1
|
Laurent C, Trisal P, Tesson B, Seth S, Beyou A, Roulland S, Lesne B, Van Acker N, Cerapio JP, Chartier L, Guille A, Stokes ME, Huang CC, Huet S, Gandhi AK, Morschhauser F, Xerri L. Follicular lymphoma comprises germinal center-like and memory-like molecular subtypes with prognostic significance. Blood 2024; 144:2503-2516. [PMID: 39374535 DOI: 10.1182/blood.2024024496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 10/09/2024] Open
Abstract
ABSTRACT A robust prognostic and biological classification for newly diagnosed follicular lymphoma (FL) using molecular profiling remains challenging. FL tumors from patients treated in the RELEVANCE trial with rituximab-chemotherapy (R-chemo) or rituximab-lenalidomide (R2) were analyzed using RNA sequencing, DNA sequencing, immunohistochemistry (IHC), and/or fluorescence in situ hybridization. Unsupervised gene clustering identified 2 gene expression signatures (GSs) enriched in normal memory (MEM) B cells and germinal center (GC) B-cell signals, respectively. These 2 GSs were combined into a 20-gene predictor (FL20) to classify patients into MEM-like (n = 160) or GC-like (n = 164) subtypes, which also displayed different mutational profiles. In the R-chemo arm, patients with MEM-like FL had significantly shorter progression-free survival (PFS) than patients with GC-like FL (hazard ratio [HR], 2.13; P = .0023). In the R2 arm, both subtypes had comparable PFS, demonstrating that R2 has a benefit over R-chemo for patients with MEM-like FL (HR, 0.54; P = .011). The prognostic value of FL20 was validated in an independent FL cohort with R-chemo treatment (GSE119214 [n = 137]). An IHC algorithm (FLcm) that used FOXP1, LMO2, CD22, and MUM1 antibodies was developed with significant prognostic correlation with FL20. These data indicate that FL tumors can be classified into MEM-like and GC-like subtypes that are biologically distinct and clinically different in their risk profile. The FLcm assay can be used in routine clinical practice to identify patients with MEM-like FL who might benefit from therapies other than R-chemo, such as the R2 combination. This trial was registered at www.clinicaltrials.gov as #NCT01476787 and #NCT01650701.
Collapse
Affiliation(s)
- Camille Laurent
- Department of Bio-Pathology, Institut Universitaire Cancer-Oncopole, Centre de Recherches en Cancérologie de Toulouse INSERM U1037, Toulouse, France
| | - Preeti Trisal
- Division of Hematology Translational Medicine, Bristol Myers Squibb, Summit, NJ
| | - Bruno Tesson
- Department of Statistics, Lymphoma Study Association Clinical Research, Pierre Bénite, France
| | - Sahil Seth
- Division of Integrative Predictive Sciences, Bristol Myers Squibb, Cambridge, MA
| | - Alicia Beyou
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, Centre National de la Recherche Scientifique, INSERM, Marseille, France
| | - Sandrine Roulland
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, Centre National de la Recherche Scientifique, INSERM, Marseille, France
| | - Bastien Lesne
- Department of Statistics, Lymphoma Study Association Clinical Research, Pierre Bénite, France
| | - Nathalie Van Acker
- Department of Bio-Pathology, Institut Universitaire Cancer-Oncopole, Centre de Recherches en Cancérologie de Toulouse INSERM U1037, Toulouse, France
| | - Juan-Pablo Cerapio
- Department of Bio-Pathology, Institut Universitaire Cancer-Oncopole, Centre de Recherches en Cancérologie de Toulouse INSERM U1037, Toulouse, France
| | - Loïc Chartier
- Department of Statistics, Lymphoma Study Association Clinical Research, Pierre Bénite, France
| | - Arnaud Guille
- Department of Predictive Oncology, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Matthew E Stokes
- Integrative Predictive Sciences, Bristol Myers Squibb, Summit, NJ
| | - C Chris Huang
- Division of Hematology Translational Medicine, Bristol Myers Squibb, Summit, NJ
| | - Sarah Huet
- Department of Hematology, Hospices Civils De Lyon, Pierre Bénite, France
| | - Anita K Gandhi
- Division of Hematology Translational Medicine, Bristol Myers Squibb, Summit, NJ
| | | | - Luc Xerri
- Department of Pathology, Institut Paoli-Calmettes, Centre de Recherche en Cancérologie de Marseille, Aix-Marseille University, Marseille, France
| |
Collapse
|
2
|
Thieblemont C, Karimi YH, Ghesquieres H, Cheah CY, Clausen MR, Cunningham D, Jurczak W, Do YR, Gasiorowski R, Lewis DJ, Kim TM, van der Poel M, Poon ML, Feldman T, Linton KM, Sureda A, Hutchings M, Dinh MH, Kilavuz N, Soong D, Mark T, Sacchi M, Phillips T, Lugtenburg PJ. Epcoritamab in relapsed/refractory large B-cell lymphoma: 2-year follow-up from the pivotal EPCORE NHL-1 trial. Leukemia 2024; 38:2653-2662. [PMID: 39322711 PMCID: PMC11588654 DOI: 10.1038/s41375-024-02410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024]
Abstract
Primary results (median follow-up, 10.7 months) from the pivotal EPCORE® NHL-1 study in relapsed or refractory (R/R) large B-cell lymphoma (LBCL) demonstrated deep, durable responses with epcoritamab, a CD3xCD20 bispecific antibody, when used as monotherapy. We report long-term efficacy and safety results in patients with LBCL (N = 157; 25.1-month median follow-up). As of April 21, 2023, overall response rate was 63.1% and complete response (CR) rate was 40.1%. Estimated 24-month progression-free survival (PFS) and overall survival (OS) rates were 27.8% and 44.6%, respectively. An estimated 64.2% of complete responders remained in CR at 24 months. Estimated 24-month PFS and OS rates among complete responders were 65.1% and 78.2%, respectively. Of 119 minimal residual disease (MRD)-evaluable patients, 45.4% had MRD negativity, which correlated with longer PFS and OS. CR rates were generally consistent across predefined subgroups: 36% prior chimeric antigen receptor (CAR) T-cell therapy, 32% primary refractory disease, and 37% International Prognostic Index ≥3. The most common treatment-emergent adverse events were cytokine release syndrome (51.0%), pyrexia (24.8%), fatigue (24.2%), and neutropenia (23.6%). These results underscore the long-term benefit of epcoritamab for treating R/R LBCL with deep responses across subgroups, including patients with hard-to-treat disease and expected poor prognosis (ClinicalTrials.gov Registration: NCT03625037).
Collapse
MESH Headings
- Humans
- Male
- Middle Aged
- Female
- Follow-Up Studies
- Aged
- Antibodies, Bispecific/therapeutic use
- Antibodies, Bispecific/adverse effects
- Adult
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/therapy
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/drug therapy
- Aged, 80 and over
- Survival Rate
- Drug Resistance, Neoplasm
- Prognosis
- Young Adult
- Neoplasm, Residual
Collapse
Affiliation(s)
- Catherine Thieblemont
- Assistance Publique & Hôpitaux de Paris (APHP), Hôpital Saint-Louis, Hémato-oncologie, Université de Paris, Paris, France.
| | - Yasmin H Karimi
- Division of Hematology/Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Herve Ghesquieres
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Chan Y Cheah
- Sir Charles Gairdner Hospital and the University of Western Australia, Nedlands, Australia
| | | | | | | | - Young Rok Do
- Keimyung University Dongsan Medical Center, Daegu, Republic of Korea
| | | | - David John Lewis
- University Hospitals Plymouth NHS Trust, Derriford Hospital, Plymouth, UK
| | - Tae Min Kim
- Seoul National University Hospital, Seoul, Republic of Korea
| | - Marjolein van der Poel
- Lunenburg Lymphoma Phase I/II Consortium-HOVON/LLPC, Maastricht, Department of Internal Medicine, Division of Hematology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Tatyana Feldman
- John Theurer Cancer Center at Hackensack Meridian Health, Hackensack Meridian Health School of Medicine, Hackensack, NJ, USA
| | - Kim M Linton
- The Christie NHS Foundation Trust, Manchester Cancer Research Centre, and Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Anna Sureda
- Clinical Hematology Department, Institut Català d'Oncologia - L'Hospitalet, IDIBELL, Universitat de Barcelona, Barcelona, Spain
| | - Martin Hutchings
- Rigshospitalet and University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | - Tycel Phillips
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
- City of Hope, Duarte, CA, USA
| | - Pieternella J Lugtenburg
- Lunenburg Lymphoma Phase I/II Consortium-HOVON/LLPC, Erasmus MC Cancer Institute, Department of Hematology, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Kaur C, Thakur A, Liou KC, Rao NV, Nepali K. Spleen tyrosine kinase (SYK): an emerging target for the assemblage of small molecule antitumor agents. Expert Opin Investig Drugs 2024; 33:897-914. [PMID: 39096234 DOI: 10.1080/13543784.2024.2388559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/13/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION Spleen tyrosine kinase (SYK), a nonreceptor tyrosine kinase, has emerged as a vital component in the complex symphony of cancer cell survival and division. SYK activation (constitutive) is documented in various B-cell malignancies, and its inhibition induces programmed cell death. In some instances, it also acts as a tumor suppressor. AREAS COVERED Involvement of the SYK in the cancer growth, specifically in the progression of chronic lymphocytic leukemia (CLL), diffuse large B cell lymphomas (DLBCLs), acute myeloid leukemia (AML), and multiple myeloma (MM) is discussed. Therapeutic strategies to target SYK in cancer, including investigational SYK inhibitors, combinations of SYK inhibitors with other drugs targeting therapeutically relevant targets, and recent advancements in constructing new structural assemblages as SYK inhibitors, are also covered. EXPERT OPINION The SYK inhibitor field is currently marred by the poor translation rate of SYK inhibitors from preclinical to clinical studies. Also, dose-limited toxicities associated with the applications of SYK inhibitors have been evidenced. Thus, the development of new SYK inhibitory structural templates is in the need of the hour. To accomplish the aforementioned, interdisciplinary teams should incessantly invest efforts to expand the size of the armory of SYK inhibitors.
Collapse
Affiliation(s)
- Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ke-Chi Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Neralla Vijayakameswara Rao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Beishuizen A, Mellgren K, Andrés M, Auperin A, Bacon CM, Bomken S, Burke GAA, Burkhardt B, Brugieres L, Chiang AKS, Damm-Welk C, d'Amore E, Horibe K, Kabickova E, Khanam T, Kontny U, Klapper W, Lamant L, Le Deley MC, Loeffen J, Macintyre E, Mann G, Meyer-Wentrup F, Michgehl U, Minard-Colin V, Mussolin L, Oschlies I, Patte C, Pillon M, Reiter A, Rigaud C, Roncery L, Salaverria I, Simonitsch-Klupp I, Uyttebroeck A, Verdu-Amoros J, Williams D, Woessmann W, Wotherspoon A, Wrobel G, Zimmermann M, Attarbaschi A, Turner SD. Improving outcomes of childhood and young adult non-Hodgkin lymphoma: 25 years of research and collaboration within the framework of the European Intergroup for Childhood Non-Hodgkin Lymphoma. Lancet Haematol 2023; 10:e213-e224. [PMID: 36858678 DOI: 10.1016/s2352-3026(22)00374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/01/2022] [Accepted: 11/18/2022] [Indexed: 03/03/2023]
Abstract
The European Intergroup for Childhood Non-Hodgkin Lymphoma (EICNHL) was established 25 years ago with the goal to facilitate clinical trials and research collaborations in the field both within Europe and worldwide. Since its inception, much progress has been made whereby major improvements in outcomes have been achieved. In this Review, we describe the different diagnostic entities of non-Hodgkin lymphoma in children and young adults describing key features of each entity and outlining clinical achievements made in the context of the EICNHL framework. Furthermore, we provide an overview of advances in biopathology with an emphasis on the role of biological studies and how they have shaped available treatments. Finally, for each entity, we describe future goals, upcoming clinical trials, and highlight areas of research that require our focus going forward.
Collapse
Affiliation(s)
- Auke Beishuizen
- Division of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; The Netherlands and Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Karin Mellgren
- Department of Paediatric Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mara Andrés
- Department of Pediatric Oncology, University Hospital Le Fe, Valencia, Spain
| | - Anne Auperin
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Chris M Bacon
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Simon Bomken
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - G A Amos Burke
- Department of Paediatric Haematology, Oncology and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - Birgit Burkhardt
- Department of Pediatric Hematology, Oncology, and BMT, University Hospital Muenster, Münster, Germany
| | - Laurence Brugieres
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Alan K S Chiang
- Department of Pediatrics & AdolescentMedicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Christine Damm-Welk
- Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Emanuele d'Amore
- Department of Pathological Anatomy, San Bortolo Hospital, Vicenza, Italy
| | - Keizo Horibe
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Edita Kabickova
- Department of Pediatric Hematology and Oncology, Charles University & University Hospital Motol, Prague, Czech Republic
| | - Tasneem Khanam
- Department of Paediatric Haematology, Oncology and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - Udo Kontny
- Section of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatric and Adolescent Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Wolfram Klapper
- Institute of Pathology, Hematopathology Section, University of Schleswig-Holstein, Kiel, Germany
| | - Laurence Lamant
- Université Toulouse III-Paul Sabatier, Laboratoire d'Excellence Toulouse Cancer-TOUCAN, Équipe Labellisée La Ligue Contre Le Cancer, Inserm, Toulouse, France
| | | | - Jan Loeffen
- Division of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Elizabeth Macintyre
- Onco-hematology, Université Paris Cité and Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Georg Mann
- Pediatric Hematology and Oncology, Erasmus MC - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Friederike Meyer-Wentrup
- Division of Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Ulf Michgehl
- Department of Paediatric Haematology, Oncology and Palliative Care, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - Veronique Minard-Colin
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Lara Mussolin
- Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy; Pediatric Hematology, Oncology and Stem Cell Transplant Division, Maternal and Child Health Department, Padova University Hospital, Padova, Italy
| | - Ilske Oschlies
- Institute of Pathology, Hematopathology Section, University of Schleswig-Holstein, Kiel, Germany
| | - Catherine Patte
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Marta Pillon
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Maternal and Child Health Department, Padova University Hospital, Padova, Italy
| | - Alfred Reiter
- Department of Pediatric Hematology and Oncology, Justus Liebig-University Giessen, Giessen, Germany
| | - Charlotte Rigaud
- Department of Pediatric Hematology, Oncology, and BMT, University Hospital Muenster, Münster, Germany
| | - Leila Roncery
- St Anna Children's Hospital, Department of Paediatric Haematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Anne Uyttebroeck
- Department of Pediatric Hematology and Oncology, University Hospital Leuven,KU Leuven, Leuven, Belgium
| | - Jaime Verdu-Amoros
- Department of Pediatric Hematology and Oncology, University Hospital Valencia, Valencia, Spain
| | - Denise Williams
- Wolfson Childhood Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Wilhelm Woessmann
- Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | | | - Grazyna Wrobel
- Bone Marrow Transplantation and Pediatric Hematology and Oncology, Wroclaw Medical University, Wroclaw, Poland
| | - Martin Zimmermann
- Hannover Medical School, Department of Pediatric Hematology and Oncology, Hannover, Germany
| | - Andishe Attarbaschi
- St Anna Children's Hospital, Department of Paediatric Haematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK; Central European Institute for Technology, Masaryk University, Brno, Czech Republic.
| | | |
Collapse
|
5
|
Thieblemont C, Phillips T, Ghesquieres H, Cheah CY, Clausen MR, Cunningham D, Do YR, Feldman T, Gasiorowski R, Jurczak W, Kim TM, Lewis DJ, van der Poel M, Poon ML, Cota Stirner M, Kilavuz N, Chiu C, Chen M, Sacchi M, Elliott B, Ahmadi T, Hutchings M, Lugtenburg PJ. Epcoritamab, a Novel, Subcutaneous CD3xCD20 Bispecific T-Cell-Engaging Antibody, in Relapsed or Refractory Large B-Cell Lymphoma: Dose Expansion in a Phase I/II Trial. J Clin Oncol 2022; 41:2238-2247. [PMID: 36548927 PMCID: PMC10115554 DOI: 10.1200/jco.22.01725] [Citation(s) in RCA: 197] [Impact Index Per Article: 98.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Epcoritamab is a subcutaneously administered CD3xCD20 T-cell-engaging, bispecific antibody that activates T cells, directing them to kill malignant CD20+ B cells. Single-agent epcoritamab previously demonstrated potent antitumor activity in dose escalation across B-cell non-Hodgkin lymphoma subtypes. PATIENTS AND METHODS In the dose-expansion cohort of a phase I/II study (ClinicalTrials.gov identifier: NCT03625037), adults with relapsed or refractory CD20+ large B-cell lymphoma and at least two prior therapy lines (including anti-CD20 therapies) received subcutaneous epcoritamab in 28-day cycles (once weekly step-up doses in weeks 1-3 of cycle 1, then full doses once weekly through cycle 3, once every 2 weeks in cycles 4-9, and once every 4 weeks in cycle 10 and thereafter) until disease progression or unacceptable toxicity. The primary end point was overall response rate by the independent review committee. RESULTS As of January 31, 2022, 157 patients were treated (median age, 64 years [range, 20-83]; median of three [range, 2-11] prior therapy lines; primary refractory disease: 61.1%; prior chimeric antigen receptor (CAR) T-cell exposure: 38.9%). At a median follow-up of 10.7 months, the overall response rate was 63.1% (95% CI, 55.0 to 70.6) and the complete response rate was 38.9% (95% CI, 31.2 to 46.9). The median duration of response was 12.0 months (among complete responders: not reached). Overall and complete response rates were similar across key prespecified subgroups. The most common treatment-emergent adverse events were cytokine release syndrome (49.7%; grade 1 or 2: 47.1%; grade 3: 2.5%), pyrexia (23.6%), and fatigue (22.9%). Immune effector cell-associated neurotoxicity syndrome occurred in 6.4% of patients with one fatal event. CONCLUSION Subcutaneous epcoritamab resulted in deep and durable responses and manageable safety in highly refractory patients with large B-cell lymphoma, including those with prior CAR T-cell exposure.
Collapse
Affiliation(s)
- Catherine Thieblemont
- Assistance Publique & Hôpitaux de Paris (APHP), Hôpital Saint-Louis, Hémato-oncologie, Université de Paris, Paris, France
| | - Tycel Phillips
- University of Michigan Comprehensive Cancer Center, Ann Arbor, MI
| | - Herve Ghesquieres
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Chan Y Cheah
- Sir Charles Gairdner Hospital, Perth, Australia.,Division of Internal Medicine, Medical School, University of Western Australia, Perth, Australia
| | | | | | - Young Rok Do
- Keimyung University Dongsan Medical Center, Daegu, Republic of Korea
| | - Tatyana Feldman
- Hackensack Meridian Health Hackensack University Medical Center, Hackensack, NJ
| | | | | | - Tae Min Kim
- Seoul National University Hospital, Seoul, Republic of Korea
| | - David John Lewis
- University Hospitals Plymouth NHS Trust, Derriford Hospital, Plymouth, United Kingdom
| | - Marjolein van der Poel
- On behalf of the Lunenburg Lymphoma Phase I/II Consortium-HOVON/LLPC, Maastricht, Department of Internal Medicine, Division of Hematology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | | | | | | | | | | | | | | | | | - Martin Hutchings
- Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Pieternella J Lugtenburg
- On behalf of the Lunenburg Lymphoma Phase I/II Consortium-HOVON/LLPC, Erasmus MC Cancer Institute, University Medical Center, Department of Hematology, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Loeffler-Wirth H, Kreuz M, Schmidt M, Ott G, Siebert R, Binder H. Classifying Germinal Center Derived Lymphomas-Navigate a Complex Transcriptional Landscape. Cancers (Basel) 2022; 14:3434. [PMID: 35884496 PMCID: PMC9321060 DOI: 10.3390/cancers14143434] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Classification of lymphoid neoplasms is based mainly on histologic, immunologic, and (rarer) genetic features. It has been supplemented by gene expression profiling (GEP) in the last decade. Despite the considerable success, particularly in associating lymphoma subtypes with specific transcriptional programs and classifier signatures of up- or downregulated genes, competing molecular classifiers were often proposed in the literature by different groups for the same classification tasks to distinguish, e.g., BL versus DLBCL or different DLBCL subtypes. Moreover, rarer sub-entities such as MYC and BCL2 "double hit lymphomas" (DHL), IRF4-rearranged large cell lymphoma (IRF4-LCL), and Burkitt-like lymphomas with 11q aberration pattern (mnBLL-11q) attracted interest while their relatedness regarding the major classes is still unclear in many respects. We explored the transcriptional landscape of 873 lymphomas referring to a wide spectrum of subtypes by applying self-organizing maps (SOM) machine learning. The landscape reveals a continuum of transcriptional states activated in the different subtypes without clear-cut borderlines between them and preventing their unambiguous classification. These states show striking parallels with single cell gene expression of the active germinal center (GC), which is characterized by the cyclic progression of B-cells. The expression patterns along the GC trajectory are discriminative for distinguishing different lymphoma subtypes. We show that the rare subtypes take intermediate positions between BL, DLBCL, and FL as considered by the 5th edition of the WHO classification of haemato-lymphoid tumors in 2022. Classifier gene signatures extracted from these states as modules of coregulated genes are competitive with literature classifiers. They provide functional-defined classifiers with the option of consenting redundant classifiers from the literature. We discuss alternative classification schemes of different granularity and functional impact as possible avenues toward personalization and improved diagnostics of GC-derived lymphomas.
Collapse
Affiliation(s)
- Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics, University Leipzig (IZBI), 04107 Leipzig, Germany; (H.L.-W.); (M.S.)
| | - Markus Kreuz
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig, Germany;
| | - Maria Schmidt
- Interdisciplinary Centre for Bioinformatics, University Leipzig (IZBI), 04107 Leipzig, Germany; (H.L.-W.); (M.S.)
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany;
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89073 Ulm, Germany;
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University Leipzig (IZBI), 04107 Leipzig, Germany; (H.L.-W.); (M.S.)
| |
Collapse
|
7
|
A new taxonomy for splenic marginal zone lymphoma. Blood 2022; 139:644-645. [PMID: 35113148 DOI: 10.1182/blood.2021014198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
|
8
|
Mansouri L, Thorvaldsdottir B, Laidou S, Stamatopoulos K, Rosenquist R. Precision diagnostics in lymphomas - Recent developments and future directions. Semin Cancer Biol 2021; 84:170-183. [PMID: 34699973 DOI: 10.1016/j.semcancer.2021.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/03/2023]
Abstract
Genetics is an integral part of the clinical diagnostics of lymphomas that improves disease subclassification and patient risk-stratification. With the introduction of high-throughput sequencing technologies, a rapid, in-depth portrayal of the genomic landscape in major lymphoma entities was achieved. Whilst a few lymphoma entities were characterized by a predominant gene mutation (e.g. Waldenström's macroglobulinemia and hairy cell leukemia), the vast majority demonstrated a very diverse genetic landscape with a high number of recurrent gene mutations (e.g. chronic lymphocytic leukemia and diffuse large B cell lymphoma), indeed reflecting the great clinical heterogeneity among lymphomas. These studies have allowed better understanding of the ontogeny and evolution of different lymphomas, while also identifying new genetic markers that can complement lymphoma diagnostics and improve prognostication. However, despite these efforts, there is still a limited number of gene mutations with predictive impact that can guide treatment selection. In this review, we will highlight clinically relevant diagnostic, prognostic and predictive markers in lymphomas that are used today in routine diagnostics. We will also discuss how comprehensive genomic characterization using broad sequencing panels, allowing for the simultaneous detection of different types of genetic aberrations, may aid future development of precision diagnostics in lymphomas. This may in turn pave the way for the implementation of tailored precision therapy strategies at the individual patient level.
Collapse
Affiliation(s)
- Larry Mansouri
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Birna Thorvaldsdottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Stamatia Laidou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Kostas Stamatopoulos
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden.
| |
Collapse
|