1
|
Yin F, Wan Y, Ciuculescu-Pradines D, Lauth-de Viguerie N, Marty JD. Effect of Thermo- and pH-Sensitive Block Copolymer Structure and Composition on the Synthesis and Stabilization of Gold Nanoparticles. Chemphyschem 2024; 25:e202400194. [PMID: 38567979 DOI: 10.1002/cphc.202400194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/03/2024] [Indexed: 05/04/2024]
Abstract
Homopolymers of poly[N-(2-(diethylamino)ethyl) acrylamide] exhibit the ability to adsorb onto the surface of preformed or growing gold nanoparticles. The resulting hybrid materials possess a pH and thermo-sensitive nature. Consequently, their optical properties can be modulated by manipulating either the temperature or the pH. Moreover, introducing monomers based on poly(N-isopropyl acrylamide) into block or random statistical polymers enables further modulation of the thermosensitive properties. These copolymers, employed for the in-situ synthesis and/or stabilization of gold nanoparticles, lead to hybrid materials whose properties and/or particle size depend on the polymer composition and microstructure: statistical polymers emerge as superior stabilizing agents compared to their block counterparts at a constant composition.
Collapse
Affiliation(s)
- Fang Yin
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, France., 118, route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Yuezhan Wan
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, France., 118, route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Diana Ciuculescu-Pradines
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, France., 118, route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Nancy Lauth-de Viguerie
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, France., 118, route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Jean-Daniel Marty
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, France., 118, route de Narbonne, 31062, Toulouse Cedex 9, France
| |
Collapse
|
2
|
Krizhanovskiy I, Temnikov M, Kononevich Y, Anisimov A, Drozdov F, Muzafarov A. The Use of the Thiol-Ene Addition Click Reaction in the Chemistry of Organosilicon Compounds: An Alternative or a Supplement to the Classical Hydrosilylation? Polymers (Basel) 2022; 14:polym14153079. [PMID: 35956590 PMCID: PMC9370781 DOI: 10.3390/polym14153079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/18/2022] Open
Abstract
This review presents the main achievements in the use of the thiol-ene reaction in the chemistry of silicones. Works are considered, starting from monomers and ending with materials.The main advantages and disadvantages of this reaction are demonstrated using various examples. A critical analysis of the use of this reaction is made in comparison with the hydrosilylation reaction.
Collapse
Affiliation(s)
- Ilya Krizhanovskiy
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
| | - Maxim Temnikov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
| | - Yuriy Kononevich
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
| | - Anton Anisimov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
- Correspondence: (A.A.); (A.M.)
| | - Fedor Drozdov
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow 117393, Russia;
| | - Aziz Muzafarov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119334, Russia; (I.K.); (M.T.); (Y.K.)
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow 117393, Russia;
- Correspondence: (A.A.); (A.M.)
| |
Collapse
|
3
|
Mituła K, Duszczak J, Rzonsowska M, Żak P, Dudziec B. Polysiloxanes Grafted with Mono(alkenyl)Silsesquioxanes-Particular Concept for Their Connection. MATERIALS 2020; 13:ma13214784. [PMID: 33114766 PMCID: PMC7662624 DOI: 10.3390/ma13214784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/20/2022]
Abstract
Herein, a facile and efficient synthetic route to unique hybrid materials containing polysiloxanes and mono(alkyl)silsesquioxanes as their pendant modifiers (T8@PS) was demonstrated. The idea of this work was to apply the hydrosilylation reaction as a tool for the efficient and selective attachment of mono(alkenyl)substituted silsesquioxanes (differing in the alkenyl chain length, from -vinyl to -dec-9-enyl and types of inert groups iBu, Ph at the inorganic core) onto two polysiloxanes containing various amount of Si-H units. The synthetic protocol, determined and confirmed by FT-IR in situ and NMR analyses, was optimized to ensure complete Si-H consumption along with the avoidance of side-products. A series of 20 new compounds with high yields and complete β-addition selectivity was obtained and characterized by spectroscopic methods.
Collapse
Affiliation(s)
- Katarzyna Mituła
- Faculty of Chemistry, Department of Organometallic Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (J.D.); (M.R.); (P.Ż.)
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Correspondence: (K.M.); (B.D.); Tel.: +48-61-829-1878 (B.D.)
| | - Julia Duszczak
- Faculty of Chemistry, Department of Organometallic Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (J.D.); (M.R.); (P.Ż.)
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Monika Rzonsowska
- Faculty of Chemistry, Department of Organometallic Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (J.D.); (M.R.); (P.Ż.)
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
| | - Patrycja Żak
- Faculty of Chemistry, Department of Organometallic Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (J.D.); (M.R.); (P.Ż.)
| | - Beata Dudziec
- Faculty of Chemistry, Department of Organometallic Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (J.D.); (M.R.); (P.Ż.)
- Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 10, 61-614 Poznan, Poland
- Correspondence: (K.M.); (B.D.); Tel.: +48-61-829-1878 (B.D.)
| |
Collapse
|
4
|
Glosz K, Stolarczyk A, Jarosz T. Siloxanes-Versatile Materials for Surface Functionalisation and Graft Copolymers. Int J Mol Sci 2020; 21:ijms21176387. [PMID: 32887491 PMCID: PMC7504594 DOI: 10.3390/ijms21176387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
Siloxanes are adaptable species that have found extensive applications as versatile materials for functionalising various surfaces and as building blocks for polymers and hybrid organic-inorganic systems. The primary goal of this review is to report on and briefly explain the most relevant recent developments related to siloxanes and their applications, particularly regarding surface modification and the synthesis of graft copolymers bearing siloxane or polysiloxane segments. The key strategies for both functionalisation and synthesis of siloxane-bearing polymers are highlighted, and the various trends in the development of siloxane-based materials and the intended directions of their applications are explored.
Collapse
Affiliation(s)
- Karolina Glosz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland; (K.G.); (A.S.)
| | - Agnieszka Stolarczyk
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland; (K.G.); (A.S.)
| | - Tomasz Jarosz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland; (K.G.); (A.S.)
- Correspondence: ; Tel.: +48-32-237-18-35
| |
Collapse
|