1
|
Sicurella M, De Chiara M, Neri LM. Hedgehog and PI3K/Akt/mTOR Signaling Pathways Involvement in Leukemic Malignancies: Crosstalk and Role in Cell Death. Cells 2025; 14:269. [PMID: 39996741 PMCID: PMC11853774 DOI: 10.3390/cells14040269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025] Open
Abstract
The Hedgehog (Hh) and PI3K/Akt/mTOR signaling pathways play a pivotal role in driving the initiation and progression of various cancers, including hematologic malignancies such as acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), and chronic lymphocytic leukemia (CLL). These pathways are often dysregulated in leukemia cells, leading to increased cell growth, survival, and drug resistance while also impairing mechanisms of cell death. In leukemia, the Hh pathway can be abnormally activated by genetic mutations. Additionally, the PI3K/Akt/mTOR pathway is frequently overactive due to genetic changes. A key aspect of these pathways is their interaction: activation of the PI3K/Akt pathway can trigger a non-canonical activation of the Hh pathway, which further promotes leukemia cell growth and survival. Targeted inhibitors of these pathways, such as Gli inhibitors and PI3K/mTOR inhibitors, have shown promise in preclinical and clinical studies.
Collapse
Affiliation(s)
- Mariaconcetta Sicurella
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy;
| | - Marica De Chiara
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
- LTTA-Electron Microscopy Center, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Huang J, Huang S, Li G, Huang G, Huang Z, Su S, Zhong T. Structure and expression of FAPP2 protein in hepatocellular carcinoma: Its effect and molecular mechanism on HepG2 and MHCC97H in clinical treatment. Int J Biol Macromol 2025; 290:139073. [PMID: 39710035 DOI: 10.1016/j.ijbiomac.2024.139073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common and lethal malignancy of the liver. The aim of this study was to reveal the structural characteristics of FAPP2, evaluate its expression in HepG2 and MHCC97H cells, and explore its potential role and molecular mechanism in the clinical treatment of hepatocellular carcinoma. The role of FAPP2 in these two cell lines was evaluated using cell function tests, such as cell proliferation, migration, and invasion tests. The interaction between FAPP2 and other related signaling pathways was further explored by bioinformatics analysis. The structural analysis of FAPP2 shows that it has specific domains and functional sites, which are closely related to its biological function in the cell. FAPP2 expression in HepG2 cells was significantly higher than that in MHCC97H cells. Functional experiments showed that overexpression of FAPP2 promoted the proliferation and migration of HepG2 cells, but no such effect was seen in MHCC97H cells. Bioinformatics analysis revealed a potential association between FAPP2 and the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Junling Huang
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Senping Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Guangzhi Li
- Department of General practice, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Guiliu Huang
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Zansong Huang
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Shixiang Su
- Department of General practice, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Tengmeng Zhong
- Department of Hepatobiliary Surgery, Baise Peoles's Hospital, Baise 533000, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
3
|
Jung YY, Ahn KS, Shen M. Unveiling autophagy complexity in leukemia: The molecular landscape and possible interactions with apoptosis and ferroptosis. Cancer Lett 2024; 582:216518. [PMID: 38043785 DOI: 10.1016/j.canlet.2023.216518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Autophagy is a self-digestion multistep process in which causes the homeostasis through degradation of macromolecules and damaged organelles. The autophagy-mediated tumor progression regulation has been a critical point in recent years, revealing the function of this process in reduction or acceleration of carcinogenesis. Leukemia is a haematological malignancy in which abnormal expansion of hematopoietic cells occurs. The current and conventional therapies from chemotherapy to cell transplantation have failed to appropriately treat the leukemia patients. Among the mechanisms dysregulated in leukemia, autophagy is a prominent one in which can regulate the hallmarks of this tumor. The protective autophagy inhibits apoptosis and ferroptosis in leukemia, while toxic autophagy accelerates cell death. The proliferation and invasion of tumor cells are tightly regulated by the autophagy. The direction of regulation depends on the function of autophagy that is protective or lethal. The protective autophagy accelerates chemoresistance and radio-resistsance. The non-coding RNAs, histone transferases and other pathways such as PI3K/Akt/mTOR are among the regulators of autophagy in leukemia progression. The pharmacological intervention for the inhibition or induction of autophagy by the compounds including sesamine, tanshinone IIA and other synthetic compounds can chance progression of leukemia.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Mingzhi Shen
- Department of General Medicine, Hainan Hospital of PLA General Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Sanya, China.
| |
Collapse
|
4
|
Yang A, Luo D, Jia Y, Liu Y, Zhang Z, Li S, Liu R, Zhou J, Wang J. Targeted delivery of AZD5363 to T-cell acute lymphocytic leukemia by mSiO 2-Au nanovehicles. Colloids Surf B Biointerfaces 2023; 230:113505. [PMID: 37574619 DOI: 10.1016/j.colsurfb.2023.113505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
T-cell acute lymphocytic leukemia (T-ALL) is the most common cancer in children, with a low survival rate because of drug resistance and a high recurrence rate. Targeted delivery of chemotherapy drugs can reduce their side effects and improve their efficacy. The abnormality of phosphatidylinositol-3-kinase/protein kinase B/ mammalian target of rapamycin (PI3K/Akt/mTOR) pathway plays a key role in T-ALL occurrence. AZD5363 is a selective Akt inhibitor with promising therapeutic potential for tumors encoded by the PI3K/Akt/mTOR pathway. However, the toxicity and side effects have limited its application in treating T-ALL. This study aimed to design a delivery system for targeting AZD5363 to T-ALL by sgc8c aptamer designed as mesoporous silica (mSiO2) decorated with Au nanoparticles. The cell-specific targeting and cytotoxicity of mSiO2-Au-AZD5363-Apt were investigated. The mSiO2-Au nanovehicles were found feasible for AZD5363 delivery, with high loading efficiency and pH-responsive release in the acidic lysosome. More importantly, mSiO2-Au-AZD5363-Apt nanovehicles could specifically recognize and enter T-ALL cells in vitro and in vivo, effectively inhibiting the proliferation of CCRF-CEM cells. In conclusion, mSiO2-Au-AZD5363-Apt provided an effective therapeutic method for the targeted treatment of T-ALL.
Collapse
Affiliation(s)
- Aiyun Yang
- Translational Medicine Laboratory, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Danqing Luo
- Department of Pediatric Hematology Oncology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yuxuan Jia
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yuxin Liu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zuo Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, College of Life Science & Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Shen Li
- Translational Medicine Laboratory, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China
| | - Rong Liu
- Department of Pediatric Hematology Oncology, Children's Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jing Zhou
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Jianhua Wang
- Translational Medicine Laboratory, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China.
| |
Collapse
|
5
|
Zhao J, He S, Xiang C, Zhang S, Chen X, Lu X, Yao Q, Yang L, Ma L, Tian W. KLF9 promotes autophagy and apoptosis in T-cell acute lymphoblastic leukemia cells by inhibiting AKT/mTOR signaling pathway. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Li B, Liu Y, Sun S. Pump proton inhibitors display anti-tumour potential in glioma. Cell Prolif 2022:e13321. [PMID: 35961680 DOI: 10.1111/cpr.13321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/28/2022] [Accepted: 07/14/2022] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Glioma is one of the most aggressive brain tumours with poor overall survival despite advanced technology in surgical resection, chemotherapy and radiation. Progression and recurrence are the hinge causes of low survival. Our aim is to explain the concrete mechanism in the proliferation and progression of tumours based on tumour microenvironment (TME). The main purpose is to illustrate the mechanism of proton pump inhibitors (PPIs) in affecting acidity, hypoxia, oxidative stress, inflammatory response and autophagy based on the TME to induce apoptosis and enhance the sensitivity of chemoradiotherapy. FINDINGS TME is the main medium for tumour growth and progression. Acidity, hypoxia, inflammatory response, autophagy, angiogenesis and so on are the main causes of tumour progress. PPIs, as a common clinical drug to inhibit gastric acid secretion, have the advantages of fast onset, long action time and small adverse reactions. Nowadays, several kinds of literature highlight the potential of PPIs in inhibiting tumour progression. However, long-term use of PPIs alone also has obvious side effects. Therefore, till now, how to apply PPIs to promote the effect of radio-chemotherapy and find the concrete dose and concentration of combined use are novel challenges. CONCLUSIONS PPIs display the potential in enhancing the sensitivity of chemoradiotherapy to defend against glioma based on TME. In the clinic, it is also necessary to explore specific concentrations and dosages in synthetic applications.
Collapse
Affiliation(s)
- Bihan Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Shilong Sun
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|