1
|
Scott AF, Mohr DW, Littrell WA, Babu R, Kokosinski M, Stinnett V, Madhiwala J, Anderson J, Zou YS, Gabrielson KL. Characterization of the Rat Osteosarcoma Cell Line UMR-106 by Long-Read Technologies Identifies a Large Block of Amplified Genes Associated with Human Disease. Genes (Basel) 2024; 15:1254. [PMID: 39457378 PMCID: PMC11507229 DOI: 10.3390/genes15101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The rat osteosarcoma cell line UMR-106 is widely used for the study of bone cancer biology but it has not been well characterized with modern genomic methods. METHODS To better understand the biology of UMR-106 cells we used a combination of optical genome mapping (OGM), long-read sequencing nanopore sequencing and RNA sequencing.The UMR-106 genome was compared to a strain-matched Sprague-Dawley rat for variants associated with human osteosarcoma while expression data were contrasted with a public osteoblast dataset. RESULTS Using the COSMIC database to identify the most affected genes in human osteosarcomas we found somatic mutations in Tp53 and H3f3a. OGM identified a relatively small number of differences between the cell line and a strain-matched control animal but did detect a ~45 Mb block of amplification that included Myc on chromosome 7 which was confirmed by long-read sequencing. The amplified region showed several blocks of non-contiguous rearranged sequence implying complex rearrangements during their formation and included 14 genes reported as biomarkers in human osteosarcoma, many of which also showed increased transcription. A comparison of 5mC methylation from the nanopore reads of tumor and control samples identified genes with distinct differences including the OS marker Cdkn2a. CONCLUSIONS This dataset illustrates the value of long DNA methods for the characterization of cell lines and how inter-species analysis can inform us about the genetic nature underlying mutations that underpin specific tumor types. The data should be a valuable resource for investigators studying osteosarcoma, in general, and specifically the UMR-106 model.
Collapse
Affiliation(s)
- Alan F. Scott
- Genetic Resources Core Facility, Department of Genetic Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St., 1034 Blalock, Baltimore, MD 21287, USA; (D.W.M.)
| | - David W. Mohr
- Genetic Resources Core Facility, Department of Genetic Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St., 1034 Blalock, Baltimore, MD 21287, USA; (D.W.M.)
| | - William A. Littrell
- Genetic Resources Core Facility, Department of Genetic Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St., 1034 Blalock, Baltimore, MD 21287, USA; (D.W.M.)
| | - Reshma Babu
- Genetic Resources Core Facility, Department of Genetic Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St., 1034 Blalock, Baltimore, MD 21287, USA; (D.W.M.)
| | - Michelle Kokosinski
- Department of Genetic Medicine, Johns Hopkins Genomics, Johns Hopkins University School of Medicine, 1812 Ashland Ave., Suite 200, Baltimore, MD 21205, USA
| | - Victoria Stinnett
- Cytogenetic Laboratory, Department of Pathology, Johns Hopkins Genomics, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Halsted 281, Baltimore, MD 21287, USA (Y.S.Z.)
| | - Janvi Madhiwala
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| | - John Anderson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
| | - Ying S. Zou
- Cytogenetic Laboratory, Department of Pathology, Johns Hopkins Genomics, Johns Hopkins University School of Medicine, 600 N. Wolfe St., Halsted 281, Baltimore, MD 21287, USA (Y.S.Z.)
| | - Kathleen L. Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Sreedharanunni S, Singla S, Balakrishnan A, Singh A, Jamwal M, Singh N, Singh C, Jandial A, Lad D, Sharma P, Sachdeva MUS, Malhotra P, Das R. The frequency and clinical outcome of mono-hit and multi-hit TP53 aberrations in newly diagnosed multiple myeloma. Pathology 2024; 56:556-564. [PMID: 38413253 DOI: 10.1016/j.pathol.2023.12.415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/01/2023] [Accepted: 12/06/2023] [Indexed: 02/29/2024]
Abstract
We investigated the frequency and outcome of mono-hit and multi-hit TP53 aberrations [biallelic or ≥1 TP53 mutations (TP53mut) or TP53mut with variant allele frequency (VAF) ≥55%] in an Indian cohort of newly diagnosed multiple myeloma (NDMM) patients. We employed fluorescence insitu hybridisation (FISH; n=457) and targeted next-generation sequencing (NGS; n=244) on plasma cell-enriched samples. We also studied the impact of TP53mut in cases with and without TP53 deletions (TP53del). In our cohort with a median age of 60 years, TP53del and TP53mut were seen in 12.9% (n=59/457; 14-95% cells) and 10.2% (n=25/244; 30 variants; VAF 3.4-98.2%; median 38.2%) respectively. Mono-hit and multi-hit-TP53 aberrations were observed in 10.2% and 7.8%, respectively. Compared to TP53-wild-type (TP53wt), mono-hit and multi-hit TP53 aberrations were associated with significantly poorer progression-free survival (PFS) (22.6 vs 12.1 vs 9.5 months; p=0.004) and overall survival (OS) [not reached (NR) vs 13.1 vs 15.6 months respectively; p=0.024]. However, multi-hit TP53 did not significantly differ in OS/PFS compared to mono-hit cases. Compared to TP53wt, PFS and OS were significantly poorer in patients with TP53mut only (9.5 vs 22.6 months and 12.1 months vs NR, respectively; p=0.020/0.004). TP53mut retained its significance even in the presence of any Revised International Staging System (HR 2.1; 95% CI 1.1-3.8; p=0.015) for OS. The detection of additional cases with TP53 aberrations, as well as poor survival associated with the presence of mutation alone, supports TP53mut testing in NDMM at least in patients without TP53del and other high-risk cytogenetic abnormalities.
Collapse
Affiliation(s)
- Sreejesh Sreedharanunni
- Department of Haematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Shelly Singla
- Department of Haematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anand Balakrishnan
- Department of Haematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Archana Singh
- Department of Haematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manu Jamwal
- Department of Haematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Namrata Singh
- Department of Haematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Charanpreet Singh
- Department of Clinical Haematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aditya Jandial
- Department of Clinical Haematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepesh Lad
- Department of Clinical Haematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Praveen Sharma
- Department of Haematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Man Updesh Singh Sachdeva
- Department of Haematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Malhotra
- Department of Clinical Haematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Reena Das
- Department of Haematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
3
|
Fontecha MB, Anadón MDR, Mercado Guzmán V, Stanganelli C, Galvano C, Tosin F, Bordone J, Bezares R, Rodríguez C, Heller V, Slavutsky I, Fundia AF. Genetic variability profiling of the p53 signaling pathway in chronic lymphocytic leukemia. Individual and combined analysis of TP53, MDM2 and NQO1 gene variants. Ann Hematol 2024:10.1007/s00277-024-05794-w. [PMID: 38743086 DOI: 10.1007/s00277-024-05794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
TP53 gene disruption, including 17p13 deletion [del(17p)] and/or TP53 mutations, is a negative prognostic biomarker in chronic lymphocytic leukemia (CLL) associated with disease progression, treatment failure and shorter survival. Germline variants in p53 signaling pathway genes could also lead to p53 dysfunction, but their involvement in CLL has not been thoroughly evaluated. The aim of this study was to determine the association of TP53, MDM2 and NQO1 gene variability with clinical and genetic data of CLL patients. Individual genotype and haplotype data of CLL patients were compared with clinical prognostic factors, cytogenetic and molecular cytogenetic findings as well as IGHV and TP53 mutational status. The study included 116 CLL patients and 161 healthy blood donors. TP53 (rs1042522, rs59758982, rs1625895), NQO1 (rs1800566) and MDM2 (rs2279744, rs150550023) variants were genotyped using different PCR approaches. Analysis of genotype frequencies revealed no association with the risk of CLL. TP53 rs1042522, rs1625895 and MDM2 rs2279744 variants were significantly associated with abnormal karyotype and the presence of del(17p). Similarly, these two TP53 variants were associated with TP53 disruption. Moreover, TP53 C-A-nondel and G-A-del haplotypes (rs1042522-rs1625895-rs59758982) were associated with an increased likelihood of carrying del(17p) and TP53 disruptions. MDM2 T-nondel haplotype (rs2279744-rs150550023) was found to be a low risk factor for del(17p) (OR = 0.32; CI: 0.12-0.82; p = 0.02) and TP53 disruptions (OR = 0.41; CI: 0.18-0.95; p = 0.04). Our findings suggest that TP53 and MDM2 variants may modulate the risk to have chromosome alterations and TP53 disruptions, particularly del(17p). To our knowledge this is the first study of several germline variants in p53 pathway genes in Argentine patients with CLL.
Collapse
Affiliation(s)
- María Belén Fontecha
- Laboratorio de Farmacogenómica, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina.
| | - María Del Rosario Anadón
- Laboratorio de Farmacogenómica, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Verónica Mercado Guzmán
- Laboratorio de Farmacogenómica, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
- Laboratorio de Biología Molecular, Hospital Alemán, Buenos Aires, Argentina
| | - Carmen Stanganelli
- División Patología Molecular, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Camila Galvano
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Fernanda Tosin
- Servicio de Hematología, Hospital El Cruce, Buenos Aires, Argentina
| | - Javier Bordone
- Servicio de Hematología, Hospital El Cruce, Buenos Aires, Argentina
| | - Raimundo Bezares
- Servicio de Hematología, Hospital Álvarez, Buenos Aires, Argentina
| | - Cecilia Rodríguez
- Facultad de Ciencias Médicas, Hospital Nacional de Clínicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Viviana Heller
- Facultad de Ciencias Médicas, Hospital Nacional de Clínicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Irma Slavutsky
- Laboratorio de Genética de Neoplasias Linfoides, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Ariela Freya Fundia
- Laboratorio de Farmacogenómica, Instituto de Medicina Experimental, CONICET-Academia Nacional de Medicina, Buenos Aires, Argentina.
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain.
| |
Collapse
|