwitterionic thiolates is reported. This protocol provides a novel and reliable method for the synthesis of biologically interesting benzo[e][1,4]thiazepine derivatives in synthetically useful yields. In addition, postsynthetic modification results in the formation of its sulfoxide and sulfone derivatives.
Collapse
Affiliation(s)
- Lijie Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Ling Fang
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, P. R. China
| | - Hao Huang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Chaofan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Fang Gao
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| | - Zhiyong Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
9
|
Yan X, Liu CF, An XT, Ge XM, Zhang Q, Pang LH, Bao X, Fan CA. Copper-Catalyzed (4+1) Cascade Annulation of Terminal Alkynes with 2-(Tosylmethyl)anilines: Synthesis of 2,3-Disubstituted Indoles. Org Lett 2021; 23:8905-8909. [PMID: 34756037 DOI: 10.1021/acs.orglett.1c03402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A novel strategy based on Cu-catalyzed (4+1) cascade annulation of terminal alkynes as one-carbon synthons with 2-(tosylmethyl)anilines has been developed for the expeditious synthesis of 2,3-disubstituted indoles, in which in situ generations of aza-o-quinone methides and alkynyl-copper(I) species are involved. This annulation provides an effective method for the assembly of synthetically and structurally interesting 2,3-disubstituted indoles.
Collapse
Affiliation(s)
- Xu Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Chun-Fang Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Xian-Tao An
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Xiao-Min Ge
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Qing Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Lin-Han Pang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Xu Bao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| | - Chun-An Fan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Nanlu, Lanzhou 730000, China
| |
Collapse
|
10
|
Allegue D, Santamaría J, Ballesteros A. Gold(I)‐Catalyzed Indole Synthesis through Aza‐Nazarov‐Type Cyclization of α‐Imino Gold Carbene Complexes and Arenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Darío Allegue
- Instituto de Química Organometálica “Enrique Moles” and Departamento de Química Orgánica e Inorgánica Universidad de Oviedo c/Julián Clavería 8 33007 Oviedo Spain
| | - Javier Santamaría
- Instituto de Química Organometálica “Enrique Moles” and Departamento de Química Orgánica e Inorgánica Universidad de Oviedo c/Julián Clavería 8 33007 Oviedo Spain
| | - Alfredo Ballesteros
- Instituto de Química Organometálica “Enrique Moles” and Departamento de Química Orgánica e Inorgánica Universidad de Oviedo c/Julián Clavería 8 33007 Oviedo Spain
| |
Collapse
|
11
|
Zhang J, Li Y, Zhang C, Wang XN, Chang J. Metal-Free [3+2] Annulation of Ynamides with Anthranils to Construct 2-Aminoindoles. Org Lett 2021; 23:2029-2035. [PMID: 33645992 DOI: 10.1021/acs.orglett.1c00158] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel metal-free [3+2] annulation of ynamides with anthranils provides a facile, flexible, environmentally friendly, and atom-economical route to 2-aminoindoles. This synthetic process proceeds with efficiency, excellent regioselectivity, and wide functional group tolerance under mild conditions. Moreover, the obtained 2-aminoindole products represent a multifunctional platform for the construction of various 2-aminoindolyl frameworks.
Collapse
Affiliation(s)
- Jingyi Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ying Li
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Chaofeng Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiao-Na Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Junbiao Chang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
12
|
Hua T, Chao F, Wang L, Yan C, Xiao C, Yang Q, Xiao W. Tandem Phospha‐Michael Addition/
N
‐Acylation/ Intramolecular Wittig Reaction of aza‐
o
‐Quinone Methides: Approaches to 2,3‐Disubstituted Indoles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000343] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ting‐Bi Hua
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University 8 Daxue Road Yichang, Hubei 443002 People's Republic of China
- Hubei Key Laboratory of Natural Products Research and DevelopmentChina Three Gorges University 8 Daxue Road Yichang, Hubei 443002 People's Republic of China
| | - Fei Chao
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University 8 Daxue Road Yichang, Hubei 443002 People's Republic of China
| | - Long Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University 8 Daxue Road Yichang, Hubei 443002 People's Republic of China
| | - Chen‐Yang Yan
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University 8 Daxue Road Yichang, Hubei 443002 People's Republic of China
| | - Cong Xiao
- Wuhan Glycolipid Co. Ltd. NO.666, East Lake High-tech Development Zone Wuhan, Hubei 430075 People's Republic of China
| | - Qing‐Qing Yang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion MaterialsChina Three Gorges University 8 Daxue Road Yichang, Hubei 443002 People's Republic of China
- Hubei Key Laboratory of Natural Products Research and DevelopmentChina Three Gorges University 8 Daxue Road Yichang, Hubei 443002 People's Republic of China
| | - Wen‐Jing Xiao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of ChemistryCentral China Normal University 152 Luoyu Road Wuhan, Hubei 430079 People's Republic of China
| |
Collapse
|
13
|
Dagoneau D, Kolleth A, Quinodoz P, Tanriver G, Catak S, Lumbroso A, Sulzer‐Mossé S, De Mesmaeker A. Keteniminium Salts as Key Intermediates for the Efficient Synthesis of 3‐Amino‐Indoles and ‐Benzofurans. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Dylan Dagoneau
- Syngenta Crop Protection AGCrop Protection ResearchResearch Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Amandine Kolleth
- Syngenta Crop Protection AGCrop Protection ResearchResearch Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Pierre Quinodoz
- Syngenta Crop Protection AGCrop Protection ResearchResearch Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Gamze Tanriver
- Bogazici UniversityDepartment of Chemistry Bebek 34342 Istanbul Turkey
| | - Saron Catak
- Bogazici UniversityDepartment of Chemistry Bebek 34342 Istanbul Turkey
| | - Alexandre Lumbroso
- Syngenta Crop Protection AGCrop Protection ResearchResearch Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Sarah Sulzer‐Mossé
- Syngenta Crop Protection AGCrop Protection ResearchResearch Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| | - Alain De Mesmaeker
- Syngenta Crop Protection AGCrop Protection ResearchResearch Chemistry Schaffhauserstrasse 101 CH-4332 Stein Switzerland
| |
Collapse
|
14
|
Tian X, Song L, Rudolph M, Rominger F, Hashmi ASK. Synthesis of 2-Aminoindoles through Gold-Catalyzed C–H Annulations of Sulfilimines with N-Arylynamides. Org Lett 2019; 21:4327-4330. [DOI: 10.1021/acs.orglett.9b01501] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xianhai Tian
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Lina Song
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Matthias Rudolph
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Frank Rominger
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - A. Stephen K. Hashmi
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|