1
|
Zheng R, Liu X, Zhang Y, Liu Y, Wang Y, Guo S, Jin X, Zhang J, Guan Y, Liu Y. Frontiers and future of immunotherapy for pancreatic cancer: from molecular mechanisms to clinical application. Front Immunol 2024; 15:1383978. [PMID: 38756774 PMCID: PMC11096556 DOI: 10.3389/fimmu.2024.1383978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Pancreatic cancer is a highly aggressive malignant tumor, that is becoming increasingly common in recent years. Despite advances in intensive treatment modalities including surgery, radiotherapy, biological therapy, and targeted therapy, the overall survival rate has not significantly improved in patients with pancreatic cancer. This may be attributed to the insidious onset, unknown pathophysiology, and poor prognosis of the disease. It is therefore essential to identify and develop more effective and safer treatments for pancreatic cancer. Tumor immunotherapy is the new and fourth pillar of anti-tumor therapy after surgery, radiotherapy, and chemotherapy. Significant progress has made in the use of immunotherapy for a wide variety of malignant tumors in recent years; a breakthrough has also been made in the treatment of pancreatic cancer. This review describes the advances in immune checkpoint inhibitors, cancer vaccines, adoptive cell therapy, oncolytic virus, and matrix-depletion therapies for the treatment of pancreatic cancer. At the same time, some new potential biomarkers and potential immunotherapy combinations for pancreatic cancer are discussed. The molecular mechanisms of various immunotherapies have also been elucidated, and their clinical applications have been highlighted. The current challenges associated with immunotherapy and proposed strategies that hold promise in overcoming these limitations have also been discussed, with the aim of offering new insights into immunotherapy for pancreatic cancer.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Xiaobin Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Yongxian Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yaping Wang
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Shutong Guo
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Xiaoyan Jin
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Jing Zhang
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yuehong Guan
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yusi Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| |
Collapse
|
2
|
Foley CR, Swan SL, Swartz MA. Engineering Challenges and Opportunities in Autologous Cellular Cancer Immunotherapy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:188-198. [PMID: 38166251 PMCID: PMC11155266 DOI: 10.4049/jimmunol.2300642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 01/04/2024]
Abstract
The use of a patient's own immune or tumor cells, manipulated ex vivo, enables Ag- or patient-specific immunotherapy. Despite some clinical successes, there remain significant barriers to efficacy, broad patient population applicability, and safety. Immunotherapies that target specific tumor Ags, such as chimeric Ag receptor T cells and some dendritic cell vaccines, can mount robust immune responses against immunodominant Ags, but evolving tumor heterogeneity and antigenic downregulation can drive resistance. In contrast, whole tumor cell vaccines and tumor lysate-loaded dendritic cell vaccines target the patient's unique tumor antigenic repertoire without prior neoantigen selection; however, efficacy can be weak when lower-affinity clones dominate the T cell pool. Chimeric Ag receptor T cell and tumor-infiltrating lymphocyte therapies additionally face challenges related to genetic modification, T cell exhaustion, and immunotoxicity. In this review, we highlight some engineering approaches and opportunities to these challenges among four classes of autologous cell therapies.
Collapse
Affiliation(s)
- Colleen R. Foley
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Sheridan L. Swan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
| | - Melody A. Swartz
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois
- Committee on Immunology, University of Chicago, Chicago, Illinois
- Ben May Department of Cancer Research, University of Chicago, Chicago, Illinois
| |
Collapse
|
3
|
Xu X, Guan W, Yu X, Xu G, Wang C. Non-interfacial self-assembly of synthetic protocells. Biomater Res 2023; 27:64. [PMID: 37400932 PMCID: PMC10318706 DOI: 10.1186/s40824-023-00402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/01/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Protocell refers to the basic unit of life and synthetic molecular assembly with cell structure and function. The protocells have great applications in the field of biomedical technology. Simulating the morphology and function of cells is the key to the preparation of protocells. However, some organic solvents used in the preparation process of protocells would damage the function of the bioactive substance. Perfluorocarbon, which has no toxic effect on bioactive substances, is an ideal solvent for protocell preparation. However, perfluorocarbon cannot be emulsified with water because of its inertia. METHODS Spheroids can be formed in nature even without emulsification, since liquid can reshape the morphology of the solid phase through the scouring action, even if there is no stable interface between the two phases. Inspired by the formation of natural spheroids such as pebbles, we developed non-interfacial self-assembly (NISA) of microdroplets as a step toward synthetic protocells, in which the inert perfluorocarbon was utilized to reshape the hydrogel through the scouring action. RESULTS The synthetic protocells were successfully obtained by using NISA-based protocell techniques, with the morphology very similar to native cells. Then we simulated the cell transcription process in the synthetic protocell and used the protocell as an mRNA carrier to transfect 293T cells. The results showed that protocells delivered mRNAs, and successfully expressed proteins in 293T cells. Further, we used the NISA method to fabricate an artificial cell by extracting and reassembling the membrane, proteins, and genomes of ovarian cancer cells. The results showed that the recombination of tumor cells was successfully achieved with similar morphology as tumor cells. In addition, the synthetic protocell prepared by the NISA method was used to reverse cancer chemoresistance by restoring cellular calcium homeostasis, which verified the application value of the synthetic protocell as a drug carrier. CONCLUSION This synthetic protocell fabricated by the NISA method simulates the occurrence and development process of primitive life, which has great potential application value in mRNA vaccine, cancer immunotherapy, and drug delivery.
Collapse
Affiliation(s)
- Xiaolin Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, P.R. China
| | - Wencai Guan
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, P.R. China
| | - Xiaolei Yu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, P.R. China.
| | - Chenglong Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, 201508, P.R. China.
| |
Collapse
|
4
|
Bastin DJ, Montroy J, Kennedy MA, Martel AB, Shorr R, Ghiasi M, Boucher DM, Wong B, Gresham L, Diallo JS, Fergusson DA, Lalu MM, Kekre N, Auer RC. Safety and efficacy of autologous cell vaccines in solid tumors: a systematic review and meta-analysis of randomized control trials. Sci Rep 2023; 13:3347. [PMID: 36849805 PMCID: PMC9971202 DOI: 10.1038/s41598-023-29630-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 02/08/2023] [Indexed: 03/01/2023] Open
Abstract
We conducted a systematic review and meta-analysis of randomized control trials to formally assess the safety and efficacy of autologous whole cell vaccines as immunotherapies for solid tumors. Our primary safety outcome was number, and grade of adverse events. Our primary efficacy outcome was clinical responses. Secondary outcomes included survival metrics and correlative immune assays. We searched MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials for studies published between 1946 and August 2020 using any autologous whole cell product in the treatment of any solid tumor. The Cochrane Randomized Controlled Trial risk of bias tool was used to assess risk of bias. Eighteen manuscripts were identified with a total of 714 patients enrolled in control and 808 in vaccine arms. In 698 patients receiving at least one dose of vaccine, treatment was well tolerated with a total of 5 grade III or higher adverse events. Clinical response was reported in a minority (n = 2, 14%) of studies. Autologous cell vaccines were associated with improved overall (HR 1.28, 95% CI 1.01-1.63) and disease-free survival (HR 1.33, 95% CI 1.05-1.67) over thirteen and ten trials respectively. Where reported, immune assays correlated well with clinical outcomes. Our results suggest that autologous whole cell vaccination is safe and efficacious in increasing survival in patients undergoing treatment for solid tumors.Registration: PROSPERO CRD42019140187.
Collapse
Affiliation(s)
- Donald J Bastin
- Cancer Therapeutics Program, The Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Schulich School of Medicine, Western University, London, ON, Canada
| | - Joshua Montroy
- Clinical Epidemiology Program, Blueprint Translational Research Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Michael A Kennedy
- Cancer Therapeutics Program, The Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Andre B Martel
- Cancer Therapeutics Program, The Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Surgery, University of Ottawa, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Risa Shorr
- Learning Services, The Ottawa Hospital, Ottawa, ON, Canada
| | - Maryam Ghiasi
- Clinical Epidemiology Program, Blueprint Translational Research Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Dominique M Boucher
- Cancer Therapeutics Program, The Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Boaz Wong
- Cancer Therapeutics Program, The Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Louise Gresham
- Department of Surgery, University of Ottawa, Ottawa, ON, Canada
| | - Jean-Simon Diallo
- Cancer Therapeutics Program, The Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Dean A Fergusson
- Clinical Epidemiology Program, Blueprint Translational Research Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Manoj M Lalu
- Clinical Epidemiology Program, Blueprint Translational Research Group, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
- Regenerative Medicine Program, The Ottawa Health Research Institute, Ottawa, ON, Canada
| | - Natasha Kekre
- Cancer Therapeutics Program, The Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rebecca C Auer
- Cancer Therapeutics Program, The Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
- Department of Surgery, University of Ottawa, Ottawa, ON, Canada.
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
5
|
Bastin DJ, Quizi J, Kennedy MA, Kekre N, Auer RC. Current challenges in the manufacture of clinical-grade autologous whole cell vaccines for hematological malignancies. Cytotherapy 2022; 24:979-989. [PMID: 35562303 DOI: 10.1016/j.jcyt.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/03/2022]
Abstract
Autologous whole cell vaccines use a patient's own tumor cells as a source of antigen to elicit an anti-tumor immune response in vivo. Recently, the authors conducted a systematic review of clinical trials employing these products in hematological cancers that showed a favorable safety profile and trend toward efficacy. However, it was noted that manufacturing challenges limit both the efficacy and clinical implementation of these vaccine products. In the current literature review, the authors sought to define the issues surrounding the manufacture of autologous whole cell products for hematological cancers. The authors describe key factors, including the acquisition, culture, cryopreservation and transduction of malignant cells, that require optimization for further advancement of the field. Furthermore, the authors provide a summary of pre-clinical work that informs how the identified challenges may be overcome. The authors also highlight areas in which future basic research would be of benefit to the field. The goal of this review is to provide a roadmap for investigators seeking to advance the field of autologous cell vaccines as it applies to hematological malignancies.
Collapse
Affiliation(s)
- Donald J Bastin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada; Schulich School of Medicine, Western University, London, Canada
| | - Jennifer Quizi
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Michael A Kennedy
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Natasha Kekre
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada; Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Rebecca C Auer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada; Faculty of Medicine, University of Ottawa, Ottawa, Canada; Department of Surgery, University of Ottawa, Ottawa, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.
| |
Collapse
|