1
|
Shafeghat Z, Dorfaki M, Dehrouyeh S, Arab FL, Roozbehani M, Falak R, Faraji F, Jafari R. Mesenchymal stem cell-derived exosomes for managing graft-versus-host disease: An updated view. Transpl Immunol 2023; 81:101957. [PMID: 37935319 DOI: 10.1016/j.trim.2023.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Graft-versus-host disease (GvHD) is the most common complication after stem cell transplantation, and also it is one of the primary limiting factors for the use of hematopoietic stem cell transplantation (HSCT) in the treatment of hematologic cancers. GvHD, a systemic inflammatory disease, is caused by donor T cells recognizing the recipient's foreign antigens. In addition, an immune dysregulation, caused by autoreactive immune cells, complicates potent inflammatory process following HSCT. While there is no one approved treatment method for GvHD, corticosteroids are the most common first-line treatment. Exosomes are biological vesicles between 30 and 120 nm in diameter, which carry various biologically active molecules. They are known to play a key role in the paracrine effect of mesenchymal stem cells with therapeutic and tissue repair effects, including an immunosuppressive potential. Exosomes are unable to replicate themselves but because of their small size and fluid-like structure, they can pass through physiological barriers. Exosome are relatively easy to prepare and they can be quickly sterilized by a filtration process. Administration of exosomes, derived from mesenchymal stem cells, effectively reduced GvHD symptoms and significantly increased HSCT recipients' survival. Mesenchymal stem cell-derived exosome therapy reduced clinical symptoms of GvHD in patients after HSCT. Studies in patients with GvHD described that that mesenchymal stem cell-derived exosomes inhibited the release of IFN-γ and TNF-α by activated natural killer (NK cells), thereby reducing the lethal function of NK cells and inflammatory responses. Current review provides a comprehensive overview about the use of mesenchymal stem cells and their derived exosomes for the treatment of GvHD.
Collapse
Affiliation(s)
- Zahra Shafeghat
- Department of Immunology, School of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Dorfaki
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Shiva Dehrouyeh
- Department of Immunology, School of medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fahime Lavi Arab
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Research advances in the understanding of how exosomes regulate ferroptosis in cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023:10.1007/s12094-023-03089-6. [PMID: 36705798 DOI: 10.1007/s12094-023-03089-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023]
Abstract
Exosomes are extracellular vesicles that can release different bioactive substances to affect tumor cells and cell death pathways. As an important mediator of cell communication, exosomes participate in the occurrence and development of a variety of diseases. Ferroptosis, one of the newly defined forms of regulated cell death, is characterized by massive accumulation of iron ions and lipid peroxidation. An increasing number of studies have shown that ferroptosis plays an important role in malignant tumors. Moreover, exosomes have been recognized for their potential in cancer therapy based on ferroptosis. To further describe how could exosomes regulate ferroptosis in cancer and provide better understanding of the mechanisms involved, this paper reviews the definition as well as the underlying molecular mechanisms of ferroptosis, including iron metabolism, amino acid metabolism, lipid metabolism and so on. Then, we illustrated how could exosomes regulate the ferroptosis pathway and suggested their promising potential as a novel tumor therapy for cancer patients. Finally, we described the perspectives of ferroptosis by exosomes in tumor treatment. Therefore, exosomes have the potential to regulate ferroptosis in clinical cancer treatment.
Collapse
|
3
|
Xie D, Qian B, Li X. Nucleic acids and proteins carried by exosomes from various sources: Potential role in liver diseases. Front Physiol 2022; 13:957036. [PMID: 36213232 PMCID: PMC9538374 DOI: 10.3389/fphys.2022.957036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022] Open
Abstract
Exosomes are extracellular membrane-encapsulated vesicles that are released into the extracellular space or biological fluids by many cell types through exocytosis. As a newly identified form of intercellular signal communication, exosomes mediate various pathological and physiological processes by exchanging various active substances between cells. The incidence and mortality of liver diseases is increasing worldwide. Therefore, we reviewed recent studies evaluating the role of exosomes from various sources in the diagnosis and treatment of liver diseases.
Collapse
Affiliation(s)
- Danna Xie
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Baolin Qian
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xun Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
- Center for Cancer Prevention and Treatment, School of Medicine, Lanzhou University, Lanzhou, China
- Gansu Provincial Institute of Hepatobiliary and Pancreatic Surgery, Lanzhou, China
- *Correspondence: Xun Li,
| |
Collapse
|
4
|
Ji D, He Y, Lu W, Rong Y, Li F, Huang X, Huang R, Jiang Y, Chen G. Small-sized extracellular vesicles (EVs) derived from acute myeloid leukemia bone marrow mesenchymal stem cells transfer miR-26a-5p to promote acute myeloid leukemia cell proliferation, migration, and invasion. Hum Cell 2021; 34:965-976. [PMID: 33620671 DOI: 10.1007/s13577-021-00501-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/29/2021] [Indexed: 01/13/2023]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) in acute myeloid leukemia (AML) microenvironment undergo modification that includes expression of contents in the small-sized extracellular vesicles (EVs) they secrete. This study aims to investigate whether small-sized EVs from BMSCs of AML patients regulate AML progression by modifying the expression of miR-26a-5p. Small-sized EVs from BMSCs of AML patients (AML-BMSC-EVs) or healthy controls (HC-BMSC-EVs) were isolated by ultra-centrifugation and administered to AML cells (OCI/AML-2 and THP-1). Cell proliferation, migration, and invasion were evaluated by CCK-8 assay, Transwell migration and invasion assays, respectively. Compared with HC-BMSC-EVs, AML-BMSC-EVs contained higher expression of miR-26a-5p and promoted AML cell proliferation, migration, and invasion. Inhibition of miR-26a-5p expression in AML-BMSC-EVs could abrogate the promoting effects of AML-BMSC-EVs on AML cell proliferation, migration, and invasion. Furthermore, GSK3β was a direct target of miR-26a-5p. Moreover, AML-BMSC-EVs inhibited GSK3β expression and activated Wnt/β-catenin signaling in AML cells. Additionally, GSK3β overexpression in THP-1 cells counteracted the promoting effects of AML-BMSCs-EVs on THP-1 cell proliferation, migration, and invasion. AML-BMSC-EVs promoted AML progression by transferring miR-26a-5p to AML cells and subsequently activating the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Dexiang Ji
- Department of Hematology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang, 33000, Jiangxi, China
| | - Yue He
- Department of Hematology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang, 33000, Jiangxi, China
| | - Wei Lu
- Department of Hematology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang, 33000, Jiangxi, China
| | - Yanyan Rong
- Department of Hematology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang, 33000, Jiangxi, China
| | - Fei Li
- Department of Hematology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang, 33000, Jiangxi, China
| | - Xianbao Huang
- Department of Hematology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang, 33000, Jiangxi, China
| | - Ruibin Huang
- Department of Hematology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang, 33000, Jiangxi, China
| | - Yanxia Jiang
- Department of Endocrinology, The First Affiliated Hospital of Nanchang University, Nanchang, 33000, Jiangxi, China
| | - Guoan Chen
- Department of Hematology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Donghu District, Nanchang, 33000, Jiangxi, China.
| |
Collapse
|