1
|
Sogbein O, Paul P, Umar M, Chaari A, Batuman V, Upadhyay R. Bortezomib in cancer therapy: Mechanisms, side effects, and future proteasome inhibitors. Life Sci 2024; 358:123125. [PMID: 39413903 DOI: 10.1016/j.lfs.2024.123125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
The ubiquitin-proteasome pathway (UPP) regulates protein stability and normal cellular functions with the help of autocatalytic proteasome complex. Studies have linked aberrant proteasome activity to malignant cells and found that proteasome inhibitors play a significant role as therapeutic drugs for various types of cancer, specifically multiple myeloma and mantle cell lymphoma. Bortezomib, the first FDA-approved proteasome inhibitor for treating different stages of multiple myeloma, acts on cancer cells by inhibiting the 26S proteasome, modulating NF-κB, phosphorylating Bcl-2, upregulating of NOXA, blocking p53 degradation, activating caspase, generating reactive oxygen species (ROS), and inhibiting angiogenesis. However, its efficacy is limited due to side effects such as peripheral neuropathy (PN), thrombotic microangiopathy (TMA), and acute interstitial nephritis (AIN). Therefore, a better understanding of its precise mechanism of action may help mitigate these side effects. In this review, we have discussed the proposed mechanisms of action and off target effects of Bortezomib, along with the prospects of next generation potential proteasome inhibitor drugs in the treatment of cancer.
Collapse
Affiliation(s)
- Olusola Sogbein
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Pradipta Paul
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Qatar
| | - Meenakshi Umar
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ali Chaari
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Qatar
| | - Vecihi Batuman
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Rohit Upadhyay
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
2
|
Min YG, Lee SY, Lim E, Park MY, Kim DH, Byun JM, Koh Y, Hong J, Shin DY, Yoon SS, Sung JJ, Oh SB, Kim I. Genetic Risk Factors for Bortezomib-induced Neuropathic Pain in an Asian Population: A Genome-wide Association Study in South Korea. THE JOURNAL OF PAIN 2024; 25:104552. [PMID: 38692398 DOI: 10.1016/j.jpain.2024.104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Bortezomib-induced neuropathic pain (BINP) poses a challenge in multiple myeloma (MM) treatment. Genetic factors play a key role in BINP susceptibility, but research has predominantly focused on Caucasian populations. This research explored novel genetic risk loci and pathways associated with BINP development in Korean MM patients while evaluating the reproducibility of variants from Caucasians. Clinical data and buffy coat samples from 185 MM patients on bortezomib were collected. The cohort was split into discovery and validation cohorts through random stratification of clinical risk factors for BINP. Genome-wide association study was performed on the discovery cohort (n = 74) with Infinium Global Screening Array-24 v3.0 BeadChip (654,027 single nucleotide polymorphism [SNPs]). Relevant biological pathways were identified using the pathway scoring algorithm. The top 20 SNPs were validated in the validation cohort (n = 111). Previously reported SNPs were validated in the entire cohort (n = 185). Pathway analysis of the genome-wide association study results identified 31 relevant pathways, including immune systems and endosomal vacuolar pathways. Among the top 20 SNPs from the discovery cohort, 16 were replicated, which included intronic variants in ASIC2 and SMOC2, recently implicated in nociception, as well as intergenic variants or long noncoding RNAs. None of the 17 previously reported SNPs remained significant in our cohort (rs2274578, P = .085). This study represents the first investigation of novel genetic loci and biological pathways associated with BINP occurrence. Our findings, in conjunction with existing Caucasian studies, expand the understanding of personalized risk prediction and disease mechanisms. PERSPECTIVE: This article is the first to explore novel genetic loci and pathways linked to BINP in Korean MM patients, offering novel insights beyond the existing research focused on Caucasian populations into personalized risk assessment and therapeutic strategies of BINP.
Collapse
Affiliation(s)
- Young Gi Min
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | | | | | | | | | - Ja Min Byun
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Junshik Hong
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung-Joon Sung
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neurology, Seoul National University Hospital, Seoul, South Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea; Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon-do, South Korea
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea; ADA Forsyth Institute, 245 First St, Cambridge MA, 02142, USA.
| | - Inho Kim
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Li S, Brimmers A, van Boekel RL, Vissers KC, Coenen MJ. A systematic review of genome-wide association studies for pain, nociception, neuropathy, and pain treatment responses. Pain 2023; 164:1891-1911. [PMID: 37144689 PMCID: PMC10436363 DOI: 10.1097/j.pain.0000000000002910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 05/06/2023]
Abstract
ABSTRACT Pain is the leading cause of disability worldwide, imposing an enormous burden on personal health and society. Pain is a multifactorial and multidimensional problem. Currently, there is (some) evidence that genetic factors could partially explain individual susceptibility to pain and interpersonal differences in pain treatment response. To better understand the underlying genetic mechanisms of pain, we systematically reviewed and summarized genome-wide association studies (GWASes) investigating the associations between genetic variants and pain/pain-related phenotypes in humans. We reviewed 57 full-text articles and identified 30 loci reported in more than 1 study. To check whether genes described in this review are associated with (other) pain phenotypes, we searched 2 pain genetic databases, Human Pain Genetics Database and Mouse Pain Genetics Database. Six GWAS-identified genes/loci were also reported in those databases, mainly involved in neurological functions and inflammation. These findings demonstrate an important contribution of genetic factors to the risk of pain and pain-related phenotypes. However, replication studies with consistent phenotype definitions and sufficient statistical power are required to validate these pain-associated genes further. Our review also highlights the need for bioinformatic tools to elucidate the function of identified genes/loci. We believe that a better understanding of the genetic background of pain will shed light on the underlying biological mechanisms of pain and benefit patients by improving the clinical management of pain.
Collapse
Affiliation(s)
- Song Li
- Department of Human Genetics, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands. Coenen is now with the Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Annika Brimmers
- Department of Human Genetics, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands. Coenen is now with the Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Regina L.M. van Boekel
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kris C.P. Vissers
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marieke J.H. Coenen
- Department of Human Genetics, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands. Coenen is now with the Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Dong M, Zhang J, Han X, He J, Zheng G, Cai Z. Baseline peripheral neuropathy was associated with age and a prognostic factor in newly diagnosed multiple myeloma patients. Sci Rep 2022; 12:10061. [PMID: 35710565 PMCID: PMC9203796 DOI: 10.1038/s41598-022-13935-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Multiple myeloma (MM) is an incurable plasma cell hematological malignancy. Bortezomib has become the primary drug in the treatment of patients with MM. However, its negative effects, especially peripheral neuropathy (PN), affect the patients’ life quality and treatment continuity. However, there are few studies on baseline PN of MM, and little is known of the impact of baseline PN on the prognosis of MM patients. Therefore, we reviewed the clinical data of newly diagnosed MM patients in our center, explored the influencing factors of baseline PN, and evaluated PN’s influence on the prognosis of MM patients undergoing induction therapy with bortezomib. According to the inclusion and exclusion criteria, 155 MM patients were eligible for the retrospective study. The multivariate regression analysis, generalized additive fitting smooth curve, the receiver operating characteristic curve (ROC) and K-M curve were conducted in this study. We found that baseline PN in patients with MM was age-related; MM patients with baseline PN have more severe bortezomib induced PN (BiPN) during the four courses of induction therapy with bortezomib as the primary regimen and worse PN outcome after induction therapy. Additionally, the progression-free survival (PFS) and overall survival (OS) of MM patients with baseline PN were worse than those of the MM patients without baseline PN.
Collapse
Affiliation(s)
- Mengmeng Dong
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Bone Marrow Transplantation Center, No.79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China
| | - Jinna Zhang
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Bone Marrow Transplantation Center, No.79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China
| | - Xiaoyan Han
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Bone Marrow Transplantation Center, No.79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China
| | - Jingsong He
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Bone Marrow Transplantation Center, No.79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China
| | - Gaofeng Zheng
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Bone Marrow Transplantation Center, No.79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China
| | - Zhen Cai
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Bone Marrow Transplantation Center, No.79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
5
|
Tao J, Srinivasan V, Yi X, Zhao Y, Zhang H, Lin X, Zhou X, Boyce BF, Villalta PW, Ebetino FH, Ho KK, Boeckman RK, Xing L. Bone-Targeted Bortezomib Inhibits Bortezomib-Resistant Multiple Myeloma in Mice by Providing Higher Levels of Bortezomib in Bone. J Bone Miner Res 2022; 37:629-642. [PMID: 34970782 PMCID: PMC9018514 DOI: 10.1002/jbmr.4496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/10/2022]
Abstract
Limited treatment options exist for cancer within the bone, as demonstrated by the inevitable, pernicious course of metastatic and blood cancers. The difficulty of eliminating bone-residing cancer, especially drug-resistant cancer, necessitates novel, alternative treatments to manipulate tumor cells and their microenvironment, with minimal off-target effects. To this end, bone-targeted conjugate (BP-Btz) was generated by linking bortezomib (Btz, an anticancer, bone-stimulatory drug) to a bisphosphonate (BP, a targeting ligand) through a cleavable linker that enables spatiotemporally controlled delivery of Btz to bone under acidic conditions for treating multiple myeloma (MM). Three conjugates with different linkers were developed and screened for best efficacy in mouse model of MM. Results demonstrated that the lead candidate BP-Btz with optimal linker could overcome Btz resistance, reduced tumor burden, bone destruction, or tumor metastasis more effectively than BP or free Btz without thrombocytopenia and neurotoxicity in mice bearing myeloma. Furthermore, pharmacokinetic and pharmacodynamic studies showed that BP-Btz bound to bone matrix, released Btz in acidic conditions, and had a higher local concentration and longer half-life than Btz in bone. Our findings suggest the potential of bone-targeted Btz conjugate as an efficacious Btz-resistant MM treatment mechanism. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jianguo Tao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Venkat Srinivasan
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - Xiangjiao Yi
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Yingchun Zhao
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Hengwei Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Xi Lin
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Xichao Zhou
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Frank H Ebetino
- Department of Chemistry, University of Rochester, Rochester, NY, USA.,BioVinc, Pasadena, CA, USA
| | - Koc Kan Ho
- Ionova Life Science Co., Ltd, Shenzhen, China
| | - Robert K Boeckman
- Department of Chemistry, University of Rochester, Rochester, NY, USA
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
6
|
Pozzi E, Alberti P. Management of Side Effects in the Personalized Medicine Era: Chemotherapy-Induced Peripheral Neurotoxicity. Methods Mol Biol 2022; 2547:95-140. [PMID: 36068462 DOI: 10.1007/978-1-0716-2573-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pharmacogenomics is a powerful tool to predict individual response to treatment, in order to personalize therapy, and it has been explored extensively in oncology practice. Not only efficacy on the malignant disease has been investigated but also the possibility to predict adverse effects due to drug administration. Chemotherapy-induced peripheral neurotoxicity (CIPN) is one of those. This potentially severe and long-lasting/permanent side effect of commonly administered anticancer drugs can severely impair quality of life (QoL) in a large cohort of long survival patients. So far, a pharmacogenomics-based approach in CIPN regard has been quite delusive, making a methodological improvement warranted in this field of interest: even the most refined genetic analysis cannot be effective if not applied correctly. Here we try to devise why it is so, suggesting how THE "bench-side" (pharmacogenomics) might benefit from and should cooperate with THE "bed-side" (clinimetrics), in order to make genetic profiling effective if applied to CIPN.
Collapse
Affiliation(s)
- Eleonora Pozzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Paola Alberti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
- NeuroMI (Milan Center for Neuroscience), Milan, Italy.
| |
Collapse
|
7
|
Kanai M, Kawaguchi T, Kotaka M, Manaka D, Hasegawa J, Takagane A, Munemoto Y, Kato T, Eto T, Touyama T, Matsui T, Shinozaki K, Matsumoto S, Mizushima T, Mori M, Sakamoto J, Ohtsu A, Yoshino T, Saji S, Matsuda F. Large-Scale Prospective Genome-Wide Association Study of Oxaliplatin in Stage II/III Colon Cancer and Neuropathy. Ann Oncol 2021; 32:1434-1441. [PMID: 34391895 DOI: 10.1016/j.annonc.2021.08.1745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/20/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022] Open
Abstract
IMPORTANCE The severity of oxaliplatin (L-OHP)-induced peripheral sensory neuropathy (PSN) exhibits substantial interpatient variability, and some patients suffer from long-term, persisting PSN. OBJECTIVE To identify single-nucleotide polymorphisms (SNPs) predicting L-OHP-induced PSN using a genome-wide association study (GWAS) approach. DESIGN, SETTING, PARTICIPANTS A large prospective GWAS including 1,379 patients with stage II/III colon cancer who received L-OHP-based adjuvant chemotherapy (mFOLFOX6/CAPOX) under the phase II (JOIN/JFMC41) or the phase III (ACHIVE/JFMC47) trial. MAIN OUTCOMES AND MEASURES First, GWAS comparison of worst grade PSN (grade 0/1 vs. 2/3) was performed. Next, to minimize the impact of ambiguity in PSN grading, extreme PSN phenotypes were selected and analyzed by GWAS. SNPs that could predict time to recovery from PSN were also evaluated. In addition, SNPs associated with L-OHP-induced allergic reactions (AR) and time to disease recurrence were explored. RESULTS No SNPs exceeded the genome-wide significance (p < 5.0 × 10-8) in either GWAS comparison of worst grade PSN, extreme PSN phenotypes, or time to recovery from PSN. Association study focusing on AR or time to disease recurrence also failed to reveal any significant SNPs. CONCLUSION AND RELEVANCE Our results highlight the challenges of utilizing SNPs for predicting susceptibility to L-OHP-induced PSN in daily clinical practice.
Collapse
Affiliation(s)
- M Kanai
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - T Kawaguchi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - M Kotaka
- Gastrointestinal Cancer Center, Sano Hospital, Kobe, Japan
| | - D Manaka
- Department of Surgery, Gastrointestinal Center, Kyoto-Katsura Hospital, Kyoto, Japan
| | - J Hasegawa
- Department of Surgery, Osaka Rosai Hospital, Osaka, Japan
| | - A Takagane
- Department of Surgery, Hakodate Goryoukaku Hospital, Hokkaido, Japan
| | - Y Munemoto
- Department of Surgery, Fukui Ken Saiseikai Hospital, Fukui, Japan
| | - T Kato
- Department of Surgery, Kansai Rosai Hospital, Hyogo, Japan
| | - T Eto
- Department of Gastroenterology, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - T Touyama
- Department of Surgery, Nakagami Hospital, Okinawa, Japan
| | - T Matsui
- Department of Gastroenterological Surgery, Aichi Cancer Center Aichi Hospital, Aichi, Japan
| | - K Shinozaki
- Division of Clinical Oncology, Hiroshima Prefectural Hospital, Hiroshima, Japan
| | - S Matsumoto
- Department of Real World Data Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - T Mizushima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - M Mori
- Department of Surgery and Science, Kyushu University, Fukuoka, Japan
| | - J Sakamoto
- Japanese Foundation for Multidisciplinary Treatment of Cancer, Tokyo, Japan; Tokai Central Hospital, Kakamigahara, Japan
| | - A Ohtsu
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - T Yoshino
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - S Saji
- Japanese Foundation for Multidisciplinary Treatment of Cancer, Tokyo, Japan
| | - F Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Next-Generation Biomarkers in Multiple Myeloma: Understanding the Molecular Basis for Potential Use in Diagnosis and Prognosis. Int J Mol Sci 2021; 22:ijms22147470. [PMID: 34299097 PMCID: PMC8305153 DOI: 10.3390/ijms22147470] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple myeloma (MM) is considered to be the second most common blood malignancy and it is characterized by abnormal proliferation and an accumulation of malignant plasma cells in the bone marrow. Although the currently utilized markers in the diagnosis and assessment of MM are showing promising results, the incidence and mortality rate of the disease are still high. Therefore, exploring and developing better diagnostic or prognostic biomarkers have drawn global interest. In the present review, we highlight some of the recently reported and investigated novel biomarkers that have great potentials as diagnostic and/or prognostic tools in MM. These biomarkers include angiogenic markers, miRNAs as well as proteomic and immunological biomarkers. Moreover, we present some of the advanced methodologies that could be utilized in the early and competent diagnosis of MM. The present review also focuses on understanding the molecular concepts and pathways involved in these biomarkers in order to validate and efficiently utilize them. The present review may also help in identifying areas of improvement for better diagnosis and superior outcomes of MM.
Collapse
|
9
|
Geisler S. Vincristine- and bortezomib-induced neuropathies - from bedside to bench and back. Exp Neurol 2021; 336:113519. [PMID: 33129841 PMCID: PMC11160556 DOI: 10.1016/j.expneurol.2020.113519] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Vincristine and bortezomib are effective chemotherapeutics widely used to treat hematological cancers. Vincristine blocks tubulin polymerization, whereas bortezomib is a proteasome inhibitor. Despite different mechanisms of action, the main non-hematological side effect of both is peripheral neuropathy that can last long after treatment has ended and cause permanent disability. Many different cellular and animal models of various aspects of vincristine and bortezomib-induced neuropathies have been generated to investigate underlying molecular mechanisms and serve as platforms to develop new therapeutics. These models revealed that bortezomib induces several transcriptional programs in dorsal root ganglia that result in the activation of different neuroinflammatory pathways and secondary central sensitization. In contrast, vincristine has direct toxic effects on the axon, which are accompanied by changes similar to those observed after nerve cut. Axon degeneration following both vincristine and bortezomib is mediated by a phylogenetically ancient, genetically encoded axon destruction program that leads to the activation of the Toll-like receptor adaptor SARM1 (sterile alpha and TIR motif containing protein 1) and local decrease of nicotinamide dinucleotide (NAD+). Here, I describe current in vitro and in vivo models of vincristine- and bortezomib induced neuropathies, present discoveries resulting from these models in the context of clinical findings and discuss how increased understanding of molecular mechanisms underlying different aspects of neuropathies can be translated to effective treatments to prevent, attenuate or reverse vincristine- and bortezomib-induced neuropathies. Such treatments could improve the quality of life of patients both during and after cancer therapy and, accordingly, have enormous societal impact.
Collapse
Affiliation(s)
- Stefanie Geisler
- Department of Neurology, Washington University School of Medicine in St. Louis, MO, USA.
| |
Collapse
|
10
|
Li T, Timmins HC, Lazarus HM, Park SB. Peripheral neuropathy in hematologic malignancies – Past, present and future. Blood Rev 2020; 43:100653. [DOI: 10.1016/j.blre.2020.100653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/13/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
|
11
|
Gupta N, Sharma A, Sharma A. Emerging biomarkers in Multiple Myeloma: A review. Clin Chim Acta 2019; 503:45-53. [PMID: 31901479 DOI: 10.1016/j.cca.2019.12.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
Multiple Myeloma (MM) is the second most common hematological malignancy after non-Hodgkin lymphoma and is manifested by uncontrolled proliferation and accumulation of abnormal plasma cells in the bone marrow (BM). The incidence along with deaths associated with MM is on rise due to lack of an effective diagnosis at an early stage. The identification of MM decades ago marks the adoption of certain conventional markers such as plasma cell percentage in BM, serum protein electrophoresis for M-band and urinary Bence-Jones protein. This was then followed by utilization of β2 microglobulin and serum albumin for determining the staging of MM. The need for a better diagnostic or prognostic marker prompts researchers and hence, certain novel markers have been tested which includes extracellular matrix proteins, angiogenic factors, telomeres and telomerase along with the immune markers. Nowadays, proteomic and genomic studies are being performed to identify novel diagnostic and/or prognostic markers for MM. Followed by this, comes the emerging concept of liquid biopsy which allows easy and non-invasive detection of the disease. The liquid biopsy comprises of circulatory tumor cells along with the nucleic acids (microRNAs and cell-free DNA) released from the tumor cells in peripheral circulation which could be a true representation of BM. This review, hence, summarizes the emerging biomarkers involved in the diagnosis and prognosis of MM.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Aparna Sharma
- Department of Medical Oncology, Dr. B.R Ambedkar IRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
12
|
Xu Y, Xing L, Su J, Zhang X, Qiu W. Model-based clustering for identifying disease-associated SNPs in case-control genome-wide association studies. Sci Rep 2019; 9:13686. [PMID: 31548641 PMCID: PMC6757104 DOI: 10.1038/s41598-019-50229-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 09/09/2019] [Indexed: 12/18/2022] Open
Abstract
Genome-wide association studies (GWASs) aim to detect genetic risk factors for complex human diseases by identifying disease-associated single-nucleotide polymorphisms (SNPs). The traditional SNP-wise approach along with multiple testing adjustment is over-conservative and lack of power in many GWASs. In this article, we proposed a model-based clustering method that transforms the challenging high-dimension-small-sample-size problem to low-dimension-large-sample-size problem and borrows information across SNPs by grouping SNPs into three clusters. We pre-specify the patterns of clusters by minor allele frequencies of SNPs between cases and controls, and enforce the patterns with prior distributions. In the simulation studies our proposed novel model outperforms traditional SNP-wise approach by showing better controls of false discovery rate (FDR) and higher sensitivity. We re-analyzed two real studies to identifying SNPs associated with severe bortezomib-induced peripheral neuropathy (BiPN) in patients with multiple myeloma (MM). The original analysis in the literature failed to identify SNPs after FDR adjustment. Our proposed method not only detected the reported SNPs after FDR adjustment but also discovered a novel BiPN-associated SNP rs4351714 that has been reported to be related to MM in another study.
Collapse
Affiliation(s)
- Yan Xu
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada
| | - Li Xing
- Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jessica Su
- Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA
| | - Xuekui Zhang
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada.
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Chan A, Hertz DL, Morales M, Adams EJ, Gordon S, Tan CJ, Staff NP, Kamath J, Oh J, Shinde S, Pon D, Dixit N, D'Olimpio J, Dumitrescu C, Gobbo M, Kober K, Mayo S, Pang L, Subbiah I, Beutler AS, Peters KB, Loprinzi C, Lustberg MB. Biological predictors of chemotherapy-induced peripheral neuropathy (CIPN): MASCC neurological complications working group overview. Support Care Cancer 2019; 27:3729-3737. [PMID: 31363906 DOI: 10.1007/s00520-019-04987-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common and debilitating condition associated with a number of chemotherapeutic agents. Drugs commonly implicated in the development of CIPN include platinum agents, taxanes, vinca alkaloids, bortezomib, and thalidomide analogues. As a drug response can vary between individuals, it is hypothesized that an individual's specific genetic variants could impact the regulation of genes involved in drug pharmacokinetics, ion channel functioning, neurotoxicity, and DNA repair, which in turn affect CIPN development and severity. Variations of other molecular markers may also affect the incidence and severity of CIPN. Hence, the objective of this review was to summarize the known biological (molecular and genomic) predictors of CIPN and discuss the means to facilitate progress in this field.
Collapse
Affiliation(s)
- Alexandre Chan
- National University of Singapore, Singapore, Singapore
- National Cancer Centre Singapore, Singapore, Singapore
| | | | - Manuel Morales
- University Hospital Ntra. Sra. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Elizabeth J Adams
- The Ohio State University Comprehensive Cancer Center, Columbus, USA
| | - Sharon Gordon
- University of Connecticut, Storrs, USA
- East Carolina University, Greenville, USA
| | - Chia Jie Tan
- National University of Singapore, Singapore, Singapore
- National Cancer Centre Singapore, Singapore, Singapore
| | | | - Jayesh Kamath
- University of Connecticut Health Center, Storrs, USA
| | - Jeong Oh
- MD Anderson Cancer Center, Houston, USA
| | - Shivani Shinde
- University of Colorado, Colorado, USA
- VA Eastern Colorado Health Care Systems, Aurora, MS, USA
| | - Doreen Pon
- Western University of Health Sciences, Pomona, USA
| | - Niharkia Dixit
- University of California San Francisco, San Francisco, USA
- Zuckerberg San Francisco General Hospital, San Francisco, USA
| | - James D'Olimpio
- Northwell Cancer Institute, New Hyde Park, USA
- Zucker School of Medicine at Hofstra, 500 Hofstra Blvd, Hempstead, USA
| | | | | | - Kord Kober
- University of California San Francisco, San Francisco, USA
- Helen Diller Comprehensive Cancer Centre, San Francisco, USA
| | | | | | | | | | | | | | - Maryam B Lustberg
- The Ohio State University Comprehensive Cancer Center, Columbus, USA.
| |
Collapse
|
14
|
Morton LM, Kerns SL, Dolan ME. Role of Germline Genetics in Identifying Survivors at Risk for Adverse Effects of Cancer Treatment. Am Soc Clin Oncol Educ Book 2018; 38:775-786. [PMID: 30231410 DOI: 10.1200/edbk_201391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The growing population of cancer survivors often faces adverse effects of treatment, which have a substantial impact on morbidity and mortality. Although certain adverse effects are thought to have a significant heritable component, much work remains to be done to understand the role of germline genetic factors in the development of treatment-related toxicities. In this article, we review current understanding of genetic susceptibility to a range of adverse outcomes among cancer survivors (e.g., fibrosis, urinary and rectal toxicities, ototoxicity, chemotherapy-induced peripheral neuropathy, subsequent malignancies). Most previous research has been narrowly focused, investigating variation in candidate genes and pathways such as drug metabolism, DNA damage and repair, and inflammation. Few of the findings from these earlier candidate gene studies have been replicated in independent populations. Advances in understanding of the genome, improvements in technology, and reduction in laboratory costs have led to recent genome-wide studies, which agnostically interrogate common and/or rare variants across the entire genome. Larger cohorts of patients with homogeneous treatment exposures and systematic ascertainment of well-defined outcomes as well as replication in independent study populations are essential aspects of the study design and are increasingly leading to the discovery of variants associated with each of the adverse outcomes considered in this review. In the long-term, validated germline genetic associations hold tremendous promise for more precisely identifying patients at highest risk for developing adverse treatment effects, with implications for frontline therapy decision-making, personalization of long-term follow-up guidelines, and potential identification of targets for prevention or treatment of the toxicity.
Collapse
Affiliation(s)
- Lindsay M Morton
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute at the National Institutes of Health, Bethesda, MD; Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY; Department of Medicine, University of Chicago, Chicago, IL
| | - Sarah L Kerns
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute at the National Institutes of Health, Bethesda, MD; Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY; Department of Medicine, University of Chicago, Chicago, IL
| | - M Eileen Dolan
- From the Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute at the National Institutes of Health, Bethesda, MD; Department of Radiation Oncology, University of Rochester Medical Center, Rochester, NY; Department of Medicine, University of Chicago, Chicago, IL
| |
Collapse
|
15
|
Chang EI, Rose MI, Rossi K, Elkwood AI. Microneurosurgical treatment options in peripheral nerve compression syndromes after chemotherapy and radiation treatment. J Surg Oncol 2018; 118:793-799. [PMID: 30261113 DOI: 10.1002/jso.25254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 09/05/2018] [Indexed: 12/25/2022]
Abstract
Chemotherapy-induced peripheral neuropathy and radiation-induced brachial plexopathy are extremely debilitating conditions which can occur after treatment of malignancy. Unfortunately, the diagnosis can be elusive, and this dilemma is further compounded by the lack of efficacious therapeutics to prevent the onset of neurotoxicity before initiating chemotherapy or radiation or to treat these sequelae after treatment. However, microsurgical nerve decompression can provide these patients with a viable option to treat this complication.
Collapse
Affiliation(s)
- Eric I Chang
- The Institute for Advanced Reconstruction at The Plastic Surgery Center, Shrewsbury, New Jersey.,Center for Treatment of Paralysis and Reconstructive Nerve Surgery, Jersey Shore University Medical Center, Neptune, New Jersey
| | - Michael I Rose
- The Institute for Advanced Reconstruction at The Plastic Surgery Center, Shrewsbury, New Jersey.,Center for Treatment of Paralysis and Reconstructive Nerve Surgery, Jersey Shore University Medical Center, Neptune, New Jersey
| | - Kristie Rossi
- The Institute for Advanced Reconstruction at The Plastic Surgery Center, Shrewsbury, New Jersey.,Center for Treatment of Paralysis and Reconstructive Nerve Surgery, Jersey Shore University Medical Center, Neptune, New Jersey
| | - Andrew I Elkwood
- The Institute for Advanced Reconstruction at The Plastic Surgery Center, Shrewsbury, New Jersey.,Center for Treatment of Paralysis and Reconstructive Nerve Surgery, Jersey Shore University Medical Center, Neptune, New Jersey
| |
Collapse
|
16
|
Kim S, Whitley CB, Jarnes Utz JR. Correlation between urinary GAG and anti-idursulfase ERT neutralizing antibodies during treatment with NICIT immune tolerance regimen: A case report. Mol Genet Metab 2017; 122:92-99. [PMID: 28610913 PMCID: PMC5798249 DOI: 10.1016/j.ymgme.2017.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Antibodies to intravenous idursulfase enzyme replacement therapy (ERT) for patients with Hunter syndrome (mucopolysaccharidosis type II, MPS II) can have a harmful clinical impact, including both increasing risk of infusion reactions and inhibiting therapeutic activity. Thus, failure to monitor anti-idursulfase antibodies and neutralizing antibodies, and delays in reporting results, may postpone critical clinical decisions. HYPOTHESIS Urinary glycosaminoglycan (GAG) levels may be used as a biomarker for anti-idursulfase antibodies and neutralizing antibodies to improve timeliness in monitoring and managing ERT. METHODS This is a case report describing a patient with MPS II with high levels of neutralizing antibodies and worsened clinical status who was treated for five years with a non-immunosuppressive and non-cytotoxic immune tolerance (NICIT) regimen, consisting of intravenous immune globulin and frequent infusions of idursulfase. Neutralizing antibodies and total anti-idursulfase antibodies were measured by two different methods, the direct 1,9-dimethylmethylene blue (DMB) assay and cetylpyridinium chloride carbazole-borate (CPC) assay. RESULTS Neutralizing antibodies, measured as percent inhibition of enzyme activity and also by total neutralizing antibody titer, were correlated with quantitative urinary GAG measured by DMB assay (p=0.026, p=0.0067), and quantitative urinary GAG by CPC assay with percent inhibition of enzyme activity by neutralizing antibodies (p=0.0475). The NICIT regimen showed a sustained immune tolerance after five years and was well-tolerated. CONCLUSIONS Urinary GAG, measured by DMB assay, may be a biomarker for anti-idursulfase neutralizing antibodies and is useful for managing immune tolerance regimens for patients with MPS II who have high levels of anti-idursulfase neutralizing antibodies. This study highlights the importance of regular and frequent monitoring of urinary GAG in patients with MPS II who are receiving ERT. The NICIT regimen, with less drug toxicities, may be preferred in patients with MPS who have a high risk of infections and whose disease progresses less rapidly than some other lysosomal storage diseases, such as infantile Pompe disease.
Collapse
Affiliation(s)
- Sarah Kim
- University of Minnesota, College of Pharmacy, 420 Delaware St SE, MMC 391, Minneapolis, MN 55455-0341, USA
| | - Chester B Whitley
- University of Minnesota, Department of Experimental and Clinical Pharmacology, College of Pharmacy, 420 Delaware St SE, MMC 446, Minneapolis, MN 55455-0341, USA; Advanced Therapies Program, University of Minnesota and Fairview Hospitals, Minneapolis, MN 55454, USA; University of Minnesota, Department of Pediatrics, Medical School, 420 Delaware St SE, MMC 446, Minneapolis, MN 55455-0341, USA
| | - Jeanine R Jarnes Utz
- University of Minnesota, Department of Experimental and Clinical Pharmacology, College of Pharmacy, 420 Delaware St SE, MMC 446, Minneapolis, MN 55455-0341, USA; Advanced Therapies Program, University of Minnesota and Fairview Hospitals, Minneapolis, MN 55454, USA; University of Minnesota, 420 Delaware St SE; MMC 391, Minneapolis, MN 55455-0341, USA; University of Minnesota, Department of Pediatrics, 420 Delaware St SE, Minneapolis, MN 55454-1450, USA.
| |
Collapse
|